JPH04217220A - Photometer device for microphotograph - Google Patents

Photometer device for microphotograph

Info

Publication number
JPH04217220A
JPH04217220A JP40392690A JP40392690A JPH04217220A JP H04217220 A JPH04217220 A JP H04217220A JP 40392690 A JP40392690 A JP 40392690A JP 40392690 A JP40392690 A JP 40392690A JP H04217220 A JPH04217220 A JP H04217220A
Authority
JP
Japan
Prior art keywords
light
image
photoelectric conversion
conversion element
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40392690A
Other languages
Japanese (ja)
Inventor
Kazuhiko Cho
和彦 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP40392690A priority Critical patent/JPH04217220A/en
Publication of JPH04217220A publication Critical patent/JPH04217220A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To shorten photometric time largely, maintain high optical accuracy even with the weak light determine proper exposure with ease and at a high speed by determining a difference in a photoelectric transfer signal. CONSTITUTION:The image-formation of a sample 1 is made on the image surface of a lens 4, where the image is made to enter a photoelectric transfer element 10. At this time, a part of light which enters the photoelectric transfer element 10 is screened by a screening member 9. The screening member 9 is driven by a scanning means, by which the luminescent spot part of the image is screened and a position out of the luminescent spot is screened, and each of them is photoelectrically-transferred to be inputted into a calculating means 11. In the calculating means 11, the quantity of light of a part whose measuring range is bright is calculated according to a difference between a photoelectric transfer signal when the screening member 9 screens a part whose image is bright and a photoelectric transfer signal when the screening member 9 screens a part whose image is dark.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、顕微鏡写真撮影する際
の露出を決定するのに利用される顕微鏡写真用測光装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric device for microphotography used to determine exposure when taking microphotographs.

【0002】0002

【従来の技術】顕微鏡写真撮影は、対象とされる標本が
明視野照明による非常にコントラストの低い標本から、
蛍光観察による真っ暗な背景に光の点が点在するような
標本まで様々であることから、露出時間を決定するのが
非常に難しい。そのために、通常のカメラに使用されて
いる測光装置では自動露光などはほとんど不可能であっ
た。一方、蛍光観察を行う場合には、蛍光標本が褪色し
てしまって保存がきかないため蛍光写真の需要が非常に
高かった。そこで、蛍光写真等を含む顕微鏡写真撮影に
対応できる測光方式として、スポット測光方式、ムービ
ングスポット測光方式等が考えられている。
[Prior Art] Microscopic photography is performed by selecting a specimen from a specimen with very low contrast under bright field illumination.
Determining the exposure time is extremely difficult because the specimens vary from fluorescence observation to a pitch-black background with scattered spots of light. For this reason, automatic exposure is almost impossible with the photometers used in ordinary cameras. On the other hand, when performing fluorescence observation, fluorescent specimens fade and cannot be stored, so there is a high demand for fluorescence photographs. Therefore, spot photometry, moving spot photometry, and the like are being considered as photometry methods that can be used for microphotography including fluorescence photography.

【0003】スポット測光方式は、像面に測光したい部
分の大きさの絞りを配置してその部分の光のみを光電変
換して測光するといったものである。これにより、画像
の微小部分を測光し精度の向上を図る事ができる。輝点
のように微小部分の光量を測光するためには測光可能範
囲が小さいほど精度が向上する。現在では撮影面の1%
程度の面積を測光するのが一般的である。
[0003] In the spot photometry method, a diaphragm having the size of the area to be photometered is placed on the image plane, and only the light from that area is photoelectrically converted and photometered. Thereby, it is possible to measure the light of a minute portion of an image and improve the accuracy. In order to photometer the amount of light in minute areas such as bright spots, the smaller the photometric range, the better the accuracy. Currently, 1% of the shooting surface
It is common to photometer an area of approximately

【0004】また、ムービングスポット測光方式は、像
面上に配置された絞り等を移動させて測光部位を移動で
きるようにし測光を容易にしたものである。この方式は
、例えば蛍光標本のように輝点が点在する場合に、標本
のフレーミングを崩すこと無く測光部位を輝点に合わせ
ることができる。
Furthermore, the moving spot photometry method facilitates photometry by moving a diaphragm or the like placed on the image plane to move the photometry site. With this method, when bright spots are scattered, such as in a fluorescent specimen, the photometric region can be aligned with the bright spots without disturbing the framing of the specimen.

