JPH04219345A - Optical fiber for amplification - Google Patents

Optical fiber for amplification

Info

Publication number
JPH04219345A
JPH04219345A JP2417996A JP41799690A JPH04219345A JP H04219345 A JPH04219345 A JP H04219345A JP 2417996 A JP2417996 A JP 2417996A JP 41799690 A JP41799690 A JP 41799690A JP H04219345 A JPH04219345 A JP H04219345A
Authority
JP
Japan
Prior art keywords
glass
band
ions
optical fiber
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2417996A
Other languages
Japanese (ja)
Other versions
JP2977914B2 (en
Inventor
Yasutake Oishi
大石泰丈
Toshihiro Nishi
西 俊弘
Shiro Takahashi
高橋志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2417996A priority Critical patent/JP2977914B2/en
Publication of JPH04219345A publication Critical patent/JPH04219345A/en
Application granted granted Critical
Publication of JP2977914B2 publication Critical patent/JP2977914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To realize an optical fiber amplifier to expand a signal in a fiber laser of oscillating in a 1.30mum band or an optical communication system for 1.30mum band. CONSTITUTION:An optical fiber for amplification consisting of glass comprising Cr ion-containing Sn, Pb, P and F and O ion as a core material and glass comprising Sn, Pb, P and F and O as a clad material. By using the optical fiber amplifier, a light signal can be amplified in 1.30mum band and the fiber laser has a wide oscillation wavelength range of 1.23mum-1.35mum as shown by the figure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信システムで使用
されている1.30μm 帯で発振するファイバレーザ
や、同波長で動作し高信号利得を有する増幅器に用いる
増幅用光ファイバに関するものである。
[Industrial Application Field] The present invention relates to fiber lasers that oscillate in the 1.30 μm band used in optical communication systems, and amplification optical fibers used in amplifiers that operate at the same wavelength and have high signal gain. be.

【0002】0002

【従来の技術】ここ2〜3年、光ファイバのコアに希土
類イオン、特にEr3+イオンをドープし、その固有な
4f殻内遷移の誘導放出を用いた光ファイバ増幅器の研
究が精力的に行われ、1.55μm 帯用光通信システ
ムへの応力が進められている。希土類ドープ光ファイバ
増幅器は、高利得で偏波に依存しない利得特性を有し、
また低い雑音指数を持ち、広帯域な波長特性を持つので
、光通信システム内で使用さる増幅器として極めて有効
である。石英光ファイバの波長分散が零となる1.30
μm 帯は、1.55μm 帯とともに光通信システム
では重要な波長帯域であり、Nd3+イオンをドープし
た石英光ファイバおよびフッ化物光ファイバを用い、増
幅特性の研究が行われている。しかし、石英ガラス中で
は、1.30μm 付近でエキサイテッド・ステート・
アブソープション(Excited State Ab
sorption)が大きく増幅作用は確認されていな
い。また、フッ化物光ファイバにおいて1.32μm 
以上の波長域で増幅作用は確認されているものの、やは
りエキサイテッド・ステート・アブソープションのため
1.30μm 付近での増幅は確認されていない。 (参考文献:(1) W.J.Miniscalco,
 L.J.Andrews, B.A.Thomson
, R.S.Quinby, L.J.B.Vacha
 and M.G.Drexhage, Electr
on. Lett. Vol.24, (1988) 
P.28 (2) Y.Miyajima, T.Ko
mukai Y.Sugawa and Y.Kats
uyama Tech.Dig. Optical F
iber Communication Conf. 
’90, SonFrancisco, 1990, 
PD16.)このような状況から、1.30μm 付近
で利得の得られる光増幅器が望まれているところである
[Prior Art] In the past two to three years, research has been actively conducted on optical fiber amplifiers in which the core of an optical fiber is doped with rare earth ions, especially Er3+ ions, and uses the stimulated emission of the unique 4f intrashell transition. , 1.55 μm band optical communication systems are being stressed. Rare earth-doped optical fiber amplifiers have high gain and polarization-independent gain characteristics,
It also has a low noise figure and wideband wavelength characteristics, making it extremely effective as an amplifier used in optical communication systems. 1.30 when the wavelength dispersion of the quartz optical fiber becomes zero
The .mu.m band, along with the 1.55 .mu.m band, is an important wavelength band in optical communication systems, and amplification characteristics are being studied using quartz optical fibers doped with Nd3+ ions and fluoride optical fibers. However, in silica glass, the excited state occurs around 1.30 μm.
Absorption (Excited State Ab)
sorption) was large and no amplification effect was confirmed. In addition, 1.32 μm in fluoride optical fiber
Although amplification has been confirmed in the above wavelength range, amplification has not been confirmed in the vicinity of 1.30 μm due to excited state absorption. (References: (1) W.J. Miniscalco,
L. J. Andrews, B. A. Thomson
, R. S. Quinby, L. J. B. Vacha
and M. G. Drexhage, Electr
on. Lett. Vol. 24, (1988)
P. 28 (2) Y. Miyajima, T. Ko
mukai Y. Sugawa and Y. Kats
uyama Tech. Dig. Optical F
iber Communication Conf.
'90, SonFrancisco, 1990,
PD16. ) Under these circumstances, an optical amplifier that can obtain a gain in the vicinity of 1.30 μm is desired.

