JPH04218596A - Selective acquisition of highly unsaturated fatty acids - Google Patents

Selective acquisition of highly unsaturated fatty acids

Info

Publication number
JPH04218596A
JPH04218596A JP7360991A JP7360991A JPH04218596A JP H04218596 A JPH04218596 A JP H04218596A JP 7360991 A JP7360991 A JP 7360991A JP 7360991 A JP7360991 A JP 7360991A JP H04218596 A JPH04218596 A JP H04218596A
Authority
JP
Japan
Prior art keywords
complex
fatty acids
silver
highly unsaturated
unsaturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7360991A
Other languages
Japanese (ja)
Other versions
JP2895258B2 (en
Inventor
Yoshihisa Misawa
嘉久 三澤
Hisashi Kondo
寿 近藤
Tetsuya Tsutsumi
哲也 堤
Masahiro Hayashi
雅弘 林
Daisuke Sugimori
大助 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP7360991A priority Critical patent/JP2895258B2/en
Publication of JPH04218596A publication Critical patent/JPH04218596A/en
Application granted granted Critical
Publication of JP2895258B2 publication Critical patent/JP2895258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To purify the title fatty acids selectively under mild conditions by such a technique as to enable industrially continuous operation. CONSTITUTION:Silver complexes of the title fatty acids are formed taking advantage of their high unsaturation nature, and the complexes are separated from other lipids taking advantage of said complexes' hydrophilicity and subjected to dissociation means; and then, taking advantage of such fatty acids' hydrophobicity, the objective fatty acids of higher purity can be obtained. For the dissociation means, addition of a dissociating agent and silver reduction have been mentioned. For the dissociating agent, besides water, a number of compounds each capable of forming a poorly soluble bound product with silver have been disclosed.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、純度の高い不飽和度3
以上の高度不飽和脂肪酸またはそのエステル、酸アミド
更には不飽和度3以上の高度不飽和アルコール等の不飽
和度3以上の高度不飽和脂肪族化合物(本明細書におい
て単に高度不飽和脂肪酸類と呼ぶ)を得る方法である。 【0002】本発明はサバ、イワシ等の魚油に含まれて
いるエイコサペンタエン酸、ドコサヘキサエン酸等の高
度不飽和脂肪酸またはその誘導体や、ブタ等の動物油に
含まれているアラキドン酸等の高度不飽和脂肪酸及びそ
の誘導体、植物油に含まれているα−リノレン酸、γ−
リノレン酸等の高度不飽和脂肪酸またはその誘導体、さ
らに藻類や微生物由来の高度不飽和脂肪酸またはその誘
導体等の抽出分離、精製の際に、変性、変質を生じるこ
となしに、しかも工業的実施規模で安価に効率よく選択
的に不飽和度3以上の高度不飽和脂肪酸類を抽出分離、
精製する方法に利用できる。 【0003】 【従来の技術】高度不飽和脂肪酸類を抽出、分離精製す
る方法としては、尿素付加法、分子蒸留法、溶剤分別法
、クロマトグラフィーによる方法などが知られている。 【0004】しかしこれらの方法では、高度不飽和脂肪
酸及びそのエステルを高純度で、変性させることなく、
大量で安価に分離精製することは甚だ不利である。 【0005】すなわち、尿素付加法は、得られる高度不
飽和脂肪酸及びそのエステルの純度が低く、分子蒸留法
は、重合や異性化が生じ変性しやすいという欠点がある
。 【0006】溶剤分別法、クロマトグラフィー法は、工
業的実施規模での大量の分離精製には不向きである。 【0007】一般に銀イオンが、有機化合物の不飽和結
合と錯体を形成することが知られている。 【0008】この性質を利用する1つの方法として、特
開昭63−208549では銀イオンを吸着剤に固定さ
せ、銀と不飽和脂肪酸との親和力の差を利用することに
より、エイコサペンタエン酸などの高度不飽和脂肪酸ま
たはそのエステル等の誘導体を精製する方法が開示され
ている。 【0009】 【発明が解決しようとする問題点】本発明の目的は、上
記の従来技術を改良すべくリノレン酸、アラキドン酸、
エイコサペンタエン酸、ドコサヘキサエン酸のなどの不
飽和度が3以上の高度不飽和脂肪酸類をそれらの含有物
から、極めて穏和な条件で目的物を変質させることもな
く、大量で安価に、選択的に抽出分離、精製可能な方法
を提供することである。 【0010】 【問題を解決する手段】本発明者は、前記の従来技術を
基礎とし、不飽和度が3以上の高度不飽和脂肪酸類を含
む含有物と、不飽和結合と錯体を形成し得る一定濃度以
上の銀塩の水性媒体溶液とを撹拌することにより、選択
的に不飽和度3以上の高度不飽和脂肪酸類のみが水性媒
体溶解性の銀塩−高度不飽和脂肪酸類錯体を形成して水
性媒体相中に抽出され、その水性媒体相を分取した後、
水性媒体相中の錯体に解離手段を施すことにより高度不
飽和脂肪酸類のみを工業規模で選択的に抽出分離、精製
できることを見いだし、本発明を完成するに至った。 【0011】本発明における高度不飽和脂肪酸類は頭書
に定義したが、これらにはメチルエステル、エチルエス
テル、トリグリセリド、ジグリセリド、モノグリセリド
等のエステル型誘導体、アミド、メチルアミド等のカル
ボン酸型誘導体、脂肪族アルコール等を含む。 【0012】またここで言う高度不飽和脂肪酸類とは不
飽和度3以上の脂肪酸類を意味する。 【0013】本発明を具体的に説明すると、高度不飽和