【0005】さらに、最近では通常のカメラにおいて、
測光部を複数の測光部位に分割してその各々の分割測光
部位の輝度差などから経験則に基づき光量を算出するマ
ルチ測光が考えられている。通常のカメラでは、このマ
ルチ測光により、露出補正を自動化して逆光、黒い背景
、白い背景に対応できるようにしている。なお、顕微鏡
写真撮影では、撮影条件の多様性からこのマルチ測光を
単純に適用するのは極めて困難である。
Furthermore, recently, in ordinary cameras,
Multi-photometry has been considered in which the photometry section is divided into a plurality of photometry sections and the amount of light is calculated based on empirical rules from the brightness differences between the respective divided photometry sections. Normal cameras use this multi-metering to automate exposure compensation to handle backlight, black backgrounds, and white backgrounds. Note that in microscopic photography, it is extremely difficult to simply apply this multi-photometering method due to the diversity of photography conditions.

【0006】[0006]

【発明が解決しようとする課題】ところで、さらに使い
勝手が良いものとするためには、測光部位のさらなる微
小化が望まれ、実際には撮影面に対して0.1%の面積
部分の測光が要求されている。しかし、測光部位が小さ
くなるのに応じて装置の測光部と標本の測光位置との位
置合わせが困難なものとなり、その位置合わせに時間が
かかり測光時間に長時間を要するという問題がある。
[Problems to be Solved by the Invention] By the way, in order to make it even more user-friendly, it is desirable to further miniaturize the photometering part, and in reality, the photometering of an area of 0.1% of the photographing surface is required. requested. However, as the photometric region becomes smaller, it becomes difficult to align the photometric section of the device with the photometric position of the specimen, and there is a problem in that alignment takes time and photometry takes a long time.

【0007】また、上述したスポット測光では像面の1
%程度まで微小化した測光部位の光しか光電変換してい
ないので、その光量を示す光電変換信号は極めて低レベ
ルであって光電変換素子の固有ノイズに光電変換出力が
埋もれて測光不可能になる可能性がある。これは、上述
したスポット測光方式では、測光部の微細化が進んだ場
合に、さらに大きな問題となる。
In addition, in the above-mentioned spot photometry, one of the image planes
Since only the light from the photometric part, which has been miniaturized to about 10%, is photoelectrically converted, the photoelectric conversion signal that indicates the amount of light is at an extremely low level, and the photoelectric conversion output is buried in the inherent noise of the photoelectric conversion element, making photometry impossible. there is a possibility. In the above-mentioned spot photometry method, this becomes an even bigger problem when the photometry section becomes finer.

【0008】また、特公昭62−502427号公報に
示されているように、LCD等の多視野マトリクスを絞
りとして用いることが考えられるが、遮光時の透過率が
高く透明時の透過率が低いことから測光精度が低下する
という問題があった。
[0008]Also, as shown in Japanese Patent Publication No. 62-502427, it is possible to use a multi-view matrix such as an LCD as an aperture, but the transmittance is high when light is blocked and low when transparent. Therefore, there was a problem that the photometry accuracy decreased.

