JPH0421936A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH0421936A
JPH0421936A JP2127377A JP12737790A JPH0421936A JP H0421936 A JPH0421936 A JP H0421936A JP 2127377 A JP2127377 A JP 2127377A JP 12737790 A JP12737790 A JP 12737790A JP H0421936 A JPH0421936 A JP H0421936A
Authority
JP
Japan
Prior art keywords
optical
substrate
birefringence
incident
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127377A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
強 辻岡
Kotaro Matsuura
松浦 宏太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2127377A priority Critical patent/JPH0421936A/en
Publication of JPH0421936A publication Critical patent/JPH0421936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To prevent the adverse influence of birefringence even when the birefringence exists by providing an optical means to guide a beam from a light source as a linearly polarized beam so that the light source and a polarizing face can be coincident with the advanced and delayed phase axes of a transparent substrate. CONSTITUTION:A second lambda/4 plate 15 and a Faraday rotor 16 are rotated and controlled in the direction of an optical axis so that the advanced and delayed phase axes of the birefringence of a substrate 12 can be coincident with the beam polarizing face on a tape T. The beam made incident in this way is reflected on the optical tape T and returned back to an optical system 6 and at such a time, the reflected linearly polarized beam is rotated at 45 deg. on the polarizing face by the rotor 16. When the beam returns to the plate 15, the polarizing face is rotated at 90 deg. in comparison with the incident time. Therefore, this beam is transformed to a circularly polarized beam so that the rotational direction can be made opposite to the incident time, and when the beam is transmitted through a lambda/4 plate 10, it is transformed to the linearly polarized beam so that the polarizing face can be orthogonal to that of the incident time. Then, the beam is almost fully reflected by S waves in a polarized beam splitter 8 and made incident to a photoelectric converting element. Thus, the adverse influence caused by the birefringence of the substrate can be prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光ヘッド装置に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to an optical head device.

(ロ)従来の技術 光ヘッド装置の一例として特開昭62−149036号
公報(G11B71085)に開示のものが公知である
。この種の光ヘッド装置を第2図に示す。図において、
(1)は回転シリンダで、有底円筒状をしており、モー
タ(2)によって回転駆動される。該回転シリンダ(1
)には、回転中心上にプリズム(3)が配されており、
又、回転シリンダ(1)のプリズム(3)に対向する側
面には透孔(4)を介して対物レンズ(5)が取付けら
れる。
(B) Conventional Technology As an example of an optical head device, the one disclosed in Japanese Patent Application Laid-open No. 149036/1985 (G11B71085) is known. This type of optical head device is shown in FIG. In the figure,
(1) is a rotating cylinder, which has a cylindrical shape with a bottom and is rotationally driven by a motor (2). The rotating cylinder (1
) has a prism (3) placed on the center of rotation,
Further, an objective lens (5) is attached to the side surface of the rotating cylinder (1) facing the prism (3) through a through hole (4).

回転シリンダ(1)の上方には固定光学系(6)が配さ
れており、この固定光学系(6)がらは回転シリンダ(
1)の回転軸にその先軸が一致する様に円偏光ビームが
出射される。該固定光学系(6)は、直線偏光ビームを
出射する半導体レーザ(7)と、偏光ビームスプリッタ
(8)と、コリメータレンズλ (9)と、4板(10)と、光電変換素子(11)とよ
りなる。偏光ビームスプリッタ(8)は半導体レーザ(
7)からのビームがP波となる様に位置調整されている
。このため、半導体レーザ(7)からのビームは、この
偏光ビームスプリッタ(8)を略全透過する。そして、
偏光ビームスプリッタ(8)を透過したビームは、コリ
メータレンズ(9)によって平行ビームに変換された後
、1板(1o)によって直線偏光から円偏光へと変換さ
れる。
A fixed optical system (6) is arranged above the rotating cylinder (1), and this fixed optical system (6) is connected to the rotating cylinder (1).
A circularly polarized beam is emitted such that its tip axis coincides with the rotation axis of 1). The fixed optical system (6) includes a semiconductor laser (7) that emits a linearly polarized beam, a polarizing beam splitter (8), a collimator lens λ (9), a four-plate (10), and a photoelectric conversion element (11). ). The polarizing beam splitter (8) is a semiconductor laser (
The position is adjusted so that the beam from 7) becomes a P wave. Therefore, the beam from the semiconductor laser (7) is substantially completely transmitted through this polarizing beam splitter (8). and,
The beam transmitted through the polarizing beam splitter (8) is converted into a parallel beam by a collimator lens (9), and then converted from linearly polarized light to circularly polarized light by one plate (1o).