脂肪酸類の含有物に不飽和結合と錯体を形成し得る銀塩
の水性媒体溶液を加えて5分〜4時間撹拌することによ
り、水性媒体溶解性の銀塩−高度不飽和脂肪酸類の錯体
を形成させ、高度不飽和脂肪酸類のみを選択的に水性媒
体相に溶かす。 【0014】反応温度は、下限は液状でありさえすれば
よく上限は100℃までで行われるが、高度不飽和脂肪
酸類の安定性、銀塩の水への溶解性、錯体の生成速度な
どへの配慮から、好ましくは室温付近、反応時間は10
分〜2時間が望ましい。 【0015】また、高度不飽和脂肪酸類の酸化安定性、
銀塩の安定性を考慮すると、本発明は、不活性ガス例え
ば窒素雰囲気下、遮光して行うのが望ましい。 【0016】不飽和結合と錯体を形成し得る銀塩として
は特に制限はなく、一般的には硝酸銀、過塩素酸銀、酢
酸銀、四ふっ化ほう素酸銀等水性媒体可溶性の銀化合物
が用いられる。 【0017】本発明で言う水性媒体とは、水の他にグリ
セリン、エチレングリコール等の水酸基を有する化合物
を意味し、これらを混合して本発明に用いることもでき
る。高度不飽和脂肪酸類と銀塩とのモル比が1:100
〜100:1の範囲で、銀塩の水性媒体溶液の濃度は0
.1mol/lから飽和状態の範囲で効率よく本発明が
実施できる。 【0018】これ以下の濃度では、錯体が十分に形成さ
れず、高度不飽和脂肪酸類が水性媒体溶解性とならない
。 【0019】高度不飽和脂肪酸類の回収率を考慮して、
モル比1:5〜1:1、濃度は1〜20mol/lが望
ましい。 【0020】上記の手段で形成された錯体は水性媒体相
に存在するので、水性媒体相と油脂相を機械的に分離す
るか、有機溶剤を用い油脂相を抽出し錯体を作らない他
の脂肪酸類を除くことにより反応系から錯体含有部分だ
けを分離することができる。この場合の有機溶剤として
は、ヘキサン、エーテル等の水と分離可能な有機溶剤を
用いることが好ましい。 【0021】この操作で分離される水性媒体相には、銀
塩−高度不飽和脂肪酸類の錯体が含まれている。 【0022】水性媒体相中の錯体には解離する手段を施
すことにより、高度不飽和脂肪酸類を遊離させ、水性媒
体溶解性を低下させてこれを回収することができる。 【0023】錯体を解離する手段としては、錯体解離剤
を加えて錯体を解離する方法、特に水で希釈して錯体を
解離する方法又は銀イオンを銀に還元して錯体を解離す
る方法等がある。 【0024】これらの手段について以下に詳しく説明す
る。 【0025】錯体解離剤による錯体の解離は、銀と錯体
を形成している高度不飽和脂肪酸類が錯体解離剤により
置換されて錯体解離剤の方が銀イオンと結合を生じ銀と
の銀化合物を形成することによって達成される。 【0026】錯体解離剤としては錯体を解離する作用の
強い化合物であればよいが以下に群を別けて列挙すると
、特にエチレングリコール、グリセリン、ジエチレング
リコール等のアルコール類、1,4−ジオキサン、テト
ラヒドロフラン、クラウンエーテル等のエーテル類、ア
セトン等のカルボニル類等を含む酸素原子を分子内に有
する酸素系化合物であって銀イオンと結合を生じる化合
物。 【0027】またアンモニア、イソブチルアミン、エチ
レンジアミン、ジエチルアミン、トリエチルアミン、ピ
リジン、ピペリジン等のアミン類、ジメチルホルムアミ
ド、N−メチルピロリドン等のアミド類、アセトニトリ
ル等のニトリル類、アンモニウム塩類、アミン塩類等を
含む窒素原子を分子内に有する窒素系化合物であって銀
イオンと結合を生じる化合物。 【0028】また1,2−エタンジチオール等のチオー
ル類、ジフェニルスルフィド、テトラヒドロチオフェン
等のスルフィド類、ジメチルスルホキシド等のスルホキ
シド類、スルホラン等のスルホン類等を含む硫黄原子を
分子内に有する硫黄系化合物であって銀イオンと結合を
生じる化合物。 【0029】またトリフェニルフォスフィン等の3価リ
ン化合物類、リン酸トリメチル、ヘキサメチルリン酸ト
リアミド等のリン酸類等の5価リン化合物、トリフェニ
ルアルシン等の砒素化合物、アンチモン化合物等を含む
リン属原子を分子内に有するリン属化合物であって銀イ
オンと結合を生じる化合物。 【0030】または錯体形成能を持つ不飽和結合を有す
るエチレン、シクロヘキセン、2−メチル2−ブテン、
イソプレン等のアルケン類、アルキン類、芳香族化合物
、一酸化炭素、イソシアニド類、一酸化窒素等のπ結合
性配位子となる化合物。 【0031】また銀イオンと水性媒体に難溶性の銀化合
物を生成する化合物及びイオンか、銀イオンと高度不飽
和脂肪酸類との錯体生成を阻害する作用を持つ化合物及
びそのイオンである、塩化ナトリウム、臭化ナトリウム
等のハロゲン塩、硫酸ナトリウム等の硫酸塩、亜硫酸塩
、硝酸塩、チオ硫酸塩、炭酸ナトリウム等の炭酸塩、酢
酸ナトリウム、酒石酸ナトリウム等のカルボン酸塩、チ
オシアン酸アンモニウム等のチオシアン酸塩、シアン化
塩、アジ化ナトリウム等のアジ化塩、過マンガン酸塩及
びこれらの酸型の化合物、水酸化ナトリウム等の水酸化
物化合物等であって銀イオンと結合を生じる化合物など
である。 【0032】なおこれら化合物の混合物を用いることも
出来るし、また錯体解離剤としては上記に示した錯体を
解離する部位を一つの分子内に複数有していてもよい。 【0033】水の希釈による錯体の解離は、水性媒体相
を水を加えて希釈することにより起こり、高度不飽和脂
肪酸類が遊離する。 【0034】希釈する水の量は、錯体の解離が起こりさ
えすればよいとは云うものの、通常は等量以上必要であ
るが、好ましくは10〜40倍が望ましい。 【0035】または銀イオンを銀に還元する方法、水素
化ホウ素ナトリウム、ホルムアルデヒド、Fe(II)
−EDTA、次亜リン酸、Cu、アスコルビン酸等によ
る還元剤による還元、電解による還元、光による還元等
を用いても錯体を解離することができる。 【0036】銀塩のリサイクルを考慮すると水の希釈に
よる方法は有利である。 【0037】遊離した高度不飽和脂肪酸類は、ヘキサン
、エーテル等の水性媒体と分離可能な有機溶剤で抽出、
回収することができ、分配させた有機溶剤相は水、飽和
食塩水で洗うことにより銀イオンを除くことができる。 【0038】また銀イオンを含む水性媒体相は、水性媒
体を留去することで銀塩を回収して再利用することが可
能である。 【0039】また、本発明では、上記分離精製操作を繰
り返すことにより高度不飽和脂肪酸類の純度を更に上げ
ることが可能である。 【0040】本発明は、上述のようにまず第一に不飽和
結合と錯体を形成し得る水性媒体溶解性銀塩と高度不飽
和脂肪酸類との錯体形成能を利用し、第二に本錯体の水
性媒体溶解性を利用することにより選択的に高度不飽和
脂肪酸類のみを含む部分を分離することができ、第3に
錯体を解離させ、高度不飽和脂肪酸類を遊離させること
により達成される、脂肪酸類含有物から高度不飽和脂肪
酸類を工業的規模で選択的に抽出分離、精製することが
できる方法である。 【0041】 【発明の効果】本発明の方法によれば、従来の方法とは
異なり大規模にほぼ常温で、操作、設備も簡単な上、低
コストで脂肪酸類混合物から高度不飽和脂肪酸類のみを
選択的に抽出分離、精製することができる。 【0042】本発明の方法は、未精製の魚油脂肪酸及び
そのエステル、未精製の動物油脂肪酸及びそのエステル
に適用できる他、従来法で精製された魚油脂肪酸及びそ
のエステル、動物油脂肪酸及びそのエステルに対して適
用すれば、さらに純度の高い高度不飽和脂肪酸及びその
エステルを得ることができる。 【0043】 【実施例】実施例により本発明を更に詳細に説明する。 【0044】実施例において、脂肪酸組成は、メチルエ
ステルにした後にガスクロマトグラフィーにより測定し
、また脂肪酸エステル組成も、ガスクロマトグラフィー