【0003】本発明は、1.30μm 帯で発振するフ
ァイバーレーザや、1.30μm 帯用光通信システム
において、信号を増幅する光ファイバ増幅器を提供する
ことにある。
An object of the present invention is to provide an optical fiber amplifier for amplifying signals in a fiber laser that oscillates in the 1.30 μm band and in an optical communication system for the 1.30 μm band.

【0004】0004

【課題を解決するための手段】本発明は、1.30μm
 帯でレーザ発信を起こさせるために必要なアクティブ
イオンとしてCr4+イオンを使用する。またCr4+
イオンを含有するファイバガラス材料としてSn, P
b, P,F,Oイオンからなる比較的低融点を有する
ガラスを用いる。従来、フォルステライト(Mg2Si
O4)結晶中にCr4+イオンを添加したレーザ母材を
用いて1.30μm 帯でのレーザ発振が行われている
が(参考文献:V.Petricevic, S.K.
Gayen, and R.R.Alfano; Ap
pl. Opt., Vol.28, P.1609 
(1989)) 、ガラス中にCr4+イオンを存在さ
せ、1.30μm 帯で発振するガラスレーザは知られ
ていない。Crイオンは高温では低酸化数状態(たとえ
ばCr3+状態) が安定なため600 ℃以上に融点
を持つガラス中には、Cr4+の状態でCrイオンをド
ープすることは困難であり、これまでCr4+イオンを
含有するファイバレーザおよびファイバ増幅器は作製さ
れていなかった。
[Means for Solving the Problems] The present invention provides a 1.30 μm
Cr4+ ions are used as active ions necessary to cause laser emission in the band. Also Cr4+
Sn, P as fiber glass material containing ions
b. A glass with a relatively low melting point consisting of P, F, and O ions is used. Conventionally, forsterite (Mg2Si
O4) Laser oscillation in the 1.30 μm band has been performed using a laser base material in which Cr4+ ions are added to the crystal (Reference: V. Petricevic, S.K.
Gayen, and R. R. Alfano; Ap
pl. Opt. , Vol. 28, P. 1609
(1989)), there is no known glass laser that oscillates in the 1.30 μm band with Cr4+ ions present in the glass. Since Cr ions are stable in a low oxidation state (for example, Cr3+ state) at high temperatures, it is difficult to dope Cr ions in the Cr4+ state into glass with a melting point of 600 °C or higher. The containing fiber laser and fiber amplifier were not fabricated.