而してプリズム(3)には固定光学系(6)から円偏光
ビームが入射される。該ビームはプリズム(3)によっ
て反射された後、対物レンズ(5)に導かれる。一方、
回転シリンダ(1)の周面には図示しない案内手段によ
り光テープ(T)が略半周に亘って斜めに巻付けられて
いる。然して対物レンズ(5)に導かれた前記ビームは
、対物レンズ(5)によって該光テープ上に収束される
A circularly polarized beam is incident on the prism (3) from the fixed optical system (6). After being reflected by the prism (3), the beam is guided to the objective lens (5). on the other hand,
An optical tape (T) is obliquely wound approximately half the circumference around the circumferential surface of the rotating cylinder (1) by a guide means (not shown). The beam guided to the objective lens (5) is then focused onto the optical tape by the objective lens (5).

第3図は、光テープ(T)の構造を示す断面図である。FIG. 3 is a sectional view showing the structure of the optical tape (T).

該光テープ(T)は、透明な基板(12)と記録層(1
3)と反射層(14)とよりなる。前記光ビームは、基
板(12)側から入射され、基板(12)を透過して記
録層(13)上に収束される。ここで、基板(12)は
回転シリンダ(1)の周面を摺接し、記録層(13)を
保護するためにも必ず必要である。尚、基板(12)は
、PET(ポリエチレンテレフタレート)フィルム等に
よって形成され、その膜厚は10〜20μm程度である
。記録層(13)及び反射層(14)は、この基板(1
2)上に塗布或いは蒸着によって形成される。上記の様
に記録層(12)上に収束されたビームは反射層(14
)によって反射された後、上記と同一の光路を逆行して
偏光ビームスプリッタ(8)に入射される。ここで、こ
のビームは、光テープ(T)への入射時と反射時とで偏
光状態が円穴 偏光のまま変化しなければ、4板(10)を通ることに
よって偏光ビームスプリッタ(8)に対してS波となる
直線偏光ビームに変換されるため、偏光ビームスプリッ
タ(8)によって側方に略全反射されて光電変換素子(
11)に入射される。従って、半導体レーザ(7)には
、光テープ(T)からの反射ビームは入射されない。
The optical tape (T) includes a transparent substrate (12) and a recording layer (1).
3) and a reflective layer (14). The light beam is incident from the substrate (12) side, passes through the substrate (12), and is focused on the recording layer (13). Here, the substrate (12) is in sliding contact with the circumferential surface of the rotating cylinder (1) and is absolutely necessary to protect the recording layer (13). The substrate (12) is formed of a PET (polyethylene terephthalate) film or the like, and has a thickness of about 10 to 20 μm. The recording layer (13) and the reflective layer (14) are formed on this substrate (1).
2) Formed on top by coating or vapor deposition. The beam focused on the recording layer (12) as described above is transmitted to the reflective layer (14).
), the light travels the same optical path as above and enters the polarizing beam splitter (8). Here, if the polarization state of this beam does not change between the time of incidence on the optical tape (T) and the time of reflection, it remains as circular hole polarization, then it passes through the fourth plate (10) and enters the polarization beam splitter (8). On the other hand, since it is converted into a linearly polarized beam that becomes an S wave, it is almost totally reflected laterally by the polarizing beam splitter (8) and the photoelectric conversion element (
11). Therefore, the reflected beam from the optical tape (T) is not incident on the semiconductor laser (7).

然し乍ら上記従来例の場合、光テープ(T)から反射さ
れたビームは、実際は偏光状態がだ円偏光に変化してい
るため、偏光ビームスプリッタ(8)に入射される際の
該反射ビームは、上記の様な直線偏光ビームとはならず
、だ円偏光ビームとなる。このため、該反射ビームの一
部は偏光ビームスプリッタ(8)を透過して半導体レー
ザ(7)に入射する。この様に半導体レーザ(7)に戻
り光が入射されると、半導体レーザ(7)の発振が乱れ
てしまい、記録・再生時において障害となる。
However, in the case of the above conventional example, the polarization state of the beam reflected from the optical tape (T) has actually changed to elliptical polarization, so that the reflected beam when incident on the polarizing beam splitter (8) is It does not become a linearly polarized beam as described above, but becomes an elliptical polarized beam. Therefore, a part of the reflected beam passes through the polarizing beam splitter (8) and enters the semiconductor laser (7). If the returned light is incident on the semiconductor laser (7) in this way, the oscillation of the semiconductor laser (7) will be disturbed, which will cause problems during recording and reproduction.