【0009】本発明は以上のような実情に鑑みてなされ
たもので、測光時間を大幅に短縮化でき、微弱光であっ
ても高い測光精度を維持できて、適性露出を簡単かつ高
速に決定することのできる顕微鏡写真用測光装置を提供
することを目的とする。
The present invention has been developed in view of the above-mentioned circumstances, and is capable of significantly shortening photometry time, maintaining high photometry accuracy even in weak light, and determining appropriate exposure easily and quickly. The purpose of the present invention is to provide a photometric device for microphotography that can perform the following steps.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る顕微鏡写真用測光装置は、測光対象と
なる標本からの光線が入射する光電変換素子と、前記標
本と前記光電変換素子との間の光路上に配置され前記光
電変換素子の手前で像面を形成するレンズと、このレン
ズの像面上に配置され測光範囲の一部を遮光する遮光部
材と、この遮光部材で前記測光範囲内を走査するための
走査手段と、前記光電変換素子から出力される光電変換
信号に基づいて前記遮光部材で遮光される測光部の照度
を算出する演算手段とを具備してなるものとした。
[Means for Solving the Problems] In order to achieve the above object, a photometric device for microphotography according to the present invention includes a photoelectric conversion element into which a light beam from a specimen to be measured is incident, the specimen and the photoelectric conversion element. A lens arranged on the optical path between the photoelectric conversion element and the photoelectric conversion element and forming an image plane in front of the photoelectric conversion element, a light shielding member arranged on the image plane of the lens and blocking light from a part of the photometric range, and the light shielding member A device comprising: a scanning means for scanning within the photometric range; and a calculating means for calculating the illuminance of the photometric section shielded by the light shielding member based on a photoelectric conversion signal output from the photoelectric conversion element. And so.

【0011】[0011]

【作用】本発明によれば、レンズの像面上に標本像が結
像され、この光像が光電変換素子に入射される。この時
、光電変換素子に入射する光の一部は遮光部材によって
遮光され、この遮光部材が走査手段によって走査される
ことにより、画像の輝点部分が遮光されたり、輝点部分
から外れた位置が遮光され、それぞれ光電変換されて演
算手段に入力される。演算手段では、遮光部材が画像の
明るい部分を遮光したときの光電変換信号と遮光部材が
同画像の暗い部分を遮光したときの光電変換信号との信
号差等に基づいて測光範囲の明るい部分の光量が算出さ
れる。
According to the present invention, a specimen image is formed on the image plane of the lens, and this optical image is incident on the photoelectric conversion element. At this time, part of the light that enters the photoelectric conversion element is blocked by the light blocking member, and as this light blocking member is scanned by the scanning means, the bright spot part of the image is blocked, or the light spot is located outside the bright spot part. are shielded from light, photoelectrically converted, and input into the calculation means. The calculation means calculates the bright part of the photometric range based on the signal difference between the photoelectric conversion signal when the light shielding member blocks the bright part of the image and the photoelectric conversion signal when the light shielding member blocks the dark part of the same image. The amount of light is calculated.

【0012】よって、遮光部材によって遮光される部分
を除いてほぼ画面の全域に渡って測光されるので、装置
の測光部と標本の測光部とを位置合わせする必要がなく
なり、測光時間が大幅に短縮されると共に、画面のほぼ
全域の光量が光電変換素子に入射されるので、スポット
部分のみの測光に比べて、固定ノイズ等による測定誤差
の影響を受けずらくなる。
[0012] Therefore, since the light is measured over almost the entire screen except for the part that is shaded by the light shielding member, there is no need to align the photometering section of the device with the photometering section of the specimen, and the photometry time is significantly reduced. In addition, since the amount of light from almost the entire screen is incident on the photoelectric conversion element, it is less susceptible to measurement errors due to fixed noise, etc., than when measuring only a spot portion.

【0013】[0013]

【実施例】以下、図面を参照しながら実施例を説明する
Embodiments Hereinafter, embodiments will be described with reference to the drawings.

【0014】図1は本発明の一実施例を示す図であって
、本発明を顕微鏡写真撮影装置に適用した例を示してい
る。本実施例は、標本1からの光が対物レンズ2に取込
まれ、この対物レンズ2の光軸上に標本1の第1結像3
が形成される。この第1結像は写真撮影レンズ4によっ
て、第2結像が形成され、その結像面にカメラ5が設置
されている。対物レンズ2,カメラ5間の光軸上には、
第1,第2の光線分割部材6,7が配置されている。第
1光線分割部材6は標本1からの光線を写真撮影側(カ
メラ5側)と測光側とに分割するように作用し、第2光
線分割部材7は第1光線分割部材6を透過した光線を写
真撮影側と顕微鏡観察側とに分割するように作用する。
FIG. 1 is a diagram showing an embodiment of the present invention, and shows an example in which the present invention is applied to a microscopic photographing apparatus. In this embodiment, light from a specimen 1 is taken into an objective lens 2, and a first image 3 of the specimen 1 is formed on the optical axis of the objective lens 2.
is formed. A second image is formed from this first image by a photographic lens 4, and a camera 5 is installed on the image plane. On the optical axis between the objective lens 2 and camera 5,
First and second beam splitting members 6 and 7 are arranged. The first light beam splitting member 6 acts to split the light beam from the specimen 1 into the photography side (camera 5 side) and the photometry side, and the second light beam splitting member 7 acts to split the light beam from the specimen 1 into the photography side (camera 5 side) and the photometry side. It acts to divide the image into a photography side and a microscope observation side.

【0015】標本1側から見て第1光線分割部材6の反
射側(測光側)には、縮小レンズ8、走査遮光部材9、
光電変換素子10が同一光軸上に配置されていて、走査
遮光部材9が結像位置に配置されるものとなっている。 光電変換素子10には露出制御装置11が接続され、光
電変換素子10から入力する光電変換信号に基づいて微
小部分の測光演算を実行すると共に、その結果得られた
照度情報およびカメラ5に装填されているフィルムのI
SO感度などからの最適露出時間を決定してシャッタ1
3を開閉制御する。
On the reflection side (photometering side) of the first beam splitting member 6 when viewed from the specimen 1 side, a reduction lens 8, a scanning light shielding member 9,
The photoelectric conversion elements 10 are arranged on the same optical axis, and the scanning light shielding member 9 is arranged at the imaging position. An exposure control device 11 is connected to the photoelectric conversion element 10, and performs photometry calculations for minute areas based on the photoelectric conversion signal input from the photoelectric conversion element 10, and also uses the illuminance information obtained as a result and the information loaded in the camera 5. The film I
Determine the optimal exposure time based on SO sensitivity, etc., and release shutter 1.
Controls the opening and closing of 3.

【0016】一方、標本1側から見て第2光線分割部材
7の反射側には、ビュアー14が配置されていて、標本
像が観察できるようになっている。ビュアー14内には
、フレーム15が設けられて、カメラ5の撮影範囲を確
認できようになっている。
On the other hand, a viewer 14 is arranged on the reflection side of the second beam splitting member 7 when viewed from the specimen 1 side, so that the specimen image can be observed. A frame 15 is provided in the viewer 14 so that the photographing range of the camera 5 can be confirmed.

【0017】走査遮光部材9は、図2に示すように、透
過マトリクス液晶によって構成され、外部からの駆動に
って液晶の配向を制御して、遮光部分9aが分割された
1区画毎に順番に移動するようになっている。遮光部分
9aの大きさは、光電変換素子10の出力の分解能にも
よるが、画像全体に対して0.1 %程度の大きさであ
れば十分に設定可能である。
As shown in FIG. 2, the scanning light-shielding member 9 is composed of a transmission matrix liquid crystal, and the orientation of the liquid crystal is controlled by an external drive, so that the light-shielding portion 9a is sequentially divided into each section. It is supposed to move to . Although the size of the light-shielding portion 9a depends on the resolution of the output of the photoelectric conversion element 10, it can be sufficiently set to about 0.1% of the entire image.

【0018】露出制御装置11は、光電変換素子10の
出力を走査遮光部材9の1区画毎に蓄積して、この蓄積
データから後述する測光演算を実行して遮光部分9aの
光量を算出する。次に、以上のように構成された本実施
例の動作について図3および図4を参照して説明する。
The exposure control device 11 accumulates the output of the photoelectric conversion element 10 for each section of the scanning light-shielding member 9, and calculates the amount of light in the light-shielding portion 9a by performing photometric calculations to be described later from this accumulated data. Next, the operation of this embodiment configured as above will be explained with reference to FIGS. 3 and 4.