により測定した。 【0045】 【実施例1】エイコサペンタエン酸を60%含む脂肪酸
混合物100gに、硝酸銀139.6gを蒸留水80m
lに溶かした水溶液を、窒素雰囲気下遮光して加えた。 2時間撹拌後、反応液をヘキサン1Lで2回洗浄した。 得られた水層に、蒸留水2Lを加え1時間撹拌し、錯体
を生成した脂肪酸を遊離させた。 【0046】遊離した脂肪酸をヘキサン1Lで2回抽出
し、得られたヘキサン層を蒸留水、飽和食塩水で洗い、
硫酸マグネシウムで脱水した。 【0047】減圧下濃縮して、39.78gの脂肪酸を
得た。 【0048】脂肪酸組成を調べた結果、エイコサペンタ
エン酸の純度が96.0%であった。 【0049】更に得られた純度96.0%のエイコサペ
ンタエン酸を上記と同様な操作にて精製した結果、純度
98.5%のエイコサペンタエン酸が得られた。 【0050】 【実施例2】ドコサヘキサエン酸を54.0%含む脂肪
酸混合物101.1gに、硝酸銀130.9gを蒸留水
80mlに溶かした水溶液を、窒素雰囲気下遮光して加
え、2時間撹拌した。実施例1と同様な操作にて処理し
43.52gの脂肪酸を得た。 【0051】脂肪酸組成を調べた結果、ドコサヘキサエ
ン酸の純度が、92.3%であった。 【0052】更に得られた純度92.3%のドコサヘキ
サエン酸を上記と同様な操作にて精製した結果、純度9
6.4%のドコサヘキサンエン酸が得られた。 【0053】 【実施例3】アラキドン酸を53%含む脂肪酸混合物1
01gに、硝酸銀142.1gを蒸留水80mlに溶か
した水溶液を窒素雰囲気下遮光して加え、2時間撹拌し
た。実施例1と同様な操作にて処理し、30.05gの
脂肪酸を得た。 【0054】脂肪酸組成を調べた結果、アラキドン酸の
純度が、95.2%であった。 【0055】更に得られた純度95.2%のアラキドン
酸を上記と同様な操作にて精製した結果、純度97.0
%のアラキドン酸が得られた。 【0056】 【実施例4】エイコサペンタエン酸エチルエステルを6
2.1%含む脂肪酸エチルエステル混合物1.012g
に、硝酸銀1.688gを蒸留水0.5mlに溶かした
水溶液を 、窒素雰囲気下遮光して加え、2時間撹拌し
た。  【0057】反応液をヘキサン20mlで2回洗浄した
。  【0058】得られた水層に蒸留水20mlを加え1時
間撹拌し、錯体を生成した脂肪酸エチルエステルを遊離
させた。 【0059】遊離した脂肪酸エチルエステルをヘキサン
20mlで2回抽出し、得られたヘキサン層を蒸留水、
飽和食塩水で洗い、硫酸マグネシウムで脱水した。 【0060】減圧下濃縮して、209.7mgの脂肪酸
エチルエステルを得た。 【0061】脂肪酸エチルエステルの組成を調べた結果
、エイコサペンタエン酸エチルエステルの純度が98.
0%であった。 【0062】 【実施例5】ドコサヘキサエン酸エチルエステルを59
.0%含む脂肪酸エチルエステル混合物713.5mg
に、硝酸銀1.6873gを蒸留水0.5mlに溶かし
た水溶液を、窒素雰囲気下遮光して加え、2時間撹拌し
た。 【0063】実施例4と同様な操作にて処理し、251
.4mgの脂肪酸エチルエステルを得た。 【0064】得られた脂肪酸エチルエステルの組成を調
べた結果、ドコサヘキサエン酸エチルエステルの純度が
97.0%であった。 【0065】 【実施例6】アラキドン酸エチルエステルを52.5%
含む脂肪酸エチルエステル混合物630.2mgに、硝
酸銀1.6781gを蒸留水0.5mlに溶かした水溶
液を、窒素雰囲気下遮光して加え、2時間撹拌した。 【0066】実施例4と同様な操作にて処理し、180
.3mgの精製された脂肪酸エチルエステル混合物を得
た。 【0067】この混合脂肪酸エチルエステルの組成を調
べた結果、アラキドン酸エチルエステルの純度は96.
3%に高められていた。 【0068】 【実施例7】ドコサヘキサエン酸を54.0%含む脂肪
酸混合物670mgに、過塩素酸銀1.0703gを蒸
留水0.5mlに溶かした水溶液を窒素雰囲気下遮光し
て加えた。 【0069】2時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0070】得られた水層に蒸留水20ml加え1時間
撹拌し、錯体を生成した脂肪酸を遊離させた。 【0071】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン層を蒸留水、飽和食塩水で洗
い、硫酸マグネシウムで脱水した。 【0072】減圧下濃縮して、211.9mgの脂肪酸
を得た。 【0073】脂肪酸組成を調べた結果、ドコサヘキサエ
ン酸の純度が93.1%であった。 【0074】 【実施例8】ブタの肝臓から常法により得たブタ肝臓油
を鹸化し、ブタ肝油遊離脂肪酸を得た。 【0075】アラキドン酸が14.3%含まれていた。 【0076】この脂肪酸1.058gをヘキサン0.5
mlに溶かした溶液に、過塩素酸銀1.128gを蒸留
水0.5mlに溶かした水溶液を窒素雰囲気下遮光して
加えた。 【0077】1時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0078】得られた水相に蒸留水20ml加え1時間
撹拌し、錯体を生成した脂肪酸を遊離させた。 【0079】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン層を蒸留水、飽和食塩水で洗
い、硫酸マグネシウムで脱水した。 【0080】減圧下濃縮して、70.8mgの脂肪酸を
得た。脂肪酸組成を調べた結果、アラキドン酸の純度が
76.4%であった。 【0081】 【実施例9】アマニ油を常法により鹸化し、アマニ油遊
離脂肪酸を得た。 【0082】α−リノレン酸が55.8%含まれていた
。 【0083】この脂肪酸1.013gをヘキサン0.5
mlに溶かした溶液に、過塩素酸銀920mgを蒸留水
0.5mlに溶かした水溶液を窒素雰囲気下遮光して加
えた。 【0084】1時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0085】得られた水相に蒸留水20ml加え1時間
撹拌し、錯体を生成した脂肪酸を遊離させた。 【0086】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン層を蒸留水、飽和食塩水で洗
い、硫酸マグネシウムで脱水した。 【0087】減圧下濃縮して、150mgの脂肪酸を得
た。 【0088】脂肪酸組成を調べた結果、α−リノレン酸
の純度は98.2%になっていた。 【0089】 【実施例10】ボレッジ油を常法により鹸化し、ボレッ
ジ油遊離脂肪酸を得た。 【0090】γ−リノレン酸が23.1%含まれていた
。 【0091】この脂肪酸1.037gをヘキサン0.5
mlに溶かした溶液に、過塩素酸銀809mgを蒸留水
0.5mlに溶かした水溶液を窒素雰囲気下遮光して加
えた。 【0092】1時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0093】得られた水相に蒸留水20ml加え1時間
撹拌し、錯体を生成した脂肪酸を遊離させた。 【0094】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン層を蒸留水、飽和食塩水で洗
い、硫酸マギネシウムで脱水した。 【0095】減圧下濃縮して、59.7mgの脂肪酸を
得た。 【0096】脂肪酸組成を調べた結果、γ−リノレン酸
の純度が93.4%になっていた。 【0097】 【実施例11】精製魚油(トリグリセリド型、エイコサ
ペンタエン酸16.7%,ドコサヘキサンエン酸11.