上記の様に光テープ(T)からの反射ビームの偏光状態
が、円偏光ではなくだ円偏光となるのは、光テープ(T
)の基板(12)に複屈折が存在するためである。
The reason why the polarization state of the reflected beam from the optical tape (T) is not circularly polarized but elliptical as described above is because the optical tape (T)
This is because birefringence exists in the substrate (12) of ).

斯かる複屈折は、材料中の分子の配向方向に基いて発生
する。つまり、分子が一方向に配向していると、材料を
透過するビームの内、この配向方向に平行なビーム成分
とこれに垂直なビーム成分の間に位相差が生じる。つま
り、この様な材料には、分子の配向方向とこれに垂直な
方向に夫々進相軸又は遅相軸が存在する。上記従来例の
基板(12)の場合、この基板(12)はテープ状フィ
ルムであり、成型時においてテープの長手方向に常に延
伸張力が印加されているので、この基板(]2)の分子
は、この延伸方向、即ちテープの長手方向に配向してい
る。このため、斯かる基板(12)には、テープの長手
方向に進相軸又は遅相軸が存在する。
Such birefringence occurs based on the orientation direction of molecules in the material. In other words, when molecules are oriented in one direction, a phase difference occurs between a beam component parallel to the orientation direction and a beam component perpendicular to the beam transmitted through the material. In other words, such a material has a fast axis or a slow axis in the molecular orientation direction and in a direction perpendicular to this direction, respectively. In the case of the substrate (12) of the above-mentioned conventional example, this substrate (12) is a tape-like film, and since stretching tension is always applied in the longitudinal direction of the tape during molding, the molecules of this substrate (]2) , is oriented in the stretching direction, that is, in the longitudinal direction of the tape. Therefore, such a substrate (12) has a fast axis or a slow axis in the longitudinal direction of the tape.

この様な基板(12)に」二記の様に円偏光ビームが入
射されると、該ビームも同様に進相軸と遅相軸に基く位
相のずれを受け、これにより、このビームは、基板(1
2)を透過する間に円偏光からだ円編へと変化する。
When a circularly polarized beam is incident on such a substrate (12) as described in Section 2, the beam also undergoes a phase shift based on the fast axis and the slow axis, and as a result, the beam becomes Substrate (1
2), the light changes from circular polarization to elliptical polarization while passing through it.

(ハ)発明が解決しようとする課題 本発明は、この様に光テープの基板に複屈折が存在した
場合に、ビームの偏光状態が斯かる複屈折によって変化
することに基いて発生する問題を解決せんとする。
(c) Problems to be Solved by the Invention The present invention solves the problems that occur when the optical tape substrate has birefringence, and the polarization state of the beam changes due to the birefringence. I will try to solve it.

(ニ)課題を解決するための手段 上記課題に鑑み本発明は、透明基板と記録層とを有する
媒体に対して透明基板側からビームを照射することによ
り情報の記録及び若しくは再生を行う光ヘッド装置であ
って、光源と、偏光面が前記透明基板の進相軸又は遅相
軸に一致する様に前記光源からのビームを直線偏光ビー
ムとして導く光学手段とを有することを特徴とする。
(d) Means for Solving the Problems In view of the above problems, the present invention provides an optical head that records and/or reproduces information by irradiating a beam from the transparent substrate side onto a medium having a transparent substrate and a recording layer. The apparatus is characterized by comprising a light source and optical means for guiding the beam from the light source as a linearly polarized beam so that the plane of polarization coincides with the fast axis or slow axis of the transparent substrate.

