JPH04216925A - Network structure - Google Patents

Network structure

Info

Publication number
JPH04216925A
JPH04216925A JP40353390A JP40353390A JPH04216925A JP H04216925 A JPH04216925 A JP H04216925A JP 40353390 A JP40353390 A JP 40353390A JP 40353390 A JP40353390 A JP 40353390A JP H04216925 A JPH04216925 A JP H04216925A
Authority
JP
Japan
Prior art keywords
stretching
network structure
network
rolling
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40353390A
Other languages
Japanese (ja)
Inventor
Kenji Takasa
健治 高佐
Nobuaki Yamada
信明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP40353390A priority Critical patent/JPH04216925A/en
Publication of JPH04216925A publication Critical patent/JPH04216925A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To provide a plastic network structure, which has excellent strength and rigidity, in which there is no protrusion of the intersections of networks substantially and the strength of the intersections is also increased and which is used for reinforcing a poor subsoil, etc. CONSTITUTION:Each side forming a network is joined in the same plate in a network structure. Said network structure is manufactured in such a manner that polymer molecules constituting sides in at least one direction of each side forming the network are oriented in said direction, and a plastic network structure, in which the polymer molecules organizing intersection sections, where each side is joined, are oriented in at least one direction, and an extrusion- molded resin sheet are passed through a roll rolling or press operation process before an orienting process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は軟弱地盤、埋立地、急傾
斜地等の地盤補強用土木資材、包装資材その他の種々の
資材として利用できるプラスチックス網目構造体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic network structure that can be used as a civil engineering material for reinforcing soft ground, reclaimed land, steep slopes, etc., packaging material, and various other materials.

【0002】0002

【従来の技術】軟弱地盤、埋立地、急傾斜地等の地盤補
強のために土中にプラスチックス製の網目構造体を埋設
することが行われている。この様な網目構造体は従来よ
り種々の方法で製造されたものが知られている。例えば
溶融樹脂を押出機から押出すと同時に所望の大きさの網
目を形成する方法。あるいは特開昭61−154833
号公報に開示されているパンチングにより多数の孔のあ
げられた樹脂シートを延伸することにより所望の大きさ
の網目を形成する方法等が知られている。
BACKGROUND OF THE INVENTION Plastic mesh structures are buried in the soil to reinforce soft ground, reclaimed land, steep slopes, and the like. Such mesh structures have been known to be manufactured by various methods. For example, a method of extruding molten resin from an extruder and simultaneously forming a network of a desired size. Or JP-A-61-154833
There is known a method of forming a mesh of a desired size by stretching a resin sheet with a large number of holes formed by punching, as disclosed in Japanese Patent Publication No.

【0003】しかし、前者は通常は未延伸成形品である
ために強度、剛性が低いために急勾配盛土等の強度が必
要な用途には使えない。一方後者は延伸してあるために
強度、剛性が高く補強の目的には前者に比べ優れており
、近年盛んに使われてきている。しかしながらパンチン
グ後の延伸であるために図2に示すように網目の交点C
が延伸されずに残りこの部分が隆起した形状になる。 交点が未延伸であると、この部分の強度は低くなりまた
クリープも大きくなる。また隆起しているために土圧が
この交点に集中しやすく網目構造体全体の強度を下げる
大きな要因になっている。更にこの隆起のために全体と
して嵩高くなり敷設作業性等が悪いという問題があった
However, since the former is usually an unstretched molded product, its strength and rigidity are low, so it cannot be used in applications that require strength, such as steep slope embankments. On the other hand, since the latter is stretched, it has high strength and rigidity and is superior to the former for reinforcement purposes, and has been widely used in recent years. However, since it is stretched after punching, the mesh intersection C
remains unstretched, and this part becomes a raised shape. If the intersection point is unstretched, the strength of this portion will be low and the creep will be large. Also, because of the upheaval, earth pressure tends to concentrate at these intersections, which is a major factor in lowering the overall strength of the network structure. Furthermore, due to this protrusion, there was a problem in that the overall structure became bulky and the installation workability was poor.

【0004】0004

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたもので、従来の製造方法では成しえなか
った強度、剛性に優れ、また網目の交点の隆起がなく、
且つ強度的に劣っていたこの交点の強度をも高めた優れ
た網目構造体を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has excellent strength and rigidity that could not be achieved with conventional manufacturing methods.
In addition, the present invention aims to provide an excellent network structure in which the strength of these intersection points, which have been inferior in strength, is increased.