【0005】[0005]

【実施例】図1は (16.94)Sn−(1.03)
Pb−(16.26) P−(15.65) F−(5
0.12原子%) OガラスにCr原子を0.5 wt
%ドープしたガラスの吸収スペクトル(破線)および1
.06μm のNd−YAG レーザで励起した場合に
得られた蛍光スペクトル(実線)を示す。測定に使用し
たガスラ試料は、原料としてSnF2, SnO, P
bF2, NH4H2PO4, CrO3 を所定量に
秤量し、100gのバッチを容易し、白金ルツボを用い
、酸素ガスおよびアルゴンガスの混合ガス雰囲気(酸素
濃度10%) で、450 ℃で1時間溶融し、120
 ℃に予加熱した金属鋳型にキャスティングした後、室
温まで徐冷して作製した。蛍光スペクトルは波長1.1
5μm 付近にピークを持ち、1.5 μm の波長域
にまで及んでいることがわかる。また吸収帯は0.97
μm から1.1 μm までほぼ平らな吸収強度を有
していることがわかる。この吸収帯および蛍光帯は、ガ
ラス中に存在するCr4+イオンによるものである。ド
ープされたCr6+イオンがガラス溶融過程で還元され
、4価になったものである。雰囲気中の酸素ガスは、こ
の還元反応の進行を制御するために必要であり、酸素分
圧が無いとドープしたCr6+イオンは、すべてCr3
+イオンにまで還元されてしまう。ガラスの溶融温度が
600 ℃以上になると、酸素分圧を上げてもCr3+
への還元の進行を抑制することはできない。Cr4+イ
オンを生成できたのは、ガラス母体として低融点を有す
る該ガラス組成を用いたためである。ロッドインチュー
ブ法で作製したCrイオンを0.5 wt%含んだコア
ガラス組成(14.94)Sn −(3.03)Pb−
(16.26) P−(15.65) F−(50.1
2原子パーメント)O、クラッドガラス組成(16.9
4)Sn−(1.03)Pb−(16.26) P−(
15.65) F−(50.12原子パーセント)Oの
ファイバ(コア径5μm)を用いて、レーザ発振および
1.30μm 帯における光信号増幅実験を行った。励
起波長は1.06μm (Nd : YAG レーザ)
 および0.98μm (InGaAs/GaAs半導
体レーザ)の二つの波長で行った。この結果、1.30
μm でのレーザ発振および1.30μm の光信号の
増幅作用を確認することができた。増幅利得は20dB
であった。また図2に示すように、レーザ発振が確認で
きた波長域は1.23μm 〜1.35μm であった
。ここで用いたPb, Sn, Pの陽イオンからなる
オキシフルオライドガラスは、陽イオンSn, Pb,
 Pの原子濃度が0≦Pb≦7(原子パーセント)、4
2≦Sn≦62(原子パーセント)、29≦P≦58(
原子パーセント)であり、FおよびOの原子比が0<F
/O≦0.5 の場合、結晶化に対し安定であり、ファ
イバ用ガラスとして用いることができるが、上記原子濃
度以外のガラス組成域では、ファイバガラスとして適さ
ない。したがって、コアおよびクラッドガラスの組成は
、上記組成範囲のものを選ばなければならない。また、
コアおよびクラッドガラスの組成は、この実施例で用い
たものに限定されるものではない。
[Example] Figure 1 shows (16.94)Sn-(1.03)
Pb-(16.26) P-(15.65) F-(5
0.12 at%) 0.5 wt Cr atoms in O glass
% doped glass (dashed line) and 1
.. The fluorescence spectrum (solid line) obtained when excited with a 0.06 μm Nd-YAG laser is shown. The Gasura sample used for the measurement contains SnF2, SnO, P as raw materials.
bF2, NH4H2PO4, and CrO3 were weighed to a predetermined amount, prepared in a 100 g batch, and melted at 450 °C for 1 hour in a mixed gas atmosphere of oxygen gas and argon gas (oxygen concentration 10%) using a platinum crucible.
It was produced by casting into a metal mold preheated to ℃ and then slowly cooling to room temperature. The fluorescence spectrum has a wavelength of 1.1
It can be seen that it has a peak around 5 μm and extends to a wavelength range of 1.5 μm. Also, the absorption band is 0.97
It can be seen that the absorption intensity is almost flat from μm to 1.1 μm. This absorption band and fluorescence band are due to Cr4+ ions present in the glass. The doped Cr6+ ions are reduced during the glass melting process and become tetravalent. Oxygen gas in the atmosphere is necessary to control the progress of this reduction reaction, and without oxygen partial pressure, all the doped Cr6+ ions become Cr3
It is reduced to + ions. When the melting temperature of glass exceeds 600 °C, even if the oxygen partial pressure is increased, Cr3+
It is not possible to suppress the progress of reduction. The reason why Cr4+ ions could be generated was because the glass composition having a low melting point was used as the glass matrix. Core glass composition (14.94)Sn-(3.03)Pb- containing 0.5 wt% Cr ions prepared by rod-in-tube method
(16.26) P-(15.65) F-(50.1
2 atomic percent) O, clad glass composition (16.9
4) Sn-(1.03)Pb-(16.26)P-(
15.65) Laser oscillation and optical signal amplification experiments in the 1.30 μm band were conducted using an F-(50.12 atomic percent) O fiber (core diameter 5 μm). Excitation wavelength is 1.06 μm (Nd:YAG laser)
and 0.98 μm (InGaAs/GaAs semiconductor laser). As a result, 1.30
We were able to confirm laser oscillation at 1.30 μm and amplification of an optical signal at 1.30 μm. Amplification gain is 20dB
Met. Further, as shown in FIG. 2, the wavelength range in which laser oscillation was confirmed was 1.23 μm to 1.35 μm. The oxyfluoride glass used here consists of cations of Pb, Sn, and P.
The atomic concentration of P is 0≦Pb≦7 (atomic percent), 4
2≦Sn≦62 (atomic percent), 29≦P≦58 (
atomic percent), and the atomic ratio of F and O is 0<F
When /O≦0.5, the glass is stable against crystallization and can be used as a fiber glass, but in a glass composition range other than the above atomic concentration, it is not suitable as a fiber glass. Therefore, the compositions of the core and cladding glasses must be selected within the above composition range. Also,
The compositions of the core and cladding glasses are not limited to those used in this example.

【0006】[0006]

【発明の効果】以上説明したように、本発明の増幅用光
ファイバによれば、1.30μm 帯において光信号の
増幅が可能であるので、1.30μm 帯用光通信シス
テムにおいても、1.55μm 帯用光通信システムと
同様、光ファイバ増幅器を用いたシステムの経済化、安
定化を図ることができるという利点がある。また本発明
の増幅用光ファイバを用いたファイバレーザは1.23
μm 〜1.35μm という幅広い発振波長域を有す
るので、波長チューナブルな光源として幅広い分野に応
用できるという利点もある。
As explained above, according to the amplifying optical fiber of the present invention, it is possible to amplify optical signals in the 1.30 μm band. Similar to the 55 μm band optical communication system, there is an advantage that the system using an optical fiber amplifier can be made more economical and stable. Furthermore, the fiber laser using the amplifying optical fiber of the present invention has a 1.23
Since it has a wide oscillation wavelength range of μm to 1.35 μm, it has the advantage that it can be applied to a wide range of fields as a wavelength tunable light source.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】Sn−Pb−P−F−Oガラスにドープされた
Crイオンの吸収スペクトルおよび蛍光スペクトルを示
す図である。
FIG. 1 is a diagram showing an absorption spectrum and a fluorescence spectrum of Cr ions doped into Sn-Pb-P-F-O glass.