【0019】本実施例においては、標本1の像が対物ン
ズ2によって取込まれ、第1光線分割部材6で反射され
縮小レンズ8を通って、走査遮光部材9上に結像される
。ここで、標本像としては、図3(a)に示すように背
景Bが暗く、その中に輝点Tが点在しているようなもの
を例にして説明する。この標本像に対して測光範囲の走
査は、同図(b)に矢印で示すように、走査遮光部材9
の遮光部分9aを、水平方向に1区画毎に移動させると
共に順次下方へシフトさせていき全面走査される。露光
制御装置11では、遮光部分9aが1区画移動毎に光電
変換素子10から出力される光電信号を蓄積する。
In this embodiment, an image of the specimen 1 is captured by the objective lens 2, reflected by the first beam splitting member 6, passed through the reduction lens 8, and imaged onto the scanning light shielding member 9. Here, as an example of a sample image, as shown in FIG. 3(a), the background B is dark and the bright spots T are scattered therein. Scanning of the photometric range with respect to this sample image is performed by using the scanning light shielding member 9 as shown by the arrow in FIG.
The entire surface is scanned by moving the light-shielding portion 9a horizontally one section at a time and sequentially shifting it downward. In the exposure control device 11, the light shielding portion 9a accumulates the photoelectric signal output from the photoelectric conversion element 10 every time the light shielding portion 9a moves by one section.

【0020】ここで、同図(c)に示すように遮光部分
9aが標本像の輝点Tから外れた位置にある時と、同図
(d)に示すように遮光部分9aが輝点Tを覆う位置に
あるときとでは、光電変換素子10に入射する光量に差
が生じる。この光量差を求めることにより、遮光部分9
aで遮光された輝点T部分の光量を求めることができる
。よって、遮光部分9aのみの光量が求められる。
Here, as shown in the figure (c), when the light-shielding part 9a is located at a position away from the bright spot T of the sample image, and as shown in the same figure (d), the light-shielding part 9a is in a position away from the bright spot T. There is a difference in the amount of light incident on the photoelectric conversion element 10 when the photoelectric conversion element 10 is in the position covering the photoelectric conversion element 10 . By determining this light amount difference, the light shielding portion 9
The amount of light at the bright spot T that is blocked by point a can be determined. Therefore, the amount of light only in the light-shielding portion 9a is determined.

【0021】露光制御装置11に蓄積された蓄積データ
を図4(a)に示す。なお、図4(a)〜(c)におい
て、横軸は光電変換出力である照度を示し、縦軸は対応
区画数を示している。図3(a)に示す標本像を走査し
た場合には、図4(a)に示すように2つのピークP1
,P2を示す照度分布となる。第1のピークP1と第2
のピークP2の差が遮光部分9aによって遮光された輝
点T部分の光量を示し、第1のピークP1と第2のピー
クP2の面積比が輝点T部分の面積比を示している。 なお、輝点T部分の照度を求めるための測光演算として
は、第1のピークP1と第2のピークP2の差分から求
めた光量より遮光部分9a(輝点T)の照度を求める方
法の他に、第2のピークP2の光量を、第1,第2のピ
ークP1,P2の面積比から得られる明るい部分の面積
で除算する方法などがある。また、遮光部材9がある程
度の透過率αを持つ場合には、光量差を透過率αで除算
することによって正確な光量が計算される。
The accumulated data accumulated in the exposure control device 11 is shown in FIG. 4(a). In addition, in FIGS. 4(a) to 4(c), the horizontal axis shows the illuminance which is the photoelectric conversion output, and the vertical axis shows the number of corresponding sections. When the specimen image shown in FIG. 3(a) is scanned, two peaks P1 appear as shown in FIG. 4(a).
, P2. The first peak P1 and the second peak P1
The difference between the peaks P2 indicates the amount of light at the bright spot T portion blocked by the light shielding portion 9a, and the area ratio between the first peak P1 and the second peak P2 indicates the area ratio of the bright spot T portion. Note that the photometric calculation for determining the illuminance of the bright spot T portion includes a method other than the method of determining the illuminance of the shaded portion 9a (bright spot T) from the light amount determined from the difference between the first peak P1 and the second peak P2. Another method includes dividing the light amount of the second peak P2 by the area of a bright portion obtained from the area ratio of the first and second peaks P1 and P2. Further, when the light shielding member 9 has a certain degree of transmittance α, the accurate light amount can be calculated by dividing the light amount difference by the transmittance α.