【0005】[0005]

【課題を解決するための手段】図3に示すように、孔の
あけられた樹脂シートを通常の手段で延伸すると、延伸
方向に対し(4)の部分が優先的に延伸され、(5)の
部分は未延伸の状態で残る。従って、(4)の部分は延
伸による分子配向効果が発現し、強度、剛性が向上する
が、(5)の未延伸部分は分子配向が起こらずその効果
が得られないために強度、剛性が向上しない。さらに(
4)の部分は延伸により薄くなるが(5)の部分は未延
伸のまま残るために両者に厚みの差が生じ、(5)の部
分は隆起した形状でのこる。最終的に網目構造体で(4
)の部分が辺を形成し、(5)の部分が各辺の交点を形
成する。そこで本発明者らは(5)の未延伸部分に着目
し、この部分に分子配向を発現せしめ、この部分の強度
の向上を図り、且つ実質的に隆起による弊害をなくした
新規な網目構造体を見い出し本発明を完成するに至った
[Means for Solving the Problem] As shown in FIG. 3, when a resin sheet with holes is stretched by ordinary means, the portion (4) is preferentially stretched in the stretching direction, and the portion (5) is stretched preferentially in the stretching direction. The portion remains unstretched. Therefore, in the part (4), the molecular orientation effect due to stretching occurs and the strength and rigidity are improved, but in the unstretched part (5), the molecular orientation does not occur and the effect cannot be obtained, so the strength and rigidity are improved. Doesn't improve. moreover(
The portion (4) becomes thinner due to stretching, but the portion (5) remains unstretched, resulting in a difference in thickness between the two, and the portion (5) remains in a raised shape. Finally, the mesh structure (4
) portions form the sides, and portions (5) form the intersections of each side. Therefore, the present inventors focused on the unstretched portion of (5), and created a novel network structure in which molecular orientation was developed in this portion, the strength of this portion was improved, and the adverse effects of bumps were substantially eliminated. They discovered this and completed the present invention.

【0006】すなわち、本発明は、次のとおりである。 (1)  網目を形成する各々の辺が同一平面内で合流
する網目構造体であって、網目を形成する各辺の少なく
とも1方向の辺を構成するポリマー分子が該方向に分子
配向され、各辺が合流する交点部分を構成するポリマー
分子が少なくとも1方向に分子配向されたプラスチック
ス網目構造体。 (2)  プラスチックスがポリエチレン、ポリプロピ
レン等のポリオレフィン系樹脂、ポリオキシメチレンホ
モポリマー、ポリオキシメチレンコポリマー等のポリア
セタール系樹脂、ポリエチレンテレフタレート等のポリ
エステル系樹脂、及びナイロン6、ナイロン66等のポ
リアミド系樹脂等の結晶性熱可塑性樹脂からなる請求項
1記載のプラスチックス網目構造体。 (3)  押出成形された樹脂シートをロール圧延、又
はプレス操作の前あるいは後のいずれかに該シートに多
数の小孔をあけ、次いで加熱雰囲気中で延伸することを
特徴とするプラスチックス網目構造体の製造方法。
That is, the present invention is as follows. (1) A network structure in which each side forming the network joins in the same plane, and polymer molecules constituting at least one side of each side forming the network are oriented in that direction, and each A plastic network structure in which polymer molecules constituting intersection points where sides meet are oriented in at least one direction. (2) Plastics include polyolefin resins such as polyethylene and polypropylene, polyacetal resins such as polyoxymethylene homopolymers and polyoxymethylene copolymers, polyester resins such as polyethylene terephthalate, and polyamide resins such as nylon 6 and nylon 66. The plastic network structure according to claim 1, which is made of a crystalline thermoplastic resin such as. (3) A plastic network structure characterized by forming a large number of small holes in an extruded resin sheet either before or after rolling or pressing, and then stretching it in a heated atmosphere. How the body is manufactured.

【0007】本発明の網目構造体は一般にプラスチック
スといわれる熱可塑性樹脂、熱硬化性樹脂いずれにも適
用出来るが、延伸配向が容易な熱可塑性樹脂が好ましい
。また延伸することによって分子配向が起こりやすく、
且つその配向によって強度、剛性の向上が顕著に発現す
る結晶性の熱可塑性樹脂が好ましい。具体的には例えば
ポリエチレン、ポリプロピレン等のポリオレフィン系樹
脂、ポリオキシメチレンホモポリマー、ポリオキシメチ
レンコポリマー等のポリアセタール系樹脂、ポリエチレ
ンテレフタレート等のポリエステル系樹脂、ナイロン6
、ナイロン66等のポリアミド系樹脂等が挙げられる。 かかる材料は安価で汎用的に広く使われておりその意味
でも好ましい材料である。また上記樹脂にガラス繊維等
の繊維状物あるいはその他添加剤等が混合されていても
もちろんさしつかえない。
[0007] The network structure of the present invention can be applied to both thermoplastic resins and thermosetting resins, which are generally referred to as plastics, but thermoplastic resins that can be easily stretched and oriented are preferred. In addition, molecular orientation tends to occur by stretching,
Crystalline thermoplastic resins are preferred, and their orientation significantly improves strength and rigidity. Specifically, for example, polyolefin resins such as polyethylene and polypropylene, polyacetal resins such as polyoxymethylene homopolymers and polyoxymethylene copolymers, polyester resins such as polyethylene terephthalate, and nylon 6.
and polyamide resins such as nylon 66. Such materials are inexpensive and widely used for general purposes, and in that sense, they are preferable materials. Furthermore, it is of course possible to mix a fibrous material such as glass fiber or other additives with the above resin.

【0008】網目の形状は楕円形、4角形、6角形等特
に限定はしないが、製造が容易で、縦方向、横方向の強
度を均一に強化でき、必要に応じて網目の大きさのコン
トロールが容易に出来る等の点で4角形、即ち格子状が
通常好ましい。また網目の大きさはそれが使用される用
途に応じて、必要強度、樹脂の種類等を考慮して決めら
れる。
The shape of the mesh is not particularly limited, such as elliptical, quadrangular, hexagonal, etc., but it is easy to manufacture, the strength in the vertical and horizontal directions can be uniformly strengthened, and the size of the mesh can be controlled as necessary. A rectangular shape, ie, a grid shape, is usually preferable because it can be easily formed. Furthermore, the size of the mesh is determined depending on the purpose for which it will be used, taking into consideration the required strength, type of resin, etc.

【0009】本発明の網目構造体を製造する方法として
例えば図4に示した装置を用いる方法が適用出来る。図
4は本発明の構造体を製造するための装置の1例を示し
たものである。通常の押出機(6)より溶融樹脂が押出
されシート状に形成される。次いでこのシートはロール
圧延機(7)により圧延される。この圧延によりシート
はロール方向に伸長されるとともにその方向にポリマー
分子が配向される。次いでこの圧延されたシートはパン
チング装置(8)によって均一な一定形状の孔空け加工
される。孔の形状は通常は円形が採用される。次いでそ
の樹脂に応じた延伸温度に設定された横延伸機(テンタ
ー)(9)に導かれ横方向に延伸される。横延伸機(9
)は予熱ゾーン(12)と延伸ゾーン(13)からなる
。この横延伸により円形の孔は楕円状に引き伸ばされる
。次いでこの横延伸されたシートはロール縦延伸機(1
0)により縦方向に更に延伸される。縦延伸機(10)
は複数個のロールからなり、低速ロール(15)と高速
ロール(16)の回転速度の差によって延伸が行われる
。尚(14)は縦延伸時の雰囲気を必要に応じて加熱す
るための加熱ゾーンであり、樹脂の種類に応じて適宜使
用される。以上の延伸によりシートは全体として縦方向
、横方向の2軸方向に延伸される。更に必要に応じてこ
の延伸の後に熱処理を施すことにより機械的特性等を改
良することも出来る。次いでこの2軸延伸されたシート
は巻取機(11)に巻き取られる。以上の操作により、
孔のあけられたシートが2方向に延伸されることにより
図1の如く各部が均一な4角形の形状をした格子状の網
目構造体が得られる。この方法は延伸に先立ち圧延を施
しているために網目の交点部分も延伸により分子配向し
やすい状態になっており、続く延伸工程でこの部分も延
伸されて分子配向が起こる。 ここに得られた網目構造体は縦方向の辺(1)は主に縦
方向に、横方向の辺(2)は主に横方向にそれぞれポリ
マー分子が配向されており、各辺が合流する交点(3)
でも分子が配向された分子配向構造を有している。交点
部分の分子配向は樹脂の種類、孔の大きさ及びその間隔
、縦方向と横方向の延伸比等により縦、横同程度あるい
は縦、横いずれかが強いかの場合があり、用途等に応じ
てこれら条件が適宜選択される。ここに得られた網目構
造体は網目の交点の隆起が実質的に発生しないために、
この部分に土圧等による応力の集中が少なくなり大きな
土圧にも耐えることが出来る。また各辺も各々分子配向
されているために高い強度を有する構造体になる。
As a method for manufacturing the network structure of the present invention, for example, a method using the apparatus shown in FIG. 4 can be applied. FIG. 4 shows an example of an apparatus for manufacturing the structure of the present invention. The molten resin is extruded from an ordinary extruder (6) and formed into a sheet. This sheet is then rolled by a roll mill (7). This rolling stretches the sheet in the roll direction and orients the polymer molecules in that direction. This rolled sheet is then punched with holes of a uniform, fixed shape by a punching device (8). The shape of the hole is usually circular. The resin is then guided to a transverse stretching machine (tentter) (9) set at a stretching temperature appropriate for the resin, and stretched in the transverse direction. Lateral stretching machine (9
) consists of a preheating zone (12) and a stretching zone (13). By this lateral stretching, the circular hole is stretched into an elliptical shape. Next, this horizontally stretched sheet is passed through a roll longitudinal stretching machine (1
0) and further stretched in the longitudinal direction. Longitudinal stretching machine (10)
consists of a plurality of rolls, and stretching is performed by the difference in rotational speed between the low-speed roll (15) and the high-speed roll (16). Note that (14) is a heating zone for heating the atmosphere during longitudinal stretching as necessary, and is used as appropriate depending on the type of resin. By the stretching described above, the sheet as a whole is stretched in two axes, ie, the longitudinal direction and the transverse direction. Furthermore, if necessary, mechanical properties etc. can be improved by applying heat treatment after this stretching. Next, this biaxially stretched sheet is wound up by a winding machine (11). By the above operations,
By stretching the perforated sheet in two directions, a lattice-like network structure in which each part has a uniform rectangular shape as shown in FIG. 1 is obtained. In this method, rolling is performed prior to stretching, so that the intersection points of the meshes are also in a state where molecular orientation is likely to occur due to stretching, and in the subsequent stretching step, this region is also stretched and molecular orientation occurs. In the network structure obtained here, the polymer molecules are oriented mainly in the vertical direction on the vertical side (1) and mainly in the horizontal direction on the horizontal side (2), and each side joins. Intersection (3)
However, it has a molecular orientation structure in which the molecules are oriented. Depending on the type of resin, the size and spacing of the pores, the stretching ratio in the vertical and horizontal directions, the molecular orientation at the intersection point may be the same in the vertical and horizontal directions, or it may be stronger in either the vertical or horizontal directions, depending on the application, etc. These conditions are selected as appropriate. The mesh structure obtained here has virtually no protrusions at the intersections of the meshes, so
Stress concentration due to earth pressure etc. is reduced in this part and it can withstand large earth pressure. In addition, since the molecules on each side are oriented, the structure has high strength.

【0010】上記の製造の例ではロール圧延後に孔を空
ける方法であったが、この孔空け操作はロール圧延する
前に行うことも出来る。また上記例ではロール圧延を1
方向のみ行った例を示したが、これと直角な方向にも行
って2方向に圧延を行うことも出来る。またこの圧延操
作の代わりに特開昭63−191616号公報に開示さ
れているプレス法による延伸配向操作を行ってもよい。 プレス法は連続化にはやや難点があるが結晶性樹脂等を
面内に均一に分子配向させる手段としては優れた方法で
ある。
[0010] In the above manufacturing example, holes were formed after roll rolling, but this hole forming operation can also be performed before roll rolling. In addition, in the above example, roll rolling is
Although an example was shown in which rolling was performed only in one direction, it is also possible to perform rolling in two directions, including a direction perpendicular to this direction. Further, instead of this rolling operation, a stretching orienting operation using a pressing method disclosed in Japanese Patent Application Laid-Open No. 63-191616 may be performed. Although the pressing method has some difficulties in making it continuous, it is an excellent method for uniformly orienting the molecules of crystalline resin etc. in a plane.

【0011】また圧延あるいはプレス操作の後に行う延
伸は前述の例では横延伸次いで縦延伸という逐次2軸延
伸法を採用したが、縦、横同時に延伸を行うと同時2軸
延伸法も採用することも出来る。一方横方向あるいは縦
方向1方向のみの1軸延伸であってもよい。即ち圧延次
いで縦延伸あるいは圧延次いで横延伸する方法等が採用
出来る。この場合、圧延により既に縦方向に分子配向が
かかっていることを考慮すれば圧延後に、横方向に1軸
延伸する方が縦、横の2方向に分子配向させることがで
き、よりバランスした構造体を得ることが出来る。
[0011]Also, in the above-mentioned example, a sequential biaxial stretching method of transverse stretching and then longitudinal stretching was used for the stretching performed after rolling or press operation, but a simultaneous biaxial stretching method may also be employed if longitudinal and transverse stretching is performed simultaneously. You can also do it. On the other hand, uniaxial stretching may be performed in only one direction, either the transverse direction or the longitudinal direction. That is, a method of rolling followed by longitudinal stretching or rolling followed by transverse stretching can be adopted. In this case, considering that molecular orientation has already been applied in the longitudinal direction due to rolling, it is better to uniaxially stretch in the transverse direction after rolling, as this allows for molecular orientation in both the longitudinal and transverse directions, resulting in a more balanced structure. You can get a body.

【0012】本発明の構造体はこのように種々の方法に
より製造することが出来るが、工業的にその工程上容易
に且つ安価に連続して製造できること、また縦、横の特
性がよりバランスした構造体が得やすいこと、更には結
晶性熱可塑性樹脂の如く延伸方向に対し結晶あるいは分
子が配向しやすく且つその延伸応力が高い樹脂に対して
は本発明で最初に例示した圧延前あるいは後に孔をあけ
、その後横延伸次いで縦延伸を行う方法が好ましい方法
としてあげられる。
The structure of the present invention can be manufactured by various methods as described above, but it is possible to manufacture it continuously in an industrial manner easily and inexpensively, and it also has better balance of vertical and horizontal characteristics. In addition, for resins such as crystalline thermoplastic resins whose crystals or molecules are easily oriented in the stretching direction and whose stretching stress is high, holes may be added before or after rolling as first exemplified in the present invention. A preferred method is to open the film and then stretch it horizontally and then stretch it longitudinally.

【0013】本発明の構造体を製造するに際してその製
造条件、特に圧延及び延伸の条件は使用される樹脂の種
類あるいは用途に応じて要求される特性に応じて適宜選
択する必要がある。例えばポリプロピレン、ポリオキシ
メチレンについては以下の条件が好ましい。ポリプロピ
レンでは圧延温度は室温以上120℃以下で圧延倍率は
1.5倍以上5倍以下、延伸温度は140℃以上170
℃以下で延伸倍率は1.5倍以上10倍以下が好ましく
、ポリオキシメチレンでは圧延温度は室温以上150℃
以下で圧延倍率は1.5倍以上5倍以下、延伸温度は1
50℃以上180℃以下で延伸倍率は1.5倍以上15
倍以下が好ましい。
[0013] When producing the structure of the present invention, the production conditions, particularly the rolling and stretching conditions, must be appropriately selected depending on the type of resin used and the properties required depending on the intended use. For example, the following conditions are preferable for polypropylene and polyoxymethylene. For polypropylene, the rolling temperature is room temperature or higher and 120°C or lower, the rolling ratio is 1.5 times or more and 5 times or less, and the stretching temperature is 140°C or higher and 170°C or higher.
℃ or less, the stretching ratio is preferably 1.5 times or more and 10 times or less, and for polyoxymethylene, the rolling temperature is room temperature or more and 150 degrees Celsius.
The rolling ratio is 1.5 times or more and 5 times or less, and the stretching temperature is 1.
The stretching ratio is 1.5 times or more and 15 times at a temperature of 50°C or higher and 180°C or lower.
Preferably, the amount is less than twice that.

【0014】本発明でいう分子配向は構造体の面方向(
Edge方向あるいはEnd方向)の広角X線回折によ
る配向パターンの解析から容易に確認することが出来る
。この分子配向は圧延あるいは延伸によって容易に発現
させることができ、その程度は一般に圧延あるいは延伸
の倍率に比例して増大する。
[0014] The molecular orientation referred to in the present invention is the in-plane direction of the structure (
This can be easily confirmed by analyzing the orientation pattern by wide-angle X-ray diffraction (edge direction or end direction). This molecular orientation can be easily caused by rolling or stretching, and the degree of orientation generally increases in proportion to the rolling or stretching ratio.

【0015】[0015]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be explained in more detail by way of examples.

【0016】[0016]

【実施例1】ポリプロピレン樹脂を押出機から押出し、
幅200mm、厚み3mmのシートに成形した。次にロ
ール径250mm、ロール温度70℃の圧延ロールに通
し、厚みが1.5mmになるように圧下力を加え圧延し
た。この圧延によりシートは縦方向に2倍引き伸ばされ
た。次にこの圧延シートを連続パンチング装置にかけ孔
の直径5mm、隣接する孔の中心間の間隔15mmの孔
を図3のように均一にシート前面にわたって空けた。次
にこのシートを延伸温度が155℃、延伸倍率が5倍に
セットされたテンター横延伸機にかけた。続いて延伸ロ
ール温度が157℃にセットされた縦延伸機にかけ延伸
倍率2.5倍の縦延伸を行った。以上の工程によりシー
トは全体として5×5倍に2軸延伸された。この延伸に
より、各部がほぼ均一で、縦方向の辺が12mm、横方
向の辺が25mmの4角形の形状をした網目構造体が得
られた。各網目の縦方向の辺は縦方向に、横方向の辺は
横方向にそれぞれ強く分子配向が起こっており、各辺の
交点は縦方向が横方向に比べやや強く分子配向がかかっ
た構造であった。またこの交点部の厚さは各辺の厚みに
ほぼ等しくなっており、この部分の隆起はみられなかっ
た。
[Example 1] Extruding polypropylene resin from an extruder,
It was molded into a sheet with a width of 200 mm and a thickness of 3 mm. Next, it was passed through rolling rolls with a roll diameter of 250 mm and a roll temperature of 70° C., and a rolling force was applied so that the thickness became 1.5 mm. This rolling stretched the sheet twice in the machine direction. Next, this rolled sheet was subjected to a continuous punching device to uniformly punch holes with a diameter of 5 mm and a distance between the centers of adjacent holes of 15 mm over the front surface of the sheet as shown in FIG. 3. Next, this sheet was subjected to a tenter transverse stretching machine set at a stretching temperature of 155° C. and a stretching ratio of 5 times. Subsequently, the film was subjected to longitudinal stretching at a stretching ratio of 2.5 times using a longitudinal stretching machine with a stretching roll temperature set at 157°C. Through the above steps, the sheet as a whole was biaxially stretched 5×5 times. As a result of this stretching, a mesh structure having a substantially uniform shape in each part and having a rectangular shape with a vertical side of 12 mm and a horizontal side of 25 mm was obtained. The vertical sides of each mesh have strong molecular orientation in the vertical direction, and the horizontal sides have strong molecular orientation in the horizontal direction, and the intersection of each side has a structure in which molecular orientation is slightly stronger in the vertical direction than in the horizontal direction. there were. Furthermore, the thickness of this intersection was approximately equal to the thickness of each side, and no protuberance was observed in this area.

【0017】[0017]

【実施例2】実施例1で押出されたシートに実施例1と
同じく孔の直径5mm、隣接する孔の中心間の間隔15
mmの孔を空け、次いで同様に縦方向に2倍の圧延を施
し、次いで横方向へ5倍、縦方向へ2.5倍の2軸延伸
を行った。その結果縦、横各辺が25mmの4角形の形
状をした網目構造体が得られた。ここに得られた網目構
造体も実施例1と同じく各辺とも分子配向が強くかかっ
ており、その交点も同様に分子配向がかかった構造であ
った。もちろん交点の隆起もみられなかった。
[Example 2] In the sheet extruded in Example 1, the diameter of the holes was 5 mm, and the distance between the centers of adjacent holes was 15 mm, as in Example 1.
A hole of 1.0 mm in diameter was made, and then the material was similarly rolled twice in the longitudinal direction, and then biaxially stretched by 5 times in the transverse direction and 2.5 times in the longitudinal direction. As a result, a mesh structure having a rectangular shape with each length and width of 25 mm was obtained. Similarly to Example 1, the obtained network structure had a structure in which each side had strong molecular orientation, and the intersections thereof had a structure in which molecular orientation was also applied. Of course, no bumps at the intersections were seen.

【0018】[0018]

【比較例1】実施例1で押出されたシートに実施例1と
同じく孔の直径5mm、隣接する孔の中心間の間隔15
mmの孔を空け、次いで縦方向へ5倍の延伸を行った後
、横方向へ5倍の延伸を行い2軸延伸を行った。その結
果縦、横の各辺が25mmの4角形の形状をした網目構
造体が得られた。ここに得られた網目構造体の各辺は強
く分子配向がかかっていたが、その交点部分はほとんど
未延伸の状態即ち分子配向がかかってない状態であった
。その結果この交点部分はこぶ状に隆起した状態で残っ
た。その頂点は各辺より約1.2mm高くなっていた。
[Comparative Example 1] The sheet extruded in Example 1 had the same hole diameter as Example 1, and the distance between the centers of adjacent holes was 15 mm.
A hole of mm in diameter was made, and then the film was stretched 5 times in the longitudinal direction, and then stretched 5 times in the transverse direction to perform biaxial stretching. As a result, a mesh structure having a rectangular shape with length and width sides of 25 mm was obtained. Each side of the resulting network structure was strongly molecularly oriented, but the intersections were almost unstretched, ie, not molecularly oriented. As a result, this intersection remained in a raised hump-like state. The apex was approximately 1.2 mm higher than each side.

【0019】[0019]

【実施例3】ポリオキシメチレンホモポリマーを実施例
1に同じく押出し、幅200mm、厚み3mmのシート
に成形した。次いで実施例1に同じく圧延、次いで孔空
け操作を行った。次に延伸温度が172℃、延伸倍率が
6倍にセットされたテンター横延伸機にかけた。続いて
延伸ロール温度が173℃にセットされた縦延伸機にか
け延伸倍率が3倍の縦延伸を行った。以上の工程により
シートは全体として6×6倍に2軸延伸された。この延
伸により、縦方向の辺が15mm、横方向の辺が30m
mの4角形の形状をした網目体が得られた。各網目の縦
方向の辺は縦方向に、横方向の辺は横方向にそれぞれ強
く分子配向が起こっており、各辺の交点は縦方向が横方
向に比べやや強く分子配向がかかった構造であった。ま
たこの交点部は各辺の厚みにほほど等しくなっており、
この部分の隆起はみられなかった。
Example 3 A polyoxymethylene homopolymer was extruded in the same manner as in Example 1, and formed into a sheet having a width of 200 mm and a thickness of 3 mm. Next, rolling was performed in the same manner as in Example 1, followed by hole punching. Next, it was applied to a tenter transverse stretching machine with a stretching temperature of 172° C. and a stretching ratio of 6 times. Subsequently, the film was subjected to longitudinal stretching at a stretching ratio of 3 times using a longitudinal stretching machine with a stretching roll temperature set at 173°C. Through the above steps, the sheet as a whole was biaxially stretched 6×6 times. By this stretching, the vertical side is 15 mm and the horizontal side is 30 m.
A mesh body having a rectangular shape of m was obtained. The vertical sides of each mesh have strong molecular orientation in the vertical direction, and the horizontal sides have strong molecular orientation in the horizontal direction, and the intersection of each side has a structure in which molecular orientation is slightly stronger in the vertical direction than in the horizontal direction. there were. Also, the thickness of this intersection is approximately equal to the thickness of each side,
No protuberance was observed in this area.

【0020】[0020]

【発明の効果】本発明の網目構造体は強度、剛性に優れ
、網目の交点の隆起が実質的になく、且つこの交点の強
度をも高めた網目構造体であるために地盤等の補強効果
はもちろんのこと、ロール状に巻き取った時に嵩張らな
い等の取扱い作業性にも優れている。従って軟弱地盤、
埋立地、急傾斜地、宅地造成地等の地盤補強用あるいは
アスファルト舗装のひび割れ防止等のための路面補強用
プラスチックス製網目構造体等として好適である。
Effects of the Invention: The mesh structure of the present invention has excellent strength and rigidity, has virtually no bulges at the intersections of the meshes, and has increased strength at these intersections, so it has a reinforcing effect on the ground, etc. Of course, it also has excellent handling and workability, such as not being bulky when wound into a roll. Therefore, soft ground
It is suitable as a plastic mesh structure for reinforcing the ground of reclaimed land, steeply sloped land, residential development land, etc., or for reinforcing road surfaces to prevent cracks in asphalt pavement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の網目構造体の概略を示す見取図である
FIG. 1 is a diagram schematically showing a network structure of the present invention.

【図2】従来のプラスチックス製網目構造体の概略を示
す見取図である。
FIG. 2 is a diagram schematically showing a conventional plastic network structure.

【図3】孔の空けられた樹脂シートを示す模式図である
FIG. 3 is a schematic diagram showing a resin sheet with holes.

【図4】本発明の製造方法の1例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1  網目構造体の縦方向の辺 2  網目構造体の横方向の辺 3  網目構造体の各辺の交点 4  従来法で延伸した場合の延伸部分5  従来法で
延伸した場合の未延伸部分6  押出機 7  圧延機 8  パンチング装置 9  横延伸機 10  縦延伸機 11  巻取機 12  横延伸機の予熱ゾーン 13  横延伸機の延伸ゾーン 14  縦延伸機の加熱ゾーン 15  低速ロール 16  高速ロール
1 Vertical side of the network structure 2 Horizontal side of the network structure 3 Intersection of each side of the network structure 4 Stretched portion when stretched by conventional method 5 Unstretched portion when stretched by conventional method 6 Extrusion Machine 7 Rolling machine 8 Punching device 9 Horizontal stretching machine 10 Longitudinal stretching machine 11 Winding machine 12 Preheating zone 13 of the horizontal stretching machine Stretching zone 14 of the horizontal stretching machine Heating zone 15 of the longitudinal stretching machine Low speed roll 16 High speed roll

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  網目を形成する各々の辺が同一平面内
で合流する網目状構造体であって、網目を形成する各辺
の少なくとも1方向の辺を構成するポリマー分子が該方
向に分子配向され、且つ各辺が合流する交点部分を構成
するポリマー分子が少なくとも1方向に分子配向された
プラスチックス網目構造体。
Claim 1: A network structure in which each side forming the network joins in the same plane, wherein polymer molecules constituting at least one side of each side forming the network are oriented in that direction. A plastics network structure in which the polymer molecules constituting the intersection points where each side joins are oriented in at least one direction.
【請求項2】  プラスチックスがポリエチレン、ポリ
プロピレン等のポリオレフィン系樹脂、ポリオキシメチ
レンホモポリマー、ポリオキシメチレンコポリマー等の
ポリアセタール系樹脂、ポリエチレンテレフタレート等
のポリエステル系樹脂、及びナイロン6、ナイロン66
等のポリアミド系樹脂等の結晶性熱可塑性樹脂からなる
請求項1記載のプラスチックス網目構造体。
2. The plastics are polyolefin resins such as polyethylene and polypropylene, polyacetal resins such as polyoxymethylene homopolymers and polyoxymethylene copolymers, polyester resins such as polyethylene terephthalate, and nylon 6 and nylon 66.
The plastic network structure according to claim 1, which is made of a crystalline thermoplastic resin such as a polyamide resin such as.
【請求項3】  押出成形された樹脂シートをロール圧
延、又はプレス操作の前あるいは後のいずれかに該シー
トに多数の小孔をあけ、次いで加熱雰囲気中で延伸する
ことを特徴とするプラスチックス網目構造体の製造方法
3. A plastics sheet characterized in that a large number of small holes are formed in the extruded resin sheet either before or after roll rolling or pressing operation, and then stretched in a heated atmosphere. Method for manufacturing a mesh structure.
JP40353390A 1990-12-19 1990-12-19 Network structure Withdrawn JPH04216925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40353390A JPH04216925A (en) 1990-12-19 1990-12-19 Network structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40353390A JPH04216925A (en) 1990-12-19 1990-12-19 Network structure

Publications (1)

Publication Number Publication Date
JPH04216925A true JPH04216925A (en) 1992-08-07

Family

ID=18513264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40353390A Withdrawn JPH04216925A (en) 1990-12-19 1990-12-19 Network structure

Country Status (1)

Country Link
JP (1) JPH04216925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423893A (en) * 1992-06-18 1995-06-13 Kotaki; Daizo Plastic filter, its injection molding die and producing method
US5650181A (en) * 1993-06-17 1997-07-22 Kotaki; Daizo Injection molding die for producing plastic filter
US8082652B2 (en) * 2005-02-23 2011-12-27 Sekisui Plastics Co., Ltd. Method of manufacturing molding die
JP2020534457A (en) * 2017-09-20 2020-11-26 テンサー・テクノロジーズ・リミテッドTensar Technologies Limited Geogrid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423893A (en) * 1992-06-18 1995-06-13 Kotaki; Daizo Plastic filter, its injection molding die and producing method
US5650181A (en) * 1993-06-17 1997-07-22 Kotaki; Daizo Injection molding die for producing plastic filter
US8082652B2 (en) * 2005-02-23 2011-12-27 Sekisui Plastics Co., Ltd. Method of manufacturing molding die
JP2020534457A (en) * 2017-09-20 2020-11-26 テンサー・テクノロジーズ・リミテッドTensar Technologies Limited Geogrid
US11525234B2 (en) 2017-09-20 2022-12-13 Tensar Technologies Limited Geogrids

Similar Documents

Publication Publication Date Title
US4680215A (en) Mesh structure and laminate made therewith
US3666609A (en) Reticulate sheet material
US4144008A (en) Apparatus for stretching a tubularly-formed sheet of thermoplastic material
CA1144327A (en) Plastics material mesh structure
US4251585A (en) Product and process for stretching a tubularly formed sheet of orientable thermoplastic material
US3906073A (en) Methods of making network structures
EP0062462B1 (en) Plastics material mesh structure
CN1092561C (en) Microporous membrane with stratified pore structure created in situ and process
US3719540A (en) Preparation of transversely fibrillated film
GB2073090A (en) Plastics Material Mesh Structure
GB2390565A (en) Geogrid
DE2246051A1 (en) WOVEN AND NON-WOVEN FABRICS MADE FROM STRETCHED PLASTIC TAPES AND THE PROCESS FOR THEIR PRODUCTION
AU2022202400A1 (en) Geogrid made from a coextruded multilayered polymer
US3300366A (en) Perforated sheet material
KR20200066318A (en) Geogrid
KR920702285A (en) Thermoplastic resin molded article having a gas barrier property and a manufacturing method thereof
US5032433A (en) Thermoplastic web and process for manufacture same
US5753337A (en) Plastic net structures and the plastic net structures formed thereby
EP2122067B1 (en) Integral polyethylene terephthalate grids, the method of manufacture, and uses thereof
JPH04216925A (en) Network structure
US4497097A (en) Preparation of improved thermoplastic spun fleeces
US3608042A (en) Process for producing a film of splitfibre forming polymeric material
JPH03236947A (en) Synthetic resin net and its manufacture
JPS62156928A (en) Manufacture of polyethylene film
US20240042666A1 (en) Polymer films and their production and use

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312