(ホ)作 用 直線偏光ビームをその偏光面が材料の進相軸又は遅相軸
に対して所定の角度(90°を除く)を有する様にこの
材料に入射せしめた場合、このビームは進相軸成分と遅
相軸成分を有するため、各成分子flJに伝播の位相差
が生じ、このため、このビームはこの材料を透過するこ
とによってだ円偏光ビームとなる。
(e) Effect When a linearly polarized beam is made incident on a material such that its plane of polarization has a predetermined angle (excluding 90°) with respect to the fast axis or slow axis of the material, the beam progresses. Since it has a phase axis component and a slow axis component, a propagation phase difference occurs in each element flJ, and therefore, this beam becomes an elliptical polarized beam by passing through this material.

これに対し、直線偏光ビームをその偏光面が材料の進相
軸又は遅相軸に対して一致する様にこの材料に入(4=
1せしめた場合、このビームは進相軸成分又は遅相軸成
分のみとなるため、上記の様な位相差は発生せず、以っ
てこのビームは直線偏光のまま透過する。
On the other hand, a linearly polarized beam enters a material such that its plane of polarization coincides with the fast or slow axis of the material (4=
When it is set to 1, this beam has only a fast axis component or a slow axis component, so the above-mentioned phase difference does not occur, and therefore, this beam is transmitted as linearly polarized light.

従って、本発明の様に、光源からのビームを媒体に対し
てその偏光面が基板の進相軸又は遅相軸に一致するよう
に入射させた場合、このビームは基板によって偏光状態
の変化を受けない。
Therefore, as in the present invention, when a beam from a light source is incident on a medium such that its polarization plane coincides with the fast axis or slow axis of the substrate, the beam undergoes a change in polarization state due to the substrate. I don't accept it.

(へ)実施例 以下、本発明の実施例について第1図を用いて説明する
。尚、図において、従来例にて用いた第2図と同一部分
には同一符号を付すと共にその説明を省略する。
(f) Example Hereinafter, an example of the present invention will be described using FIG. 1. In the figure, the same parts as those in FIG. 2 used in the conventional example are given the same reference numerals, and the explanation thereof will be omitted.

即ち、本実施例では、プリズム(3)と4板(10)の
間の光路中に第2の4板(]5)を回転シリンダ(1)
に一体に配置すると共にプリズム(3)と対物レンズ(
5)の間にファラデー回転子(16)を配置している。
That is, in this embodiment, the second four plates (]5) are placed in the optical path between the prism (3) and the fourth plate (10) in the rotating cylinder (1).
The prism (3) and objective lens (
5), a Faraday rotator (16) is placed between them.

斯かる実施例に依れば、固定光学系(6)がらの円偏光
ビームは、第2の1板(15)によって直線偏光ビーム
に変換された後、ファラデー回転子(16)によって偏
光面が45°だけ回転され、然る後対物レンズ(5)に
よって光テープ(T)上に収束される。ここで、ファラ
デー回転子(16)に入射されるビームの偏光面の状態
は、第2の4板(15)を回転シリンダ(1)に対して
光軸を軸として回転させることにより調節できる。また
光テープ上におけるビームの偏光面の状態はファラデー
回転子(16)を光軸回りに回転させることにより調節
することが衣 できる。従って、第2の4板(15)とファラデー回転
子(16)とを動じに調節することにより、光チープ(
T)に入射されるビームの偏光面を光テープ(T)の長
子方向又は幅方向に一致させることかできる。
According to this embodiment, the circularly polarized beam from the fixed optical system (6) is converted into a linearly polarized beam by the second plate (15), and then the plane of polarization is changed by the Faraday rotator (16). It is rotated by 45° and then focused onto the optical tape (T) by the objective lens (5). Here, the state of the polarization plane of the beam incident on the Faraday rotator (16) can be adjusted by rotating the second four plates (15) about the optical axis with respect to the rotating cylinder (1). Further, the state of the polarization plane of the beam on the optical tape can be adjusted by rotating the Faraday rotator (16) around the optical axis. Therefore, by adjusting the second four plates (15) and the Faraday rotator (16), the optical chip (
The polarization plane of the beam incident on the optical tape (T) can be made to coincide with the longitudinal direction or the width direction of the optical tape (T).