【0022】なお、図4(b),(c)は他の標本の蓄
積データを示している。同図(b)に示す画像の場合は
、上記同様に第1,第2のピークP3,P4を示す照度
分布となっている。この例では、照度の低い第1ピーク
P3の方がピークが著しく高くなっている。このことか
ら、標本は背景が明るくその中に暗い部分があるといっ
たことがわかる。また、同図(c)に示す画像の場合は
、一つのピークしか存在していない。これは標本の照度
分布が均一化されていることを示している。
Note that FIGS. 4(b) and 4(c) show accumulated data of other samples. In the case of the image shown in FIG. 6B, the illuminance distribution shows the first and second peaks P3 and P4, as described above. In this example, the first peak P3 with low illuminance is significantly higher. This indicates that the specimen has a bright background and dark areas within it. In addition, in the case of the image shown in FIG. 4(c), only one peak exists. This indicates that the illuminance distribution of the sample is uniform.

【0023】露出制御装置11は、蓄積データから画像
走査の1周期毎の光電変換素子10の出力変化の統計を
とって標本上の照度分布を判断し、この照度情報とフィ
ルム情報とに基づいて露出時間を決定する。決定した露
出時間は駆動装置12に設定され、この露出時間でシャ
ッター13が開閉制御される。
The exposure control device 11 determines the illuminance distribution on the specimen by taking statistics of the output change of the photoelectric conversion element 10 for each cycle of image scanning from the accumulated data, and based on this illuminance information and film information. Determine exposure time. The determined exposure time is set in the drive device 12, and the shutter 13 is controlled to open and close using this exposure time.

【0024】この様に本実施例によれば、光電変換素子
10の手前に像面を形成し、この像面上に透過マトリク
ス液晶により構成される走査遮光部材9を配置して、画
面内を遮光部分9aを走査してこの時の光電変換信号を
取込み、遮光部分9aで覆われた部分の明るさを、その
状態での光電変換信号と他の状態での光電変換信号の差
から求めるようにしたので、遮光部分9aの大きさであ
る画像の0.1 %の面積の照度を測光できると共に、
遮光している部分を除いて画面の全域を測光できるため
スポット部分のみの測光に比べて光量を飛躍的に増大で
き、固定ノイズ等による測定誤差が生じずらく測定精度
を大幅に向上できる。
As described above, according to this embodiment, an image plane is formed in front of the photoelectric conversion element 10, and the scanning light shielding member 9 made of a transmission matrix liquid crystal is arranged on this image plane, so that the inside of the screen can be seen. The light-shielding portion 9a is scanned to capture the photoelectric conversion signal at this time, and the brightness of the portion covered by the light-shielding portion 9a is determined from the difference between the photoelectric conversion signal in that state and the photoelectric conversion signal in other states. Therefore, it is possible to photometer the illuminance of an area of 0.1% of the image, which is the size of the light shielding part 9a, and
Since it is possible to measure the entire area of the screen, excluding the light-blocking areas, the amount of light can be dramatically increased compared to metering only spot areas, and measurement errors due to fixed noise are less likely to occur, greatly improving measurement accuracy.

【0025】また、従来の方式では透過液晶板を用いた
場合には、遮光時の透過率が問題となったが、本実施例
によれば、遮光部分の透過率が従来と同様の大きさであ
ったとしても、遮光部分と透過部分の透過率に差があれ
ば、透過率を考慮して測光演算すれば真の照度を求める
ことができる。
[0025] In addition, when using a transmissive liquid crystal plate in the conventional method, the transmittance at the time of shielding the light was a problem, but according to this embodiment, the transmittance at the light shielding part is as large as the conventional method. Even so, if there is a difference in transmittance between the light-blocking portion and the transmitting portion, the true illuminance can be determined by performing photometric calculations taking the transmittance into account.

【0026】さらに、透過マトリクス液晶による遮光部
分9aが画像全域を移動するので、装置の測光部と標本
の測光位置とを位置合わせすること無く適性露出を決定
できるので、適性露出の決定に要する時間を大幅に短縮
できる。
Furthermore, since the light-shielding portion 9a formed by the transmission matrix liquid crystal moves over the entire image area, the appropriate exposure can be determined without aligning the photometering section of the device with the photometering position of the specimen, which reduces the time required to determine the appropriate exposure. can be significantly shortened.

【0027】なお、上記構成の装置において、他の測光
方式を適用することもできる。例えば、透過マトリクス
液晶からなる走査遮光部材9を制御して、測光部の1区
画を透過,遮光に点減させ、かつ他の部分を透過状態に
しておく。そして、点減する1区画の照度を、透過時と
遮光時との光量差から求める。即ち、従来のスポット測
光を行うこともできる。また、区画の形状は電気的処理
によって変えられるように容易に構成でき、この様にす
れば測光部分を自由に選択できる。
Note that other photometric methods can also be applied to the apparatus having the above configuration. For example, the scanning light shielding member 9 made of a transmission matrix liquid crystal is controlled so that one section of the photometry section is transmitted and light shielded, and the other portions are kept in a transmitting state. Then, the illuminance of one section to be reduced is determined from the difference in the amount of light between when the light is transmitted and when the light is blocked. That is, conventional spot photometry can also be performed. Further, the shape of the section can be easily changed by electrical processing, and in this way, the photometric portion can be freely selected.

【0028】また、図5に上記実施例に用いることので
きる他の走査遮光部材30を示す。この走査遮光部材3
0は、透明ガラス円盤20の円周部に遮光部材19aを
等角度を成すように配置し、透明ガラス円盤20の円周
部の任意の位置に対して扇状絞り21が対向配置されて
いる。
FIG. 5 shows another scanning light shielding member 30 that can be used in the above embodiment. This scanning light shielding member 3
0, the light shielding members 19a are arranged at equal angles on the circumference of the transparent glass disk 20, and the fan-shaped diaphragm 21 is arranged opposite to an arbitrary position on the circumference of the transparent glass disk 20.

【0029】この走査遮光部材30を用いて測光する場
合は、透明ガラス円盤20を回転させて、遮光部材19
aで扇状絞り21内を測光範囲として走査する。透明ガ
ラス円盤20の1回転を1サイクルとして遮光部材19
aの張り角度を、透明ガラス円盤20の回転角速度で割
った値以下のサンプリングタイムで光電変換素子10の
出力を取り込む。この様な走査遮光部材30を上記実施
例に用いれば、遮光部の透過率が低く、透過部の透過率
が高いため、微弱光でも測光できるといった利点がある
When photometry is performed using this scanning light shielding member 30, the transparent glass disk 20 is rotated and the light shielding member 19 is
The inside of the fan-shaped diaphragm 21 is scanned as a photometric range at step a. The light shielding member 19 takes one rotation of the transparent glass disk 20 as one cycle.
The output of the photoelectric conversion element 10 is captured at a sampling time equal to or less than the value obtained by dividing the tension angle a by the rotational angular velocity of the transparent glass disk 20. If such a scanning light shielding member 30 is used in the above embodiment, the transmittance of the light shielding part is low and the transmittance of the transmitting part is high, so there is an advantage that photometry can be performed even with weak light.

【0030】[0030]

【発明の効果】以上詳記したように本発明によれば、測
光時間を大幅に短縮化でき、微弱光であっても高い測光
精度を維持できて、適性露出を簡単かつ高速に決定する
ことのできる顕微鏡写真用測光装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the photometry time can be significantly shortened, high photometry accuracy can be maintained even in weak light, and appropriate exposure can be easily and quickly determined. It is possible to provide a photometric device for microphotography that can perform

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例の全体構成図。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】  一実施例に用いられる走査遮光部材の平面
図。
FIG. 2 is a plan view of a scanning light shielding member used in one embodiment.