【図2】CrドープSn−Pb−P−F−Oガラスファ
イバレーザの発振特性を示す図である。
FIG. 2 is a diagram showing the oscillation characteristics of a Cr-doped Sn-Pb-P-F-O glass fiber laser.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Crイオンが添加されたSn, Pb
, P,FおよびOイオンからなるガラスをコア材料と
し、Sn, Pb, P,FおよびOイオンからなるガ
ラスをクラッド材料としたことを特徴とする増幅用光フ
ァイバ。
[Claim 1] Sn, Pb added with Cr ions
, P, F, and O ions as a core material, and a cladding material of glass containing Sn, Pb, P, F, and O ions.
【請求項2】  コアおよびクラッドガラスを構成する
陽イオンSn, Pb,Pの原子濃度が0≦Pb≦7(
原子パーセント)、42≦Sn≦62(原子パーセント
)、29≦P≦58(原子パーセント)であり、F お
よびOの原子比が0<F/O≦0.5 となるガラスを
コアおよびクラッドガラスとしたことを特徴とする請求
項1に記載の増幅用光ファイバ。
[Claim 2] The atomic concentration of cations Sn, Pb, and P constituting the core and cladding glass is 0≦Pb≦7 (
42≦Sn≦62 (atomic percent), 29≦P≦58 (atomic percent), and the atomic ratio of F and O is 0<F/O≦0.5 as core and clad glass. The amplification optical fiber according to claim 1, characterized in that:
JP2417996A 1990-12-14 1990-12-14 Optical fiber for amplification Expired - Fee Related JP2977914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417996A JP2977914B2 (en) 1990-12-14 1990-12-14 Optical fiber for amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417996A JP2977914B2 (en) 1990-12-14 1990-12-14 Optical fiber for amplification

Publications (2)

Publication Number Publication Date
JPH04219345A true JPH04219345A (en) 1992-08-10
JP2977914B2 JP2977914B2 (en) 1999-11-15

Family

ID=18525973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417996A Expired - Fee Related JP2977914B2 (en) 1990-12-14 1990-12-14 Optical fiber for amplification

Country Status (1)

Country Link
JP (1) JP2977914B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100926A1 (en) * 2002-05-20 2003-12-04 Photon-X, Inc. Cr4+DOPED CRYSTAL STRIP-LOADED OPTICAL WAVEGUIDE AMPLIFIERS FOR BROADBAND OPTICAL AMPLIFICATION AROUND 1310 NM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100926A1 (en) * 2002-05-20 2003-12-04 Photon-X, Inc. Cr4+DOPED CRYSTAL STRIP-LOADED OPTICAL WAVEGUIDE AMPLIFIERS FOR BROADBAND OPTICAL AMPLIFICATION AROUND 1310 NM

Also Published As

Publication number Publication date
JP2977914B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
EP0313209B1 (en) Optical fibre with fluorescent additive
JPH07291652A (en) Glass for optical signal amplifier and production of opticalsignal amplifier
JPH05206564A (en) Silicinc acid anhydride optical fiber
Jiang et al. New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers
Ehrt et al. Preparation, structure, and properties of Yb3+ FP laser glass
US5973824A (en) Amplification by means of dysprosium doped low phonon energy glass waveguides
US4946490A (en) Method for preparing fluoride glasses
US7115536B2 (en) Rare earth containing P2O5-WO3-Na2O glass for laser applications
JPH022197A (en) Fluorozirconate optical fiber laser
JPH04219345A (en) Optical fiber for amplification
US6148125A (en) Ge-Ga-S-based glass composition having light amplifying characteristic and apparatus for optical communications using the same
US4765925A (en) Solid state laser hosts
JP2931026B2 (en) Method for producing rare earth element doped glass
JP4663111B2 (en) Optical amplifier and optical gain medium
US5015281A (en) Method for preparing fluoride glasses
JP3301035B2 (en) Method for producing glass composition
JP2001516958A (en) Glass for 1.55 μm optical amplifier with high flat gain
JP3475109B2 (en) Rare earth element doped glass
EP0336280A2 (en) Method for preparing fluoride glasses
Zemon et al. Excited state absorption and cross sections for Er-doped glasses
JP3346533B2 (en) Fluoride glass composition
Ohishi et al. Optical properties of erbium and thulium co-doped in tellurite glasses for the S+ C band optical amplification
JP2005037959A (en) Tellurite glass, and light amplifier and light source using same
JPH06296058A (en) Laser beam or light amplifying glass composition
JPH04270141A (en) Glass composition for functional optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees