JPH04217321A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPH04217321A
JPH04217321A JP2403398A JP40339890A JPH04217321A JP H04217321 A JPH04217321 A JP H04217321A JP 2403398 A JP2403398 A JP 2403398A JP 40339890 A JP40339890 A JP 40339890A JP H04217321 A JPH04217321 A JP H04217321A
Authority
JP
Japan
Prior art keywords
solenoid coil
sub
magnetic field
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2403398A
Other languages
Japanese (ja)
Inventor
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2403398A priority Critical patent/JPH04217321A/en
Publication of JPH04217321A publication Critical patent/JPH04217321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To ensure the reproducibility of film growth property without requiring frequent calibration by providing a means, which shifts a sub solenoid coil or a substrate susceptor in axial direction, and connecting the winding of a main solenoid coil and the winding of the sub solenoid coil in series. CONSTITUTION:The susceptor 22 is shifted by a shifter so that the board placing face of the susceptor 22 may be the optimum relative position in view of film property to the cusp face 17 of a cusp magnetic field. Next, a current is supplied in series to the main solenoid coil 1 and a sub solenoid coil 2 so as to form an electron cyclotron resonance magnetic field region in the vicinity of the waveguide junction inside a plasma generation chamber 4. Then, N2O gas introduced through a waveguide path 2 into the plasma generation chamber 4 is made into plasma efficiently by electron cyclotron resonance ionization effect. And N2O gas activates board surface reaction, and forms a good quality of SiO2 film on the surface of a board.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体集積回路、特
にLSIなどの微細加工によるDRAMの製造装置に係
り、その主要構成要素として、マイクロ波発生手段と、
マイクロ波伝達手段と、マイクロ波伝達手段と結合され
るとともにメインソレノイドコイルにより同軸に包囲さ
れ導入されたガスをマイクロ波とメインソレノイドコイ
ルが形成する磁界とによる電子サイクロトロン共鳴効果
によりプラズマ化するプラズマ生成室と、プラズマ生成
室のマイクロ波伝達手段結合部と対面する側の開口を介
してプラズマ生成室と連通する,内部に基板が載置され
る基板台を収容する反応室と、メインソレノイドコイル
から基板台の基板載置面より遠方の位置にメインソレノ
イドコイルと同軸に配されメインソレノイドコイルと対
となってカスプ磁界を形成するサブソレノイドコイルと
を備えたECR(電子サイクロトロン共鳴)型プラズマ
処理装置に関する。
[Industrial Field of Application] The present invention relates to an apparatus for manufacturing semiconductor integrated circuits, particularly DRAMs by microfabrication of LSIs, etc. The main components thereof include microwave generating means;
Plasma generation in which the microwave transmission means and the gas that is coupled to the microwave transmission means and coaxially surrounded and introduced by the main solenoid coil are turned into plasma by the electron cyclotron resonance effect of the microwave and the magnetic field formed by the main solenoid coil. A reaction chamber that communicates with the plasma generation chamber through an opening on the side facing the microwave transmission means coupling portion of the plasma generation chamber and that accommodates a substrate stage on which a substrate is placed, and a main solenoid coil. An ECR (Electron Cyclotron Resonance) type plasma processing apparatus equipped with a sub-solenoid coil disposed coaxially with the main solenoid coil at a position far from the substrate mounting surface of the substrate stand and forming a cusp magnetic field in pair with the main solenoid coil. Regarding.

【0002】0002

【従来の技術】従来のこの種のプラズマ処理装置の一例
として、例えば、特開昭63−43324号公報に開示
されたものが知られている。この種の装置は、図2に示
すように、図示されないマイクロ波発生手段で発振され
たマイクロ波を伝達する導波管2と、導波管2と結合さ
れるとともにメインソレノイドコイル1により同軸に包
囲されたプラズマ生成室4と,プラズマ生成室4の下方
端の開口4aを介してプラズマ生成室4と連通する反応
室5と、この反応室5内に収容される基板台10に載置
された基板11の背面側に配されるサブソレノイドコイ
ル2とを主要構成部材として構成されている。
2. Description of the Related Art As an example of a conventional plasma processing apparatus of this type, the one disclosed in Japanese Patent Application Laid-Open No. 63-43324 is known. As shown in FIG. 2, this type of device includes a waveguide 2 that transmits microwaves generated by a microwave generating means (not shown), and a main solenoid coil 1 that is coupled to the waveguide 2 and coaxially connected to the waveguide 2. An enclosed plasma generation chamber 4, a reaction chamber 5 communicating with the plasma generation chamber 4 through an opening 4a at the lower end of the plasma generation chamber 4, and a substrate placed on a substrate table 10 housed in the reaction chamber 5. The main component is a sub-solenoid coil 2 disposed on the back side of a substrate 11.

【0003】このような構成の装置を用いて基板11の
表面に例えばSiO2 膜を形成する際には、まず、メ
インソレノイドコイル1に電源12から電流を流してプ
ラズマ生成室4内の導波管結合部近傍にマイクロ波の周
波数,通常2.45GHzとの電子サイクロトロン共鳴
磁場領域を形成し、ついでプラズマ生成室4内にマイク
ロ波を導入するとともにガス導入管6を通してN2 O
ガスを導入すると、N2 Oガスが電子サイクロトロン
共鳴電離効果により効率よくプラズマ化され、このプラ
ズマが、メインソレノイドコイル1が形成する磁界15
に沿って反応室5内へ移動し、ガス導入管7を通して反
応室5内へ導入されたSiH4 ガスを活性化しつつ磁
界15に沿って基板11に到達し、基板11にSiO2
 膜が形成される。ここで、反応室5内には、電源13
から電流が供給されるサブソレノイドコイル2により、
メインソレノイドコイル1による磁界15と逆方向の磁
界16が形成されており、その中心部の強い磁界で磁界
15中心部の強い磁界を弱め、その周辺部の弱い磁界で
磁界15周辺部の弱い磁界を弱めて、基板前面側に均一
な軸方向磁界を形成し、基板へ向かうプラズマの密度を
均一化し、膜厚の均一な薄膜形成に寄与している。
When forming, for example, a SiO2 film on the surface of the substrate 11 using the apparatus configured as described above, first, a current is applied from the power supply 12 to the main solenoid coil 1 to connect the waveguide in the plasma generation chamber 4. An electron cyclotron resonance magnetic field region with a microwave frequency, usually 2.45 GHz, is formed near the coupling part, and then microwaves are introduced into the plasma generation chamber 4, and N2O is introduced through the gas introduction pipe 6.
When the gas is introduced, the N2O gas is efficiently turned into plasma by the electron cyclotron resonance ionization effect, and this plasma is caused by the magnetic field 15 formed by the main solenoid coil 1.
The SiH4 gas introduced into the reaction chamber 5 through the gas introduction pipe 7 is activated and reaches the substrate 11 along the magnetic field 15, where SiO2 is deposited on the substrate 11.
A film is formed. Here, in the reaction chamber 5, a power source 13 is provided.
The sub solenoid coil 2 to which current is supplied from
A magnetic field 16 is formed in the opposite direction to the magnetic field 15 caused by the main solenoid coil 1, and the strong magnetic field at the center weakens the strong magnetic field at the center of the magnetic field 15, and the weak magnetic field at the periphery weakens the weak magnetic field at the periphery of the magnetic field 15. This weakens the axial magnetic field to form a uniform axial magnetic field on the front side of the substrate, equalizing the density of plasma directed toward the substrate, and contributing to the formation of a thin film with uniform thickness.

【0004】0004

【発明が解決しようとする課題】従来、この種の装置を
用いて成膜を行う場合、生成された膜の特性,例えば膜
厚は、反応室内の基板の位置や、第2図に示したように
、メインソレノイドコイルが形成する磁界と逆方向の磁
界を形成して得られる全体の磁場配位すなわちカスプ磁
界中、軸方向磁界成分が零となる,いわゆるカスプ面の
位置を決めるサブソレノイドコイル電流に依存するので
、反応室内の基板の位置や、サブソレノイドコイル電流
を被制御パラメータとして成膜条件を設定し成膜を行っ
ていた。しかしながら、膜特性の再現性を確保するには
、サブソレノイドコイルに流す電流が所定の許容変動範
囲内に入るように装置の安定性を確保する必要があり、
このために、特に、メインソレノイドコイルとサブソレ
ノイドコイルそれぞれの電源回路のキャリブレーション
を頻繁な周期で行い、成膜中に行われるフィードバック
制御による電流値一定制御により得られる電流が常に所
定の許容変動範囲に入るようにする必要があった。 このために装置の稼働率を十分大きくできないという問
題があった。
[Problem to be Solved by the Invention] Conventionally, when forming a film using this type of apparatus, the characteristics of the formed film, such as the film thickness, depend on the position of the substrate in the reaction chamber and the The sub solenoid coil determines the position of the so-called cusp surface, where the axial magnetic field component becomes zero in the overall magnetic field configuration, that is, the cusp magnetic field obtained by forming a magnetic field in the opposite direction to the magnetic field formed by the main solenoid coil. Since it depends on the current, film formation was performed by setting film formation conditions using the position of the substrate in the reaction chamber and the sub-solenoid coil current as controlled parameters. However, in order to ensure reproducibility of membrane characteristics, it is necessary to ensure the stability of the device so that the current flowing through the sub-solenoid coil falls within a predetermined allowable fluctuation range.
For this purpose, in particular, the power supply circuits of the main solenoid coil and sub-solenoid coil are calibrated at frequent intervals, so that the current obtained by constant current value control using feedback control performed during film formation always maintains a predetermined allowable variation. I had to make sure it was within range. For this reason, there was a problem in that the operating rate of the device could not be sufficiently increased.

【0005】この発明の目的は、従来のように頻繁なキ
ャリブレーションを必要とすることなく、成膜特性の再
現性を確保することのできるプラズマ処理装置を提供す
ることである。
[0005] An object of the present invention is to provide a plasma processing apparatus that can ensure reproducibility of film-forming characteristics without requiring frequent calibration as in the prior art.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明においては、マイクロ波発生手段と、マ
イクロ波伝達手段と、マイクロ波伝達手段と結合される
とともにメインソレノイドコイルにより同軸に包囲され
導入されたガスをマイクロ波とメインソレノイドコイル
が形成する磁界とによる電子サイクロトロン共鳴効果に
よりプラズマ化するプラズマ生成室と、プラズマ生成室
のマイクロ波伝達手段結合部と対面する側の開口を介し
てプラズマ生成室と連通する,内部に基板が載置される
基板台を収容する反応室と、メインソレノイドコイルか
ら基板台の基板載置面より遠方の位置にメインソレノイ
ドコイルと同軸に配されメインソレノイドコイルと対と
なってカスプ磁界を形成するサブソレノイドコイルとを
備えたプラズマ処理装置を、前記メインソレノイドコイ
ルの巻線とサブソレノイドコイルの巻線とが直列に接続
された装置とするものとする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a microwave generation means, a microwave transmission means, which are coupled to the microwave transmission means and coaxially connected by a main solenoid coil. A plasma generation chamber that turns the surrounded and introduced gas into plasma by the electron cyclotron resonance effect caused by microwaves and the magnetic field formed by the main solenoid coil, and an opening on the side of the plasma generation chamber facing the microwave transmission means coupling part. a reaction chamber that accommodates a substrate stand on which a substrate is placed, which communicates with the plasma generation chamber; A plasma processing apparatus including a sub-solenoid coil that forms a pair with a solenoid coil to form a cusp magnetic field is an apparatus in which a winding of the main solenoid coil and a winding of the sub-solenoid coil are connected in series. do.

【0007】また、この装置に対し、さらに、基板台ま
たはサブソレノイドの少なくとも一方をサブソレノイド
の軸線方向に移動させる移動手段を設けるものとする。
[0007] Furthermore, this device is further provided with a moving means for moving at least one of the substrate stand or the sub-solenoid in the axial direction of the sub-solenoid.

【0008】[0008]