9%含有)5.279gを、硝酸銀853mgを蒸留水
0.5mlに溶かした水溶液を窒素雰囲気下遮光して加
えた。 【0098】1時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0099】得られた水相に蒸留水20ml加え1時間
撹拌し、錯体を生成したトリグリセリドを遊離させた。 【0100】遊離したトリグリセリドをヘキサン20m
lで2回抽出し、得られたヘキサン層を蒸留水、飽和食
塩水で洗い、硫酸マグネシウムで脱水した。 【0101】減圧下濃縮して、85.8mgの脂肪酸を
得た。 【0102】脂肪酸組成を調べた結果、エイコサペンタ
エン酸は38.5%、ドコサヘキサエン酸は24.0%
の純度に高められていた。 【0103】 【実施例12】ドコサヘキサエノール45%含む脂肪族
アルコール混合物1.005gをヘキサン0.5mlに
溶かした溶液に、硝酸銀852mgを蒸留水0.5ml
に溶かした水溶液を窒素雰囲気下遮光して加えた。 【0104】1時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0105】得られた水相に蒸留水20ml加え1時間
撹拌し、錯体を生成した脂肪族アルコールを遊離させた
。 【0106】遊離した脂肪族アルコールをヘキサン20
mlで2回抽出し、得られたヘキサン層を蒸留水、飽和
食塩水で洗い、硫酸マグネシウムで脱水した。 【0107】減圧下濃縮して、145mgの脂肪族アル
コールを得た。 【0108】組成を調べた結果、ドコサヘキサエノール
が98.5%の純度であった。 【0109】 【実施例13】エイコサペンタエン酸を60%含む脂肪
酸混合物1.003gをヘキサン0.5ml溶かした溶
液に、硝酸銀847.2mgを蒸留水0.5mlに溶か
した水溶液を、窒素雰囲気下遮光して加えた。 【0110】2時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0111】得られた水相に、錯体解離剤としてエチレ
ングリコール20mlを加え1時間撹拌し、錯体を生成
した脂肪酸を遊離させた。 【0112】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン相を蒸留水、飽和食塩水で洗
い、硫酸マグネシウムで脱水した。 【0113】減圧下濃縮して、133.8mgの脂肪酸
を得た。 【0114】脂肪酸組成を調べた結果、エイコサペンタ
エン酸の純度は94.4%であった。 【0115】 【実施例14】エイコサペンタエン酸を60%含む脂肪
酸混合物1.010gをヘキサン0.5ml溶かした溶
液に、硝酸銀845.2mgを蒸留水0.5mlに溶か
した水溶液を、窒素雰囲気下遮光して加えた。 【0116】2時間撹拌後、反応液をヘキサン20ml
で2回洗浄した。 【0117】得られた水相に、錯体解離剤として塩化ナ
トリム1.05gを加え1時間撹拌し、錯体を生成した
脂肪酸を遊離させた。 【0118】遊離した脂肪酸をヘキサン20mlで2回
抽出し、得られたヘキサン相を蒸留水、飽和食塩水で洗
い、硫酸マグネシウムで脱水した。 【0119】減圧下濃縮して、150.6mgの脂肪酸
を得た。 【0120】脂肪酸組成を調べた結果、エイコサペンタ
エン酸の純度が93.1%であった。 【0121】 【実施例15〜49】錯体解離剤として、銀と水に難溶
性の結合物を形成する種々の化合物をテストし、その結
果を得られた高度不飽和脂肪酸類の純度で第1表に示し
た。 【0122】実験条件はすべて、実施例1のエイコサペ
ンタエン酸1g又は実施例4のエイコサペンタエン酸エ
チルエステル1gを用い、第1表に示した解離剤を用い
てエイコサペンタエン酸の場合は実施例1の又そのエチ
ルエステルの場合には実施例4の場合とそれぞれほぼ同
様の操作を行なった。 【0123】 【表1】
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides highly pure unsaturation of 3
The above highly unsaturated fatty acids or their esters, acid amides, and highly unsaturated aliphatic compounds with an unsaturated degree of 3 or more, such as highly unsaturated alcohols with an unsaturated degree of 3 or more (hereinafter simply referred to as highly unsaturated fatty acids). This is the method of obtaining The present invention deals with highly unsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid contained in fish oils such as mackerel and sardines, or their derivatives, and highly unsaturated fatty acids such as arachidonic acid contained in animal oils such as pigs. Fatty acids and their derivatives, α-linolenic acid and γ-linolenic acid contained in vegetable oils
It is possible to extract, separate, and purify highly unsaturated fatty acids such as linolenic acid and their derivatives, as well as highly unsaturated fatty acids and their derivatives derived from algae and microorganisms, without causing denaturation or alteration, and on an industrial scale. Low cost, efficient and selective extraction and separation of highly unsaturated fatty acids with degree of unsaturation of 3 or more.
Can be used for purification methods. [0003] Known methods for extracting, separating and purifying highly unsaturated fatty acids include urea addition, molecular distillation, solvent fractionation, and chromatography. However, these methods produce highly unsaturated fatty acids and their esters in high purity without denaturing them.