【図3】  一実施例の動作説明図。FIG. 3 is an explanatory diagram of the operation of one embodiment.

【図4】  標本に応じた蓄積データの照度分布を示す
図。
FIG. 4 is a diagram showing the illuminance distribution of accumulated data according to the sample.

【図5】  一実施例に用いられる他の走査遮光部材の
平面図。
FIG. 5 is a plan view of another scanning light shielding member used in one embodiment.

【符号の説明】[Explanation of symbols]

1…標本、2…対物レンズ、4…写真撮影レンズ、8…
縮小レンズ、9…走査遮光部材、10…光電変換素子、
11…露出制御装置、13…シャッタ。
1...Specimen, 2...Objective lens, 4...Photography lens, 8...
Reduction lens, 9... Scanning light shielding member, 10... Photoelectric conversion element,
11... Exposure control device, 13... Shutter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  測光対象となる標本からの光線が入射
する光電変換素子と、前記標本と前記光電変換素子との
間の光路上に配置され前記光電変換素子の手前で像面を
形成するレンズと、このレンズの像面上に配置され測光
範囲の一部を遮光する遮光部材と、この遮光部材で前記
測光範囲を走査するための走査手段と、前記光電変換素
子から出力される光電変換信号に基づいて前記遮光部材
で遮光された測光部分の照度を算出する演算手段とを具
備したことを特徴とする顕微鏡写真用測光装置。
1. A photoelectric conversion element into which light from a specimen to be measured is incident, and a lens arranged on an optical path between the specimen and the photoelectric conversion element and forming an image plane in front of the photoelectric conversion element. a light shielding member disposed on the image plane of the lens to shield a part of the photometric range; a scanning means for scanning the photometric range with the light shielding member; and a photoelectric conversion signal output from the photoelectric conversion element. A photometric device for photomicrographs, comprising: calculation means for calculating the illuminance of the photometric portion shielded by the light shielding member based on the above.
JP40392690A 1990-12-19 1990-12-19 Photometer device for microphotograph Withdrawn JPH04217220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40392690A JPH04217220A (en) 1990-12-19 1990-12-19 Photometer device for microphotograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40392690A JPH04217220A (en) 1990-12-19 1990-12-19 Photometer device for microphotograph

Publications (1)

Publication Number Publication Date
JPH04217220A true JPH04217220A (en) 1992-08-07

Family

ID=18513635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40392690A Withdrawn JPH04217220A (en) 1990-12-19 1990-12-19 Photometer device for microphotograph

Country Status (1)

Country Link
JP (1) JPH04217220A (en)

Similar Documents

Publication Publication Date Title
KR970003832Y1 (en) Electronic still camera
JPH06202200A (en) Camera
JPH0439635A (en) Photometry device
US4626918A (en) Photometric optical system for single-lens reflex electronic photographic camera
JP2586004B2 (en) Camera photometer
JPH11223761A (en) Camera with focus detector
JPH04217220A (en) Photometer device for microphotograph
US5978610A (en) Exposure control apparatus for electronic development type camera
JPS601603B2 (en) Camera distance metering device
JP3573631B2 (en) Microscope photometer
JP4135202B2 (en) Focus detection device and camera
JP2011029858A (en) Imaging apparatus
JPS6388514A (en) Camera
US4544256A (en) Single lens reflex camera with light measuring device
US3559551A (en) Exposure meter for a single lens reflex camera having interchangeable lenses
JP4106725B2 (en) Focus detection device and camera with focus detection device
JP4186243B2 (en) Camera with focus detection device
JPH06202202A (en) Camera
KR100487261B1 (en) Object defect inspection method and inspection device
JPH06258693A (en) Camera
SU1151112A1 (en) Device for automatic focusing of lens
JP2663862B2 (en) Camera photometer
JPH0943506A (en) Camera
JPH1090605A (en) Microscope
JPH01160184A (en) Camera

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312