【作用】この種の装置では、基板の位置が、プラズマ生
成室の反応室側開口から平均的な基板位置までの距離の
±10%範囲で変動しても、この範囲内のプラズマ状態
は、膜特性,例えば膜厚分布に影響を生ずるほどの変化
を示さない。しかし、この範囲内でも、2つのコイルが
作るカスプ面と基板との相対位置と成膜特性との間には
相関関係があることが知られている。従来の装置では、
カスプ面位置の制御を、サブソレノイドコイルに流す電
流を制御して行い、上記相関関係から決まる最適相対位
置で成膜を行っていた。しかし、例えば、膜厚分布を5
%以下に保つためのサブソレノイドコイル電流の許容変
動範囲は約2%しかない。一般的な電源構成の再現性、
すなわち、構成された電源の動作中心値もしくは基準値
と所望中心値もしくは基準値とのずれが0.5%程度と
すれば、メインソレノイドコイル電流とサブソレノイド
コイル電流とを独立制御した場合、両コイルに許される
変動範囲は、最悪の場合、合わせて約1%しかない。本
発明は、従来の頻繁なキャリブレーションが、定量的に
みて、このように小さい許容変動範囲に基づくことに着
目したものである。
[Operation] In this type of device, even if the position of the substrate varies within a range of ±10% of the distance from the reaction chamber side opening of the plasma generation chamber to the average substrate position, the plasma state within this range will be There is no significant change in film properties, such as film thickness distribution. However, even within this range, it is known that there is a correlation between the relative position of the cusp surface formed by the two coils and the substrate and the film formation characteristics. With conventional equipment,
The position of the cusp surface was controlled by controlling the current flowing through the sub-solenoid coil, and film formation was performed at the optimal relative position determined from the above correlation. However, for example, if the film thickness distribution is
The permissible variation range of the sub-solenoid coil current to keep it below 2% is only about 2%. Reproducibility of common power supply configurations,
In other words, if the deviation between the operating center value or reference value of the configured power supply and the desired center value or reference value is about 0.5%, when the main solenoid coil current and sub-solenoid coil current are independently controlled, both In the worst case, the variation range allowed for the coil is only about 1% in total. The present invention focuses on the fact that conventional frequent calibration is based on such a small allowable variation range from a quantitative perspective.

【0009】本発明によれば、メインソレノイドコイル
の巻線とサブソレノイドコイルの巻線とが直列に接続さ
れるから、両コイルの位置が固定されると、電流の大き
さに関係なくカスプ面位置は不動に固定され、従来のよ
うな,サブソレノイドコイル電流のフィードバック制御
によるカスプ面位置の一定制御を必要としない。
According to the present invention, since the winding of the main solenoid coil and the winding of the sub-solenoid coil are connected in series, when the positions of both coils are fixed, the cusp surface is fixed regardless of the magnitude of the current. The position is immovably fixed, and there is no need for constant control of the cusp surface position by feedback control of the sub-solenoid coil current as in the conventional case.

【0010】しかし、この場合にも、カスプ面位置の移
動は、メインソレノイドコイルの電流や位置が、プラズ
マ生成室内の導波管結合部近傍に電子サイクロトロン共
鳴磁場領域を形成する必要から、大きくは変化できない
ものの、サブソレノイドコイルは位置を軸方向に大きく
移動させることができるから、サブソレノイドコイルの
軸方向移動により、反応室の上面から底面にわたり広い
幅で行うことができる。従って、サブソレノイドコイル
あるいは基板台の少なくともいずれか一方を軸方向に移
動させる移動手段が付加された装置とすることにより、
基板とカスプ面との最適相対位置で成膜を行うことがで
きる。
However, in this case as well, the movement of the cusp surface position does not greatly affect the current and position of the main solenoid coil because it is necessary to form an electron cyclotron resonance magnetic field region near the waveguide coupling part in the plasma generation chamber. Although it cannot be changed, the position of the sub-solenoid coil can be moved largely in the axial direction, so by moving the sub-solenoid coil in the axial direction, it is possible to perform a wide range of movement from the top surface to the bottom surface of the reaction chamber. Therefore, by providing a device with a moving means for moving at least one of the sub-solenoid coil or the board stand in the axial direction,
Film formation can be performed at the optimal relative position between the substrate and the cusp surface.

【0011】[0011]

【実施例】本発明の一実施例を図1に示す。本実施例で
は、装置は、図示されないマイクロ波発生手段と、マイ
クロ波発生手段で発振されたマイクロ波を伝達する導波
管2と、メインソレノイドコイル1と、導波管2と結合
されるとともにメインソレノイドコイル1により同軸に
包囲されるプラズマ生成室4と、プラズマ生成室4の下
方端の開口4aを介してプラズマ生成室4と連通する反
応室5と、反応室5内に反応室5と絶縁状態に配され、
反応室5の外部にある,高周波電源21から高周波電力
が供給される基板台22と、反応室5内の気密を保ちつ
つ基板台22の軸方向移動を可能にするベローズ23と
、基板台22をその基板載置面がカスプ面の上下±20
mmの範囲内で移動するように軸方向に進退駆動する移
動装置24と、基板台22に載置された基板11の背面
側の位置に配されるサブソレノイドコイル2とを主要構
成部材として構成されている。ここで、メインソレノイ
ドコイル1の巻線とサブソレノイドコイル2の巻線とは
直列に接続され、直流電源20から、プラズマ生成室4
内の導波管結合部近傍に電子サイクロトロン共鳴磁場領
域を形成するための電流が供給される。サブソレノイド
コイル2は、この電流が流れたときに、反応室5内の適
宜の位置にカスプ面を形成する磁界を発生することがで
きるよう、巻線の巻数、コイルの平均直径等の設計諸元
を有し,ここでは基板11の背面側定位置に固定されて
いる。
[Embodiment] An embodiment of the present invention is shown in FIG. In this embodiment, the device is coupled to a microwave generating means (not shown), a waveguide 2 for transmitting microwaves oscillated by the microwave generating means, a main solenoid coil 1, and a waveguide 2. A plasma generation chamber 4 coaxially surrounded by the main solenoid coil 1, a reaction chamber 5 communicating with the plasma generation chamber 4 through an opening 4a at the lower end of the plasma generation chamber 4, and a reaction chamber 5 within the reaction chamber 5. placed in an insulated state,
A substrate stand 22 to which high-frequency power is supplied from a high-frequency power supply 21 located outside the reaction chamber 5, a bellows 23 that enables axial movement of the substrate stand 22 while maintaining airtightness inside the reaction chamber 5, and a substrate stand 22. The board placement surface is ±20 above and below the cusp surface.
The main components are a moving device 24 that moves forward and backward in the axial direction so as to move within a range of mm, and a sub-solenoid coil 2 that is placed on the back side of the board 11 placed on the board stand 22. has been done. Here, the winding of the main solenoid coil 1 and the winding of the sub-solenoid coil 2 are connected in series, and a DC power source 20 is connected to the plasma generation chamber 4.
A current is supplied to form an electron cyclotron resonant magnetic field region near the waveguide coupling portion within the cyclotron. The sub solenoid coil 2 is designed with the number of turns of the winding, the average diameter of the coil, etc. so that when this current flows, it can generate a magnetic field that forms a cusp surface at an appropriate position in the reaction chamber 5. Here, it is fixed at a fixed position on the back side of the substrate 11.

【0012】この装置により基板表面に例えばSiO2
 膜を形成する際には、まず、基板台22の基板載置面
がカスプ磁界のカスプ面17に対して膜特性上最適な相
対位置に位置するように移動装置24により基板台22
を移動させ、ついで直流電源20からメインソレノイド
コイル1とサブソレノイドコイル2とに直列に電流を供
給してプラズマ生成室4内の導波管結合部近傍に電子サ
イクロトロン共鳴磁場領域を形成した後、プラズマ生成
室4内に導波管2を通してマイクロ波を導入するととも
にガス導入管6を通してN2 Oガスを例えば30SC
CMの流量で導入し、N2 Oガスを電子サイクロトロ
ン共鳴電離効果により効率よくプラズマ化する。プラズ
マ化されたN2 Oガスは、メインソレノイドコイル1
が形成する磁界15に沿って反応室5内へ移動し、ガス
導入管7を通して反応室5内へ15SCCMの流量で供
給されたSiH4 ガスを活性化する。一方、基板11
には、基板台22を介して高周波電源21から高周波電
圧が印加され、基板表面に対地負極性の直流性バイアス
電位を生じているから、N2 Oガスプラズマ中のOイ
オンがこの電位により加速されて基板11に注入され、
基板表面反応を活性化し、基板表面に膜質の良好なSi
O2 膜を形成する。
With this device, for example, SiO2 is deposited on the surface of the substrate.
When forming a film, first, the substrate table 22 is moved by the moving device 24 so that the substrate mounting surface of the substrate table 22 is positioned at the optimal relative position in terms of film characteristics with respect to the cusp surface 17 of the cusp magnetic field.
, and then supplying current from the DC power supply 20 to the main solenoid coil 1 and the sub-solenoid coil 2 in series to form an electron cyclotron resonance magnetic field region near the waveguide coupling part in the plasma generation chamber 4. Microwaves are introduced into the plasma generation chamber 4 through the waveguide 2, and N2O gas is introduced into the plasma generation chamber 4 through the gas introduction pipe 6, for example, at 30 SC.
CM is introduced at a flow rate of CM, and N2O gas is efficiently turned into plasma by the electron cyclotron resonance ionization effect. The plasma N2 O gas is transferred to the main solenoid coil 1.
The SiH4 gas moves into the reaction chamber 5 along the magnetic field 15 formed by the SiH4 gas and activates the SiH4 gas supplied into the reaction chamber 5 through the gas introduction pipe 7 at a flow rate of 15 SCCM. On the other hand, the substrate 11
A high frequency voltage is applied from the high frequency power supply 21 via the substrate table 22, creating a DC bias potential with a negative polarity to the ground on the substrate surface, so the O ions in the N2O gas plasma are accelerated by this potential. is injected into the substrate 11,
Activates the substrate surface reaction and forms a good Si film on the substrate surface.
Form an O2 film.

【0013】なお、本実施例では、基板11とカスプ面
17との最適相対位置を得るのに、基板台22を移動さ
せるものとしたが、移動装置をサブソレノイドコイル2
側に設け、基板台22を固定した状態でサブソレノイド
コイル2を移動させるようにしてもよい。
In this embodiment, the substrate stand 22 is moved to obtain the optimum relative position between the substrate 11 and the cusp surface 17.
The sub-solenoid coil 2 may be provided on the side, and the sub-solenoid coil 2 may be moved while the board stand 22 is fixed.

【0014】[0014]

【発明の効果】本発明においては、プラズマ処理装置を
上述のように構成したので、以下に記載する効果が奏せ
られる。
Effects of the Invention In the present invention, since the plasma processing apparatus is constructed as described above, the following effects can be achieved.

【0015】請求項1の装置では、メインソレノイドコ
イルとサブソレノイドコイルとのそれぞれの位置が固定
されると、カスプ面の位置が、両コイルに供給される電
流の大きさに関係なく不動に固定され、反応室内の一定
位置に保持された基板との相対位置が変動しない。従っ
て成膜の再現性を精度よく確保することができる。この
ため、従来のように、数月に1度の周期で精密電源を用
いて行っていたキャリブレーションも、精密電源を用い
ることなく、両コイルの位置のみの点検により行うこと
ができ、従って電源自体の動作中心値もしくは基準値の
点検は装置全体のキャリブレーション時に合わせて行え
ばよく、装置特性の再現性に対する信頼性と装置の稼働
率とが向上する。
In the device of claim 1, when the respective positions of the main solenoid coil and the sub-solenoid coil are fixed, the position of the cusp surface is fixed immovably regardless of the magnitude of the current supplied to both coils. The substrate is held at a fixed position within the reaction chamber, and its relative position does not change. Therefore, reproducibility of film formation can be ensured with high accuracy. For this reason, calibration, which was conventionally performed using a precision power supply once every few months, can now be done by checking only the positions of both coils without using a precision power supply. Inspection of the central operating value or reference value of the device itself can be performed at the same time as the calibration of the entire device, thereby improving the reliability of the reproducibility of device characteristics and the operating rate of the device.

【0016】請求項2の装置では、基板とカスプ面との
最適相対位置の設定が機械的に行われるから、サブソレ
ノイドコイルの基準位置からの移動量とカスプ面位置と
の関係をあらかじめ求めておくことにより、基板とカス
プ面との最適相対位置を精度高く、かつ容易に実現させ
ることができる。
In the device of the second aspect, since the optimum relative position between the substrate and the cusp surface is mechanically set, the relationship between the amount of movement of the sub-solenoid coil from the reference position and the position of the cusp surface is determined in advance. By this, the optimum relative position between the substrate and the cusp surface can be easily realized with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例によるプラズマ処理装置の縦
断面図
FIG. 1 is a vertical cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention.

【図2】従来例によるプラズマ処理装置の縦断面図[Fig. 2] Longitudinal cross-sectional view of a conventional plasma processing apparatus

【符号の説明】[Explanation of symbols]

1    メインソレノイドコイル 2    サブソレノイドコイル 4    プラズマ生成室 5    反応室 10    基板台 11    基板 17    カスプ面 22    基板台 24    移動装置 1 Main solenoid coil 2 Sub solenoid coil 4 Plasma generation chamber 5 Reaction chamber 10    PCB stand 11    Substrate 17 Cusp surface 22    PCB stand 24 Mobile device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波発生手段と、マイクロ波伝達手
段と、マイクロ波伝達手段と結合されるとともにメイン
ソレノイドコイルにより同軸に包囲され導入されたガス
をマイクロ波とメインソレノイドコイルが形成する磁界
とによる電子サイクロトロン共鳴効果によりプラズマ化
するプラズマ生成室と、プラズマ生成室のマイクロ波伝
達手段結合部と対面する側の開口を介してプラズマ生成
室と連通する,内部に基板が載置される基板台を収容す
る反応室と、メインソレノイドコイルから基板台の基板
載置面より遠方の位置にメインソレノイドコイルと同軸
に配されメインソレノイドコイルと対となってカスプ磁
界を形成するサブソレノイドコイルとを備えたプラズマ
処理装置において、前記メインソレノイドコイルの巻線
とサブソレノイドコイルの巻線とが直列に接続されてい
ることを特徴とするプラズマ処理装置。
Claim 1: A microwave generating means, a microwave transmitting means, and a gas connected to the microwave transmitting means and coaxially surrounded by a main solenoid coil and introduced into the microwave and a magnetic field formed by the main solenoid coil. a plasma generation chamber that turns into plasma due to the electron cyclotron resonance effect of and a sub-solenoid coil that is disposed coaxially with the main solenoid coil at a position farther from the main solenoid coil than the substrate mounting surface of the substrate stand and forms a cusp magnetic field in pair with the main solenoid coil. A plasma processing apparatus characterized in that a winding of the main solenoid coil and a winding of the sub-solenoid coil are connected in series.
【請求項2】請求項第1項に記載のプラズマ処理装置に
おいて、基板台またはサブソレノイドの少なくとも一方
をサブソレノイドの軸線方向に移動させる移動手段を備
えていることを特徴とするプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, further comprising a moving means for moving at least one of the substrate stand and the sub-solenoid in the axial direction of the sub-solenoid.
JP2403398A 1990-12-19 1990-12-19 Plasma processor Pending JPH04217321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403398A JPH04217321A (en) 1990-12-19 1990-12-19 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403398A JPH04217321A (en) 1990-12-19 1990-12-19 Plasma processor

Publications (1)

Publication Number Publication Date
JPH04217321A true JPH04217321A (en) 1992-08-07

Family

ID=18513136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403398A Pending JPH04217321A (en) 1990-12-19 1990-12-19 Plasma processor

Country Status (1)

Country Link
JP (1) JPH04217321A (en)

Similar Documents

Publication Publication Date Title
US5571366A (en) Plasma processing apparatus
TWI701705B (en) Plasma processing apparatus and plasma processing method
US9953811B2 (en) Plasma processing method
US20200203132A1 (en) Plasma processing using multiple radio frequency power feeds for improved uniformity
US6229264B1 (en) Plasma processor with coil having variable rf coupling
KR101920842B1 (en) Plasma source design
US7190119B2 (en) Methods and apparatus for optimizing a substrate in a plasma processing system
JP4046207B2 (en) Plasma processing equipment
US6333269B2 (en) Plasma treatment system and method
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
KR20040111725A (en) Externally excited torroidal plasma source with magnetic control of ion distribution
JP2006203210A (en) Semiconductor plasma processing device and method
KR100552641B1 (en) Plasma processing apparatus and plasma processing method
KR20020019006A (en) Remote plasma generator
KR20050086834A (en) Plasma processing apparatus and method
JP4576291B2 (en) Plasma processing equipment
US6573190B1 (en) Dry etching device and dry etching method
JP3043217B2 (en) Plasma generator
JP2760845B2 (en) Plasma processing apparatus and method
JPH04217321A (en) Plasma processor
JP2001015495A (en) Device and method for plasma treatment
JP3294839B2 (en) Plasma processing method
JP3847581B2 (en) Plasma processing apparatus and plasma processing system
JPH04308088A (en) Plasma treating device and its operation
JP2006059798A (en) Plasma generating device and plasma processing device