前述の如く、光テープ(T)の基板(12)に存在する
複屈折の進相軸及び遅相軸は、光テープ(T)のλ 長手方向又は幅方向に平行であるから、第2の4板(1
5)及びファラデー回転子(16)を光軸方向に回転調
節して光テープ(T)上におけるビームの偏光面を光テ
ープ(T)の長手方向又は幅方向に一致させることによ
り、このビームの偏光面を基板(12)の進相軸又は遅
相軸に一致させることができる。
As mentioned above, the fast and slow axes of birefringence existing in the substrate (12) of the optical tape (T) are parallel to the longitudinal direction or the width direction of the optical tape (T), so the second 4 boards (1
5) and the Faraday rotator (16) in the optical axis direction to match the polarization plane of the beam on the optical tape (T) with the longitudinal or width direction of the optical tape (T). The plane of polarization can be made to coincide with the fast axis or slow axis of the substrate (12).

斯様に光テープ(T)に入射されたビームは、光テープ
(T)によって反射され、上記と同一の光路を逆行して
固定光学系(6)へ戻る。この際、光テープ(T)によ
って反射された直線偏光ビームはファラデー回転(16
)によってその偏光面が再度45°だけ回転されるため
、第2の4板(15)に戻る時には上記入射時に比べて
偏光面が90’回転した状態となっている。従ってこの
ビームは、第2λ の4板(15)によって上記入射時とは回転方向が反対
となる円偏光ビームに変換される。このためこのビーム
が固定光学系内の 板(15)を透過した際には、ビー
ムは上記入射時とは偏光面が直交する直線偏光ビームに
変換される。斯がるビームは偏光ビームスプリッタ(8
)に対してS波であるので、偏光ビームスブリック(8
)により略全反射され、然る後光電変換素子(11)に
入射される。
The beam incident on the optical tape (T) in this manner is reflected by the optical tape (T) and returns to the fixed optical system (6) along the same optical path as above. At this time, the linearly polarized beam reflected by the optical tape (T) is rotated by Faraday rotation (16
), the plane of polarization is rotated by 45° again, so when it returns to the second four plates (15), the plane of polarization is rotated by 90' compared to the time of incidence. Therefore, this beam is converted by the second λ 4 plate (15) into a circularly polarized beam whose rotation direction is opposite to that at the time of incidence. Therefore, when this beam passes through the plate (15) in the fixed optical system, it is converted into a linearly polarized beam whose polarization plane is perpendicular to that at the time of incidence. Such a beam is passed through a polarizing beam splitter (8
), it is an S wave with respect to the polarized beam brick (8
), and is then incident on the photoelectric conversion element (11).

以上、本発明の一実施例について説明したが、本発明は
斯かる実施例に限定されるものではなく、他に種々の偏
光が可能である。例えば、上記ム(3)の間の光路中に
配し、ファラデー回転子(16)をプリズム(3)と対
物レンズ(5)の間に配してス いるが、第2の4板(15)とファラデー回転子(16
)の配置は4板(10)と光テープ(T)の間の光路中
であれば他の配置も可能である。又、上記実施例は、本
願発明をヘリカルスキャン方式の光ヘッド装置に配した
例であるが、他の光ヘッド装置に用いることも可能であ
る。更に、上記実施例では、光テープ′(T)上におけ
るビーム偏光面の調節を第λ 2の1板(]5)とファラデー回転子(16)によって
行っているが、他の光学手段を用いても良い。
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various other polarizations are possible. For example, a Faraday rotator (16) may be placed in the optical path between the prism (3) and the objective lens (5). ) and Faraday rotator (16
) can be arranged in other ways as long as it is in the optical path between the 4th plate (10) and the optical tape (T). Moreover, although the above embodiment is an example in which the present invention is applied to a helical scan type optical head device, it is also possible to use it in other optical head devices. Furthermore, in the above embodiment, the beam polarization plane on the optical tape' (T) is adjusted by the second λ plate (5) and the Faraday rotator (16), but other optical means may be used. It's okay.

(ト)発明の効果 以上、本発明に依れば、光記録媒体の基板に複屈折が存
在しても、この複屈折によってビーム状態に悪影響を受
けない光ヘッド装置を提供でき、以って、基板に複屈折
が存在する媒体に対して情報の記録及び若しくは再生を
行う光ヘッド装置に用いて好適なものとなる。
(g) Effects of the Invention As described above, according to the present invention, even if birefringence exists in the substrate of an optical recording medium, it is possible to provide an optical head device in which the beam condition is not adversely affected by this birefringence. This makes it suitable for use in an optical head device that records and/or reproduces information on a medium whose substrate has birefringence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す図、第2図は、従来例
を示す図、第3図は光テープの構造を示す図である。 (7)・・・半導体レーザ、(10)(15)及び(1
6)・・・4板λ 第2の1板及びファラデー回転子 (光学手段) (12)・・・基板。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional example, and FIG. 3 is a diagram showing the structure of an optical tape. (7)...Semiconductor laser, (10) (15) and (1
6)...Four plates λ Second single plate and Faraday rotator (optical means) (12)...Substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)透明基板と記録層とを有する媒体に対して透明基
板側からビームを照射することにより情報の記録及び若
しくは再生を行う光ヘッド装置であって、 光源と、偏光面が前記透明基板の進相軸又は遅相軸に一
致する様に前記光源からのビームを直線偏光ビームとし
て導く光学手段とを有することを特徴とする光ヘッド装
置。
(1) An optical head device that records and/or reproduces information by irradiating a beam from the transparent substrate side onto a medium having a transparent substrate and a recording layer, wherein a light source and a polarization plane are located on the transparent substrate. An optical head device comprising: optical means for guiding a beam from the light source as a linearly polarized beam so as to coincide with a fast axis or a slow axis.
JP2127377A 1990-05-16 1990-05-16 Optical head device Pending JPH0421936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127377A JPH0421936A (en) 1990-05-16 1990-05-16 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127377A JPH0421936A (en) 1990-05-16 1990-05-16 Optical head device

Publications (1)

Publication Number Publication Date
JPH0421936A true JPH0421936A (en) 1992-01-24

Family

ID=14958484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127377A Pending JPH0421936A (en) 1990-05-16 1990-05-16 Optical head device

Country Status (1)

Country Link
JP (1) JPH0421936A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950043B2 (en) * 1978-04-07 1984-12-06 株式会社日立製作所 liquid crystal display element
JPS62283429A (en) * 1986-06-02 1987-12-09 Fuji Xerox Co Ltd Optical head
JPH0223547A (en) * 1988-07-12 1990-01-25 Matsushita Electric Ind Co Ltd Optical head device
JPH02103744A (en) * 1988-10-12 1990-04-16 Sanyo Electric Co Ltd Optical head device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950043B2 (en) * 1978-04-07 1984-12-06 株式会社日立製作所 liquid crystal display element
JPS62283429A (en) * 1986-06-02 1987-12-09 Fuji Xerox Co Ltd Optical head
JPH0223547A (en) * 1988-07-12 1990-01-25 Matsushita Electric Ind Co Ltd Optical head device
JPH02103744A (en) * 1988-10-12 1990-04-16 Sanyo Electric Co Ltd Optical head device

Similar Documents

Publication Publication Date Title
JPS5919324B2 (en) Autofocus projector and reader
CA2004377A1 (en) Optical output controlling method and apparatus therefor
US4841510A (en) Optical characteristic measuring apparatus for an optical recording medium substrate
US4792227A (en) Apparatus for measuring the refractive index of a substrate for an optical recording medium and method of measuring the same
JPH02276045A (en) Magneto-optical reproducing device
JPH0421936A (en) Optical head device
JP3545008B2 (en) Optical pickup device
US5249171A (en) Opto-magnetic pick-up device including phase difference correcting means
EP0436228B1 (en) Recording and reproducing methods
JP2001060337A (en) Optical pickup device
KR20040042252A (en) Optical pickup capable of reducing noise and polarization changer
US5202789A (en) Optical system for preserving a state of polarization of light beam
JPS61237241A (en) Photomagnetic recording and reproducing device
JPS6273445A (en) Optical head
JPH0321974B2 (en)
JPH01176348A (en) Optical system for magneto-optical recording and reproducing device
KR100196015B1 (en) Recording and reproducing method and apparatus for an optical recording medium
KR100260529B1 (en) Optical pickup device
JP2797618B2 (en) Recording signal reproducing apparatus for magneto-optical recording medium
JPH0411328A (en) Optical head device
JPH087327A (en) Optical pickup device
EP0312403A2 (en) Optical system for preserving a state of polarization of light beam
JPH0312045A (en) Magneto-optical head device
JPS63187427A (en) Optical pickup
JPS6035353A (en) Photomagnetic reproducing device