Separation and purification in large quantities at low cost is extremely disadvantageous. That is, the urea addition method has the drawback that the obtained highly unsaturated fatty acids and their esters have low purity, and the molecular distillation method has the drawback that polymerization and isomerization occur easily, resulting in denaturation. [0006] Solvent fractionation and chromatography are unsuitable for large-scale separation and purification on an industrial scale. [0007] It is generally known that silver ions form complexes with unsaturated bonds of organic compounds. [0008] As one method of utilizing this property, in JP-A-63-208549, silver ions are immobilized on an adsorbent, and by utilizing the difference in affinity between silver and unsaturated fatty acids, eicosapentaenoic acid, etc. A method for purifying highly unsaturated fatty acids or derivatives thereof such as esters is disclosed. [Problems to be Solved by the Invention] An object of the present invention is to improve the above-mentioned prior art by using linolenic acid, arachidonic acid,
Highly unsaturated fatty acids with a degree of unsaturation of 3 or more, such as eicosapentaenoic acid and docosahexaenoic acid, can be selectively produced in large quantities at low cost without altering the target product under extremely mild conditions. It is an object of the present invention to provide a method that enables extraction, separation, and purification. [Means for Solving the Problem] Based on the above-mentioned prior art, the present inventor has developed a method that can form a complex with an unsaturated bond and a containing substance containing a highly unsaturated fatty acid having a degree of unsaturation of 3 or more. By stirring a solution of silver salt in an aqueous medium at a certain concentration or more, only highly unsaturated fatty acids with an unsaturation degree of 3 or more selectively form an aqueous medium-soluble silver salt-highly unsaturated fatty acid complex. After extracting into the aqueous medium phase and separating the aqueous medium phase,
The present inventors have discovered that only highly unsaturated fatty acids can be selectively extracted, separated, and purified on an industrial scale by subjecting the complex in the aqueous medium phase to dissociation procedures, leading to the completion of the present invention. The highly unsaturated fatty acids in the present invention are defined in the header, and include ester type derivatives such as methyl ester, ethyl ester, triglyceride, diglyceride, monoglyceride, carboxylic acid type derivatives such as amide and methylamide, aliphatic Contains alcohol, etc. [0012] The term "highly unsaturated fatty acids" as used herein means fatty acids having a degree of unsaturation of 3 or more. To specifically explain the present invention, an aqueous medium solution of a silver salt capable of forming a complex with an unsaturated bond is added to a highly unsaturated fatty acid-containing material and stirred for 5 minutes to 4 hours to form an aqueous solution. A medium-soluble silver salt-highly unsaturated fatty acid complex is formed, and only the highly unsaturated fatty acids are selectively dissolved in the aqueous medium phase. [0014] Regarding the reaction temperature, the lower limit is as long as it is liquid and the upper limit is 100°C, but the reaction temperature depends on the stability of the highly unsaturated fatty acids, the solubility of the silver salt in water, the rate of formation of the complex, etc. Considering this, the reaction time is preferably around room temperature and 10
Preferably from minutes to 2 hours. [0015] In addition, the oxidative stability of highly unsaturated fatty acids,
Considering the stability of the silver salt, it is preferable that the present invention be carried out in an inert gas atmosphere, such as nitrogen, while shielding from light. There are no particular restrictions on the silver salt that can form a complex with an unsaturated bond, and silver compounds soluble in aqueous media such as silver nitrate, silver perchlorate, silver acetate, and silver tetrafluoroborate are generally used. used. [0017] The aqueous medium referred to in the present invention means, in addition to water, a compound having a hydroxyl group such as glycerin or ethylene glycol, and a mixture of these can also be used in the present invention. The molar ratio of highly unsaturated fatty acids and silver salt is 1:100
~100:1, the concentration of silver salt solution in aqueous medium is 0
.. The present invention can be carried out efficiently in the range of 1 mol/l to saturation. [0018] If the concentration is below this level, a complex will not be sufficiently formed and the highly unsaturated fatty acids will not be soluble in an aqueous medium. Considering the recovery rate of highly unsaturated fatty acids,
A molar ratio of 1:5 to 1:1 and a concentration of 1 to 20 mol/l are desirable. Since the complex formed by the above method exists in the aqueous medium phase, the aqueous medium phase and the fat/oil phase are mechanically separated, or the fat/oil phase is extracted using an organic solvent and other fatty acids that do not form complexes are removed. By removing the complex-containing portion, only the complex-containing portion can be separated from the reaction system. As the organic solvent in this case, it is preferable to use an organic solvent that can be separated from water, such as hexane or ether. The aqueous medium phase separated in this operation contains a silver salt-highly unsaturated fatty acid complex. By dissociating the complex in the aqueous medium phase, the highly unsaturated fatty acids can be liberated and recovered by reducing the solubility in the aqueous medium. Methods for dissociating the complex include a method of adding a complex dissociating agent to dissociate the complex, particularly a method of dissociating the complex by diluting it with water, or a method of dissociating the complex by reducing silver ions to silver. be. These means will be explained in detail below. [0025] In the dissociation of the complex by the complex dissociation agent, the highly unsaturated fatty acids forming a complex with silver are replaced by the complex dissociation agent, and the complex dissociation agent forms a bond with the silver ion, forming a silver compound with silver. This is achieved by forming a The complex-dissociating agent may be any compound that has a strong ability to dissociate the complex, but the following are listed by group: alcohols such as ethylene glycol, glycerin, diethylene glycol, 1,4-dioxane, tetrahydrofuran, An oxygen-based compound that has an oxygen atom in its molecule, including ethers such as crown ether, carbonyls such as acetone, etc., and that forms a bond with silver ions. Also, nitrogen containing amines such as ammonia, isobutylamine, ethylenediamine, diethylamine, triethylamine, pyridine, piperidine, amides such as dimethylformamide, N-methylpyrrolidone, nitriles such as acetonitrile, ammonium salts, amine salts, etc. A nitrogen-based compound that has atoms in its molecule and forms bonds with silver ions. Sulfur-based compounds having a sulfur atom in the molecule, including thiols such as 1,2-ethanedithiol, sulfides such as diphenyl sulfide and tetrahydrothiophene, sulfoxides such as dimethyl sulfoxide, and sulfones such as sulfolane; A compound that forms a bond with silver ions. In addition, trivalent phosphorus compounds such as triphenylphosphine, pentavalent phosphorus compounds such as phosphoric acids such as trimethyl phosphate and hexamethylphosphoric acid triamide, arsenic compounds such as triphenylarsine, phosphorus containing antimony compounds, etc. A compound of the phosphorus group that has a phosphorus atom in its molecule and forms a bond with silver ions. or ethylene, cyclohexene, 2-methyl-2-butene, which has an unsaturated bond capable of forming a complex;
Compounds that serve as π-bond ligands for alkenes such as isoprene, alkynes, aromatic compounds, carbon monoxide, isocyanides, nitrogen monoxide, etc. [0031] Also, sodium chloride, which is a compound and ion that forms a silver compound that is poorly soluble in silver ions and an aqueous medium, or a compound and its ion that has the effect of inhibiting the formation of a complex between silver ions and highly unsaturated fatty acids. , halogen salts such as sodium bromide, sulfates such as sodium sulfate, sulfites, nitrates, thiosulfates, carbonates such as sodium carbonate, carboxylates such as sodium acetate and sodium tartrate, thiocyanates such as ammonium thiocyanate. Salts, cyanide salts, azide salts such as sodium azide, permanganates and their acid forms, hydroxide compounds such as sodium hydroxide, and compounds that form bonds with silver ions. . A mixture of these compounds may be used, and the complex dissociating agent may have a plurality of sites for dissociating the above-mentioned complexes in one molecule. Dissociation of the complex by dilution with water occurs by diluting the aqueous medium phase by adding water, and highly unsaturated fatty acids are liberated. [0034] The amount of water to be diluted is generally required to be at least the same amount, although it is sufficient to cause dissociation of the complex, and preferably 10 to 40 times as much. Alternatively, a method for reducing silver ions to silver, sodium borohydride, formaldehyde, Fe(II)
The complex can also be dissociated by reduction using a reducing agent such as -EDTA, hypophosphorous acid, Cu, ascorbic acid, reduction by electrolysis, reduction by light, or the like. [0036] Considering the recycling of silver salts, the method of diluting with water is advantageous. The liberated highly unsaturated fatty acids are extracted with an aqueous medium such as hexane or ether and an organic solvent that can be separated.
Silver ions can be removed by washing the separated organic solvent phase with water and saturated saline. [0038] Furthermore, it is possible to recover and reuse the silver salt in the aqueous medium phase containing silver ions by distilling off the aqueous medium. Furthermore, in the present invention, it is possible to further increase the purity of highly unsaturated fatty acids by repeating the above separation and purification operations. As mentioned above, the present invention firstly utilizes the complex-forming ability of an aqueous medium-soluble silver salt capable of forming a complex with an unsaturated bond and highly unsaturated fatty acids, and secondly utilizes the ability of the present complex to form a complex with a highly unsaturated fatty acid. By utilizing the solubility of polyunsaturated fatty acids in aqueous media, it is possible to selectively separate the portion containing only highly unsaturated fatty acids, and thirdly, this is achieved by dissociating the complex and liberating the highly unsaturated fatty acids. This is a method that can selectively extract, separate, and purify highly unsaturated fatty acids from fatty acid-containing materials on an industrial scale. [0041] According to the method of the present invention, unlike conventional methods, only polyunsaturated fatty acids can be extracted from a fatty acid mixture at a large scale at almost room temperature, with simple operation and equipment, and at low cost. can be selectively extracted, separated, and purified. The method of the present invention can be applied to unrefined fish oil fatty acids and their esters, unrefined animal oil fatty acids and their esters, and can also be applied to fish oil fatty acids and their esters, animal oil fatty acids and their esters refined by conventional methods. By applying this method, highly unsaturated fatty acids and esters thereof with even higher purity can be obtained. [Example] The present invention will be explained in more detail with reference to Examples. In the Examples, the fatty acid composition was determined by gas chromatography after conversion to methyl ester, and the fatty acid ester composition was also determined by gas chromatography. [Example 1] 139.6 g of silver nitrate was added to 100 g of a fatty acid mixture containing 60% eicosapentaenoic acid in 80 ml of distilled water.
An aqueous solution dissolved in 1 ml was added under a nitrogen atmosphere while shielding from light. After stirring for 2 hours, the reaction solution was washed twice with 1 L of hexane. 2 L of distilled water was added to the obtained aqueous layer and stirred for 1 hour to liberate the fatty acid that had formed the complex. The released fatty acids were extracted twice with 1 L of hexane, and the obtained hexane layer was washed with distilled water and saturated saline.
Dehydrated with magnesium sulfate. [0047] Concentration under reduced pressure yielded 39.78 g of fatty acid. [0048] As a result of examining the fatty acid composition, the purity of eicosapentaenoic acid was 96.0%. The obtained eicosapentaenoic acid with a purity of 96.0% was further purified in the same manner as above, and as a result, eicosapentaenoic acid with a purity of 98.5% was obtained. Example 2 An aqueous solution of 130.9 g of silver nitrate dissolved in 80 ml of distilled water was added to 101.1 g of a fatty acid mixture containing 54.0% docosahexaenoic acid under a nitrogen atmosphere while shielding from light, and the mixture was stirred for 2 hours. It was treated in the same manner as in Example 1 to obtain 43.52 g of fatty acid. [0051] As a result of examining the fatty acid composition, the purity of docosahexaenoic acid was 92.3%. Further, the obtained docosahexaenoic acid with a purity of 92.3% was purified in the same manner as above, and as a result, the purity was 92.3%.
6.4% docosahexanoic acid was obtained. [Example 3] Fatty acid mixture 1 containing 53% arachidonic acid
An aqueous solution prepared by dissolving 142.1 g of silver nitrate in 80 ml of distilled water was added to 01 g under a nitrogen atmosphere while shielding from light, and the mixture was stirred for 2 hours. It was treated in the same manner as in Example 1 to obtain 30.05 g of fatty acid. [0054] As a result of examining the fatty acid composition, the purity of arachidonic acid was 95.2%. Further, the obtained arachidonic acid with a purity of 95.2% was purified in the same manner as above, and as a result, the purity was 97.0%.
% arachidonic acid was obtained. [Example 4] Eicosapentaenoic acid ethyl ester
1.012g of fatty acid ethyl ester mixture containing 2.1%
An aqueous solution of 1.688 g of silver nitrate dissolved in 0.5 ml of distilled water was added to the mixture under a nitrogen atmosphere while shielding from light, and the mixture was stirred for 2 hours. The reaction solution was washed twice with 20 ml of hexane. 20 ml of distilled water was added to the resulting aqueous layer and stirred for 1 hour to liberate the fatty acid ethyl ester that had formed the complex. The liberated fatty acid ethyl ester was extracted twice with 20 ml of hexane, and the obtained hexane layer was extracted with distilled water,
It was washed with saturated saline and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 209.7 mg of fatty acid ethyl ester. As a result of examining the composition of fatty acid ethyl ester, the purity of eicosapentaenoic acid ethyl ester was 98.
It was 0%. [Example 5] Docosahexaenoic acid ethyl ester was added to 59
.. 713.5mg of fatty acid ethyl ester mixture containing 0%
To this, an aqueous solution of 1.6873 g of silver nitrate dissolved in 0.5 ml of distilled water was added under a nitrogen atmosphere while shielding from light, and the mixture was stirred for 2 hours. Processed in the same manner as in Example 4, 251
.. 4 mg of fatty acid ethyl ester was obtained. [0064] As a result of examining the composition of the obtained fatty acid ethyl ester, the purity of docosahexaenoic acid ethyl ester was 97.0%. [Example 6] Arachidonic acid ethyl ester 52.5%
An aqueous solution of 1.6781 g of silver nitrate dissolved in 0.5 ml of distilled water was added to 630.2 mg of the fatty acid ethyl ester mixture containing the mixture under nitrogen atmosphere while shielding from light, and the mixture was stirred for 2 hours. [0066] Processing was carried out in the same manner as in Example 4, and 180
.. 3 mg of purified fatty acid ethyl ester mixture was obtained. As a result of examining the composition of this mixed fatty acid ethyl ester, the purity of arachidonic acid ethyl ester was 96.
It had been raised to 3%. Example 7 An aqueous solution prepared by dissolving 1.0703 g of silver perchlorate in 0.5 ml of distilled water was added to 670 mg of a fatty acid mixture containing 54.0% docosahexaenoic acid under a nitrogen atmosphere while shielding from light. After stirring for 2 hours, add 20 ml of hexane to the reaction solution.
Washed twice with 20 ml of distilled water was added to the resulting aqueous layer and stirred for 1 hour to liberate the fatty acid that had formed the complex. The released fatty acids were extracted twice with 20 ml of hexane, and the resulting hexane layer was washed with distilled water and saturated saline, and then dehydrated with magnesium sulfate. [0072] Concentration under reduced pressure yielded 211.9 mg of fatty acid. [0073] As a result of examining the fatty acid composition, the purity of docosahexaenoic acid was 93.1%. [Example 8] Pig liver oil obtained from pig liver by a conventional method was saponified to obtain free fatty acids of pig liver oil. It contained 14.3% arachidonic acid. [0076] 1.058g of this fatty acid was mixed with 0.5g of hexane.
An aqueous solution of 1.128 g of silver perchlorate dissolved in 0.5 ml of distilled water was added to the solution in a nitrogen atmosphere while shielding from light. After stirring for 1 hour, add 20 ml of hexane to the reaction solution.
Washed twice with 20 ml of distilled water was added to the obtained aqueous phase and stirred for 1 hour to liberate the fatty acid that had formed the complex. The released fatty acids were extracted twice with 20 ml of hexane, and the obtained hexane layer was washed with distilled water and saturated saline, and then dehydrated with magnesium sulfate. [0080] Concentration under reduced pressure yielded 70.8 mg of fatty acid. As a result of examining the fatty acid composition, the purity of arachidonic acid was 76.4%. Example 9 Linseed oil was saponified by a conventional method to obtain linseed oil free fatty acids. [0082] It contained 55.8% α-linolenic acid. [0083] 1.013g of this fatty acid was mixed with 0.5g of hexane.
An aqueous solution of 920 mg of silver perchlorate dissolved in 0.5 ml of distilled water was added to the solution in a nitrogen atmosphere while shielding from light. After stirring for 1 hour, add 20 ml of hexane to the reaction solution.
Washed twice with 20 ml of distilled water was added to the obtained aqueous phase and stirred for 1 hour to liberate the fatty acids that had formed the complex. The released fatty acids were extracted twice with 20 ml of hexane, and the obtained hexane layer was washed with distilled water and saturated saline, and then dehydrated with magnesium sulfate. [0087] Concentration under reduced pressure yielded 150 mg of fatty acid. [0088] As a result of examining the fatty acid composition, the purity of α-linolenic acid was 98.2%. Example 10 Borage oil was saponified by a conventional method to obtain borage oil free fatty acids. [0090] 23.1% of γ-linolenic acid was contained. [0091] 1.037g of this fatty acid was mixed with 0.5g of hexane.
An aqueous solution of 809 mg of silver perchlorate dissolved in 0.5 ml of distilled water was added to the solution in a nitrogen atmosphere while shielding from light. After stirring for 1 hour, add 20 ml of hexane to the reaction solution.
Washed twice with [0093] 20 ml of distilled water was added to the obtained aqueous phase and stirred for 1 hour to liberate the complexed fatty acids. The released fatty acids were extracted twice with 20 ml of hexane, and the obtained hexane layer was washed with distilled water and saturated saline, and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 59.7 mg of fatty acid. [0096] As a result of examining the fatty acid composition, the purity of γ-linolenic acid was 93.4%. [Example 11] Refined fish oil (triglyceride type, eicosapentaenoic acid 16.7%, docosahexanoic acid 11%).
An aqueous solution prepared by dissolving 853 mg of silver nitrate in 0.5 ml of distilled water was added under a nitrogen atmosphere while shielding from light. After stirring for 1 hour, add 20 ml of hexane to the reaction solution.
Washed twice with 20 ml of distilled water was added to the obtained aqueous phase and stirred for 1 hour to liberate the triglyceride that had formed the complex. [0100] The liberated triglyceride was dissolved in 20 m hexane.
The hexane layer obtained was washed with distilled water and saturated saline, and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 85.8 mg of fatty acid. [0102] As a result of examining the fatty acid composition, eicosapentaenoic acid is 38.5% and docosahexaenoic acid is 24.0%.
purity. [Example 12] 852 mg of silver nitrate was added to 0.5 ml of distilled water in a solution of 1.005 g of an aliphatic alcohol mixture containing 45% docosahexaenol dissolved in 0.5 ml of hexane.
An aqueous solution dissolved in was added under a nitrogen atmosphere while shielding from light. After stirring for 1 hour, add 20 ml of hexane to the reaction solution.
Washed twice with 20 ml of distilled water was added to the resulting aqueous phase and stirred for 1 hour to liberate the aliphatic alcohol that had formed the complex. [0106] The liberated aliphatic alcohol was dissolved in hexane 20
The hexane layer obtained was washed with distilled water and saturated saline, and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 145 mg of aliphatic alcohol. [0108] As a result of examining the composition, the purity of docosahexaenol was 98.5%. [Example 13] An aqueous solution of 847.2 mg of silver nitrate dissolved in 0.5 ml of distilled water was added to a solution of 1.003 g of a fatty acid mixture containing 60% eicosapentaenoic acid dissolved in 0.5 ml of hexane under a nitrogen atmosphere, shielded from light. and added. After stirring for 2 hours, add 20 ml of hexane to the reaction solution.
Washed twice with To the obtained aqueous phase, 20 ml of ethylene glycol was added as a complex dissociating agent and stirred for 1 hour to liberate the complexed fatty acids. The liberated fatty acids were extracted twice with 20 ml of hexane, and the resulting hexane phase was washed with distilled water and saturated saline, and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 133.8 mg of fatty acid. [0114] As a result of examining the fatty acid composition, the purity of eicosapentaenoic acid was 94.4%. [Example 14] An aqueous solution of 845.2 mg of silver nitrate dissolved in 0.5 ml of distilled water was added to a solution of 1.010 g of a fatty acid mixture containing 60% eicosapentaenoic acid dissolved in 0.5 ml of hexane under a nitrogen atmosphere, shielded from light. and added. After stirring for 2 hours, add 20 ml of hexane to the reaction solution.
Washed twice with To the obtained aqueous phase, 1.05 g of sodium chloride was added as a complex dissociating agent and stirred for 1 hour to liberate the complexed fatty acids. The liberated fatty acids were extracted twice with 20 ml of hexane, and the resulting hexane phase was washed with distilled water and saturated saline, and dehydrated with magnesium sulfate. Concentration under reduced pressure yielded 150.6 mg of fatty acid. [0120] As a result of examining the fatty acid composition, the purity of eicosapentaenoic acid was 93.1%. [Examples 15 to 49] As a complex dissociation agent, various compounds that form a bond with silver that is poorly soluble in water were tested, and the results showed that the purity of the highly unsaturated fatty acids ranked first. Shown in the table. All experimental conditions were as follows: 1 g of eicosapentaenoic acid from Example 1 or 1 g of eicosapentaenoic acid ethyl ester from Example 4, and using the dissociating agent shown in Table 1. In the case of the ethyl ester thereof, substantially the same operations as in Example 4 were carried out. [Table 1]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  高度不飽和脂肪酸類の含有物と、銀塩
を含む水性媒体を接触させて高度不飽和脂肪酸類と銀の
錯体を形成させ、その後水相から油脂相を除去し、次い
でこの水相に錯体を解離する手段を施して高度不飽和脂
肪酸類を取得することを特徴とするそれらの選択的取得
方法。
Claim 1: A complex of highly unsaturated fatty acids and silver is formed by contacting a substance containing highly unsaturated fatty acids with an aqueous medium containing a silver salt, and then an oil and fat phase is removed from the aqueous phase, and then this A method for selectively obtaining highly unsaturated fatty acids, which comprises obtaining highly unsaturated fatty acids by dissociating the complex in an aqueous phase.
【請求項2】  水性媒体中の銀塩の濃度が0.1mo
l/l以上である請求項1の方法。
Claim 2: The concentration of silver salt in the aqueous medium is 0.1 mo.
2. The method of claim 1, wherein the ratio is greater than or equal to l/l.
【請求項3】  錯体を解離する手段が錯体解離剤の添
加である請求項2の方法。
3. The method of claim 2, wherein the means for dissociating the complex is the addition of a complex dissociating agent.
【請求項4】  錯体を解離する手段が水を添加して希
釈することである請求項2の方法。
4. The method of claim 2, wherein the means for dissociating the complex is dilution by adding water.
【請求項5】  錯体解離剤が、アルコール類、エーテ
ル類、カルボニル類等を含む酸素系化合物、またはアミ
ン類、アミド類、ニトリル類等を含む窒素系化合物、ま
たはチオール類、スルフィド類等を含む硫黄系化合物、
3価又は5価のリン化合物、砒素化合物、アンチモン化
合物等を含むリン属化合物であって銀と結合を生じるも
の、またはこれら化合物の官能基を複合して有する化合
物及びこれらの混合物であることを特徴とする請求項3
の方法。
5. The complex dissociating agent contains oxygen compounds including alcohols, ethers, carbonyls, etc., nitrogen compounds including amines, amides, nitriles, etc., or thiols, sulfides, etc. sulfur compounds,
Phosphorus compounds including trivalent or pentavalent phosphorus compounds, arsenic compounds, antimony compounds, etc. that form bonds with silver, or compounds having complex functional groups of these compounds, and mixtures thereof. Characteristic claim 3
the method of.
【請求項6】  錯体解離剤が、銀イオンと水性媒体に
難溶性の銀化合物を生成する化合物及びイオンであるこ
とを特徴とする請求項3の方法。
6. The method according to claim 3, wherein the complex dissociating agent is a compound or ion that produces silver ions and a silver compound that is sparingly soluble in an aqueous medium.
【請求項7】  錯体解離剤が、錯体形成能を持つ不飽
和結合を有する化合物であることを特徴とする請求項3
の方法。
[Claim 7] Claim 3, wherein the complex-dissociating agent is a compound having an unsaturated bond that has complex-forming ability.
the method of.
【請求項8】  錯体を解離剤する手段が銀イオンを銀
に還元する手段であることを特徴とする請求項2の方法
8. The method of claim 2, wherein the means for dissociating the complex is a means for reducing silver ions to silver.
JP7360991A 1990-04-24 1991-03-14 Method for selectively obtaining polyunsaturated fatty acids Expired - Fee Related JP2895258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7360991A JP2895258B2 (en) 1990-04-24 1991-03-14 Method for selectively obtaining polyunsaturated fatty acids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-106503 1990-04-24
JP10650390 1990-04-24
JP7360991A JP2895258B2 (en) 1990-04-24 1991-03-14 Method for selectively obtaining polyunsaturated fatty acids

Publications (2)

Publication Number Publication Date
JPH04218596A true JPH04218596A (en) 1992-08-10
JP2895258B2 JP2895258B2 (en) 1999-05-24

Family

ID=26414750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7360991A Expired - Fee Related JP2895258B2 (en) 1990-04-24 1991-03-14 Method for selectively obtaining polyunsaturated fatty acids

Country Status (1)

Country Link
JP (1) JP2895258B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064974A (en) * 2008-09-10 2010-03-25 Q P Corp Method for obtaining highly-unsaturated fatty acid derivative
JP2015091940A (en) * 2013-09-30 2015-05-14 日清ファルマ株式会社 Eicosapentaenoic acid and/or docosahexaenoic acid-containing composition production method
WO2015129190A1 (en) * 2014-02-28 2015-09-03 備前化成株式会社 Method for purifying stearidonic acid
JP2020529397A (en) * 2017-08-07 2020-10-08 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Manufacturing process of concentrated polyunsaturated fatty acid oil
CN112679343A (en) * 2020-12-11 2021-04-20 浙江工业大学 Method for preparing high-purity ethyl pinocerate by utilizing torreya grandis seed oil
EP3865469A3 (en) * 2009-12-30 2021-11-17 BASF Pharma (Callanish) Limited Polyunsaturated fatty acid compositions obtainable by a simulated moving bed chromatographic separation process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194359A1 (en) 2015-06-01 2016-12-08 備前化成株式会社 Process for producing highly unsaturated fatty acid of high purity in high yield
DK3305755T3 (en) 2015-06-01 2023-08-28 Bizen Chemical Co Ltd New process for producing highly unsaturated fatty acid esters
EP3453749A4 (en) 2016-05-02 2020-02-26 Nisshin Pharma Inc. Method for producing highly unsaturated fatty acid-containing composition
WO2018230622A1 (en) 2017-06-14 2018-12-20 日清ファルマ株式会社 Method for producing highly unsaturated fatty acid-containing composition
CN113195447A (en) 2018-12-26 2021-07-30 日清药业股份有限公司 Composition containing eicosapentaenoic acid alkyl ester and method for producing same
US11767491B2 (en) 2019-03-26 2023-09-26 Nisshin Pharma Inc. Eicosapentaenoic acid alkyl ester-containing composition and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064974A (en) * 2008-09-10 2010-03-25 Q P Corp Method for obtaining highly-unsaturated fatty acid derivative
US8680305B2 (en) 2008-09-10 2014-03-25 Q.P. Corporation Method for obtaining polyunsaturated fatty acid derivatives
EP3865469A3 (en) * 2009-12-30 2021-11-17 BASF Pharma (Callanish) Limited Polyunsaturated fatty acid compositions obtainable by a simulated moving bed chromatographic separation process
JP2015091940A (en) * 2013-09-30 2015-05-14 日清ファルマ株式会社 Eicosapentaenoic acid and/or docosahexaenoic acid-containing composition production method
WO2015129190A1 (en) * 2014-02-28 2015-09-03 備前化成株式会社 Method for purifying stearidonic acid
JPWO2015129190A1 (en) * 2014-02-28 2017-03-30 備前化成株式会社 Method for purifying stearidonic acid
JP2020529397A (en) * 2017-08-07 2020-10-08 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Manufacturing process of concentrated polyunsaturated fatty acid oil
CN112679343A (en) * 2020-12-11 2021-04-20 浙江工业大学 Method for preparing high-purity ethyl pinocerate by utilizing torreya grandis seed oil

Also Published As

Publication number Publication date
JP2895258B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
US20020026063A1 (en) Process for making an enriched mixture of polyunsaturated fatty acid esters
JP5503856B2 (en) Method for obtaining highly unsaturated fatty acid derivatives
JP5946833B2 (en) Method for concentrating ω3 fatty acids
JP2895258B2 (en) Method for selectively obtaining polyunsaturated fatty acids
JP2019048902A (en) Method for producing highly unsaturated fatty acid alkyl ester-containing composition
AU2008283113A1 (en) Use of ionic liquids for extraction or fractionation of lipids
JP6510639B2 (en) Process for producing high purity, high yield highly unsaturated fatty acid
JP3001954B2 (en) How to obtain polyunsaturated fatty acids
JP2786748B2 (en) Purification method of polyunsaturated fatty acids
EP1202950B1 (en) Recovery of polyunsaturated fatty acids from urea adducts
JPH09504020A (en) Method for producing lipophilic compound
JP2015091940A (en) Eicosapentaenoic acid and/or docosahexaenoic acid-containing composition production method
JP2935555B2 (en) Separation and purification of polyunsaturated fatty acids
JPH09151390A (en) Purification of highly unsaturated fatty acid and its derivative
JP6256981B2 (en) Selective continuous recovery method of vitamin E from oil
WO2011039776A1 (en) High purity concentrates of polyunsaturated fatty acid and ester by copper complexation.
JPWO2015129190A1 (en) Method for purifying stearidonic acid
CN113574154A (en) Method for producing composition containing eicosapentaenoic acid alkyl ester
JP3461378B2 (en) Purification method of eicosapentaenoic acid or its ester
JP2718650B2 (en) Method for producing highly unsaturated fatty acid alcohol ester
JP2001240893A (en) Method of purifying eiosapentaenoic acid or its derivative
JPH04103558A (en) Method for obtaining eicosapentaenoic acid and its ester from marine microorganism
JPH06248288A (en) Method of separating and recovering highly unsaturated fatty acids
KR100540221B1 (en) Method for Separation and Concentration and of EPA and DHA Using Silver Ion Exchanged Resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees