JPH04216634A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04216634A
JPH04216634A JP41771190A JP41771190A JPH04216634A JP H04216634 A JPH04216634 A JP H04216634A JP 41771190 A JP41771190 A JP 41771190A JP 41771190 A JP41771190 A JP 41771190A JP H04216634 A JPH04216634 A JP H04216634A
Authority
JP
Japan
Prior art keywords
film
sio2
ion implantation
substrate
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41771190A
Other languages
Japanese (ja)
Inventor
Shigeo Onishi
茂夫 大西
Akitsu Ayukawa
鮎川 あきつ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP41771190A priority Critical patent/JPH04216634A/en
Publication of JPH04216634A publication Critical patent/JPH04216634A/en
Priority to US07/932,746 priority patent/US5298446A/en
Priority to US07/979,457 priority patent/US5420079A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control an irregularity in the film thickness of a mask for ion implantation use for implanting ions in an Si substrate. CONSTITUTION:A gate electrode 1 is formed and thereafter, an SiO2/SiN two- layer film 7 for ion implantation mask use is formed and after a CVD oxide film is deposited thereon, sidewalls 6 are formed by an RIE method and an HF cleaning method and after that, an ion implantation is performed via the film 7. The control of the film thickness of the film 7 is easy and moreover, as the sidewalls 6 are removed and an annealing is performed, a stress is not applied to an Si substrate 2 at the time of the annealing. Moreover, the knock-on amount of oxygen atoms is reduced. Accordingly, a diffused layer with no defect can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、更に詳しくは、LDD(Lightly  D
oped  Drain)構造を有するMOSデバイス
の製造プロセスにおいてイオン注入した際に半導体基板
内に誘発される結晶欠陥を抑制するためのLDDプロセ
スに関するものである。
[Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device.
The present invention relates to an LDD process for suppressing crystal defects induced in a semiconductor substrate during ion implantation in the manufacturing process of a MOS device having an open drain structure.

【0002】0002

【従来の技術及び発明が解決しようとする課題】1.0
μm以下の微細トランジスタを作成するのに、通常LD
Dプロセスによりデバイスを作成している。そのLDD
プロセスでは、まず、図11に示すHTO(High 
 Temperature  Oxide)膜61で覆
われたゲート電極62を有するSi基板63上において
、サイドウォール64をRIE単独で形成し[図12参
照]、イオン注入前酸化膜65を形成した[図13参照
]後に砒素イオン(あるいはBF2イオン)をイオン注
入してソース・ドレインを形成し、層間絶縁膜を形成し
た後N2アニールを行っていた。しかし、RIE単独で
サイドウォールを形成すると、Si基板にダメージが導
入され、後の酸化膜形成の工程でダメージ層を核にして
OSF(Oxidation−inducedStac
king  Faults)等の欠陥が形成される。ま
た、RIE単独でサイドウォールを形成した場合、サイ
ドウォールの形状が急峻になり、Si基板に加わるスト
レスが大きくなる。従ってソース・ドレイン形成後の熱
処理過程において、サイドウォール端からのストレスが
Si基板に加わり、結晶欠陥が誘発される。
[Prior art and problems to be solved by the invention] 1.0
Usually, LD
A device is created using the D process. That LDD
In the process, first, HTO (High
On a Si substrate 63 having a gate electrode 62 covered with a (temperature oxide) film 61, a sidewall 64 is formed by RIE alone [see FIG. 12], and a pre-ion implantation oxide film 65 is formed [see FIG. 13]. Arsenic ions (or BF2 ions) were ion-implanted to form sources and drains, and an interlayer insulating film was formed, followed by N2 annealing. However, if sidewalls are formed by RIE alone, damage will be introduced into the Si substrate, and in the later oxide film formation process, OSF (Oxidation-induced stack) will be formed using the damaged layer as a core.
Defects such as king faults are formed. Furthermore, if the sidewall is formed by RIE alone, the shape of the sidewall becomes steep, and the stress applied to the Si substrate becomes large. Therefore, during the heat treatment process after forming the source/drain, stress from the sidewall edges is applied to the Si substrate, inducing crystal defects.

【0003】これらの問題点を解決するために図9,図
10に示すプロセスが提案されている。これは、図9に
示すようにゲート電極62上にHTO膜61を形成し、
サイドウォール51をRIEとHFクリーンの組み合わ
せにより形成し、シリコン上に酸化膜が残る様に工夫を
行ったものである。すなわち、この手法では、Si基板
63にダメージを導入する事なく、サイドウォール端に
SiO2膜の残膜からなるテーパー51aを付け[図1
0参照]、Si基板に加わるストレスを緩和するように
していた。その結果として図8に示すようなサイドウォ
ール端のテーパー51aに発生する結晶欠陥(矢印Dで
示す黒塗り部分)の成長が抑制され、接合リーク特性を
安定化できる。しかし、上記のプロセスにおいても問題
が生じる。
In order to solve these problems, processes shown in FIGS. 9 and 10 have been proposed. This involves forming an HTO film 61 on the gate electrode 62 as shown in FIG.
The sidewall 51 is formed by a combination of RIE and HF clean, and an oxide film is left on the silicon. That is, in this method, a taper 51a made of the remaining SiO2 film is attached to the end of the sidewall without introducing damage to the Si substrate 63 [Fig.
0], the stress applied to the Si substrate was alleviated. As a result, the growth of crystal defects (the black portion indicated by arrow D) occurring in the taper 51a at the end of the sidewall as shown in FIG. 8 is suppressed, and the junction leakage characteristics can be stabilized. However, problems also arise in the above process.

【0004】すなわち、基本的にSiO2膜などの酸化
膜を通してイオン注入を行うと、酸化膜を構成する酸素
がSi基板内に打込まれ(ノックオンされ)、As注入
層内に転位ループ等の欠陥が発生する。図8に、打込ま
れた酸素に帰因する欠陥の発生する領域を矢印Nで示す
白丸で表わす。特に、図7に示す様な欠陥密度の酸化膜
厚依存性が観察されており、低い欠陥密度を得るための
酸化膜厚の範囲は300〜500Åと狭い。しかし、図
9,図10で示したLDDプロセスにおいてはSiO2
残膜51aの形成のためにRIE及びHFクリーンを用
いているから、Si基板上のSiO2残膜51aをバラ
ツキなく300〜500Åの厚膜に制御する事は困難で
あり、そのためプロセスが不安定になる。
That is, basically, when ion implantation is performed through an oxide film such as a SiO2 film, oxygen constituting the oxide film is implanted (knocked on) into the Si substrate, causing defects such as dislocation loops in the As implanted layer. occurs. In FIG. 8, a region where a defect occurs due to implanted oxygen is represented by a white circle indicated by an arrow N. In particular, the dependence of defect density on oxide film thickness as shown in FIG. 7 has been observed, and the range of oxide film thickness for obtaining low defect density is narrow, 300 to 500 Å. However, in the LDD process shown in FIGS. 9 and 10, SiO2
Since RIE and HF clean are used to form the residual film 51a, it is difficult to control the thickness of the SiO2 residual film 51a on the Si substrate to a thickness of 300 to 500 Å without variation, which makes the process unstable. Become.

【0005】[0005]

【課題を解決するための手段及び作用】この発明は、ゲ
ートを有するSi基板上の全面に、熱酸化法によって所
定の膜厚を有するSiO2膜を形成し、さらにそのSi
O2膜上に所定の膜厚を有するSiN膜を積層し、次に
、SiN膜上にCVD法によってサイドウォール形成用
の酸化膜を積層した後これを反応性イオンエッチング法
とHFクリーンによってSiN膜が露出するまでエッチ
ングし、ゲート側壁のみにサイドウォールを形成し、上
記熱酸化SiO2膜およびSiN膜の2層膜をイオン注
入用のマスクにしてイオン注入を行い、再び反応性イオ
ンエッチング法とHFクリーンによって上記サイドウォ
ールを除去し、続いて上記SiN膜のみを除去した後ゲ
ートを含むSi基板上の全面に上記熱酸化SiO2膜を
介して層間絶縁膜を積層し、熱処理を付して層間絶縁膜
を平坦化することよりなる半導体装置の製造方法である
[Means and effects for solving the problems] The present invention forms an SiO2 film having a predetermined thickness by thermal oxidation on the entire surface of a Si substrate having a gate, and furthermore, the SiO2 film is
A SiN film having a predetermined thickness is laminated on the O2 film, and then an oxide film for forming sidewalls is laminated on the SiN film by CVD method, and then this is formed into a SiN film by reactive ion etching method and HF clean. A sidewall is formed only on the gate sidewall, and ion implantation is performed using the two-layer film of the thermally oxidized SiO2 film and SiN film as a mask for ion implantation, and then reactive ion etching and HF are performed again. After removing the sidewalls by cleaning, and subsequently removing only the SiN film, an interlayer insulating film is laminated on the entire surface of the Si substrate including the gate via the thermally oxidized SiO2 film, and heat treatment is applied to form the interlayer insulating film. This is a method of manufacturing a semiconductor device, which comprises flattening a film.

【0006】すなわち、この発明は、イオン注入用のマ
スクとして、サイドウォールを備えたゲートを有するS
i基板上に基板側から熱酸化膜およびSiN膜を順次積
層してなる2層膜を形成するようにしたものである。
That is, the present invention uses an S having a gate with sidewalls as a mask for ion implantation.
A two-layer film is formed by sequentially laminating a thermal oxide film and a SiN film on an i-substrate from the substrate side.

【0007】従来では、イオン注入用のマスクとしてA
sイオン注入時に欠陥密度が大きくならないように、S
iO2膜厚を300〜500Åの良好な膜厚内に制御す
るようにしても、その膜厚制御をRIE(反応性イオン
エッチング)とHFクリーンで行っているから、必然的
にSiO2膜厚のバラツキが生じる訳である。そのバラ
ツキのため上記良好な膜厚の範囲外の膜厚になったSi
O2膜の部分は、例えば図7に示すように、300Å以
下の膜厚に除去された場合には欠陥密度が増大する。こ
れは上述したよにう、SiO2膜を通してAsイオンの
注入を行うと、多量の酸素原子がSi基板中に打込まれ
(ノックオンされ)、結晶欠陥を誘発するからである。 なお、図7における観察は、Asイオンを80Kevの
加速エネルギーで注入した際のものである。また、ドー
ズ量は5×1015cm−2である。
Conventionally, A was used as a mask for ion implantation.
To prevent the defect density from increasing during S ion implantation, S
Even if the iO2 film thickness is controlled within a good film thickness of 300 to 500 Å, since the film thickness is controlled by RIE (reactive ion etching) and HF clean, there will inevitably be variations in the SiO2 film thickness. This is why this occurs. Due to this variation, the Si film thickness was outside the range of the above-mentioned favorable film thickness.
For example, as shown in FIG. 7, when the O2 film portion is removed to a thickness of 300 Å or less, the defect density increases. This is because, as described above, when As ions are implanted through the SiO2 film, a large amount of oxygen atoms are implanted (knocked on) into the Si substrate, inducing crystal defects. Note that the observation in FIG. 7 was obtained when As ions were implanted at an acceleration energy of 80 Kev. Further, the dose amount was 5×10 15 cm −2 .

【0008】そこで、本発明者らは、イオン注入用のマ
スクとして、Si−O間の解離エネルギーよりも大きな
Si−N間の解離エネルギーを有するSiN膜に注目し
、この膜とSiO2膜を組合わせるこにとによって上記
問題点が解消されないかを鋭意検討した。その結果本発
明者らは、イオン注入用マスクをSiN膜とSiO2膜
が所定の膜厚比を有する2層膜とすることによって欠陥
密度が低減されることを見出した[図6参照]。
[0008] Therefore, the present inventors focused on a SiN film, which has a larger Si-N dissociation energy than Si-O dissociation energy, as a mask for ion implantation, and combined this film with a SiO2 film. We conducted extensive research to see if the above problems could be resolved by combining these two methods. As a result, the present inventors have found that the defect density can be reduced by forming the ion implantation mask into a two-layer film in which the SiN film and the SiO2 film have a predetermined thickness ratio [see FIG. 6].

【0009】但し、SiN膜をSi基板上に直接付けた
場合、Si基板の表面上に微少欠陥が誘発される恐れが
あるので、2層膜として、SiN膜がSiO2膜を介し
てSi基板上に形成されるものが好ましい。
However, if the SiN film is directly attached to the Si substrate, micro defects may be induced on the surface of the Si substrate. Preferably, it is formed as follows.

【0010】この発明における2層膜としては、その膜
厚dがSiNの膜厚d1とSiO2膜の膜厚d2の和(
d=d1+d2)であり、200〜400Åの膜厚dを
有するものが好ましい。しかも、Asイオンを注入した
場合を例にとれば、Asイオン注入層内での欠陥密度の
d1/d2依存性は図6に示すようになる。
The two-layer film in this invention has a film thickness d equal to the sum of the SiN film thickness d1 and the SiO2 film thickness d2 (
d=d1+d2) and preferably has a film thickness d of 200 to 400 Å. Furthermore, taking the case where As ions are implanted as an example, the dependence of the defect density in the As ion implanted layer on d1/d2 is as shown in FIG.

【0011】すなちわ、d1/d2が1以上であるよう
な膜厚dに2層膜を形成すれば、イオン注入のためのエ
ネルギーの大小に依存することなく欠陥密度の低減を図
ることができる。しかも、上記注入エネルギーに対応す
る深さを有するイオン注入層の形成に何ら支障を来たす
ことは無い。
In other words, if a two-layer film is formed with a thickness d such that d1/d2 is 1 or more, the defect density can be reduced regardless of the magnitude of the energy for ion implantation. I can do it. Furthermore, there is no problem in forming an ion-implanted layer having a depth corresponding to the above-mentioned implantation energy.

【0012】また、SiN膜の膜厚d1とSiO2の膜
厚d2の関係は、d(=d1+d2)が200〜400
Åの条件下で適宜好ましい組合わせのものが選ばれ得る
。そして、好ましくはd1≧d2で、かつd2>50Å
がよい。要はイオン注入した際にdが200〜400Å
であってもイオン注入エネルギーに対応しない極端に浅
いイオン注入層を、反対に極端に深いイオン注入層が形
成されないようなd1とd2を適宜選択する必要がある
[0012] Furthermore, the relationship between the film thickness d1 of the SiN film and the film thickness d2 of SiO2 is such that d (=d1+d2) is 200 to 400.
A suitable combination can be selected under the following conditions. And preferably d1≧d2 and d2>50Å
Good. The point is that d is 200 to 400 Å when ions are implanted.
However, it is necessary to appropriately select d1 and d2 so that an extremely shallow ion implantation layer that does not correspond to the ion implantation energy and, conversely, an extremely deep ion implantation layer are not formed.

【0013】この発明における2層膜のうちのSiO2
膜はSi基板表面を熱酸化することによって得られる。 従って、その膜厚制御はRIEやHFクリーンに比して
はるかに容易でありバラツキ無く形成できる。また膜質
もよい。
SiO2 of the two-layer film in this invention
The film is obtained by thermally oxidizing the surface of a Si substrate. Therefore, the film thickness can be controlled much more easily than by RIE or HF clean, and can be formed without variation. The film quality is also good.

【0014】一方、SiN膜も上記熱酸化SiO2膜と
同様に公知の方法を用いて形成される。このSiN膜も
膜厚制御が容易でバラツキ無く形成でき、かつ膜質もよ
い。そしてこのSiN膜は後工程でゲートのサイドウォ
ールをRIEとHFクリーンで形成する際のストッパー
膜としての役目を担う。勿論、RIE、HFクリーンに
よってSiN膜の膜厚に変動は生じない。
On the other hand, the SiN film is also formed using a known method in the same manner as the thermally oxidized SiO2 film. This SiN film can also be easily controlled in film thickness, can be formed without variation, and has good film quality. This SiN film then plays the role of a stopper film when the sidewalls of the gate are formed by RIE and HF clean in a later process. Of course, the thickness of the SiN film does not change due to RIE and HF clean.

【0015】[0015]

【実施例】以下図に示す実施例に基づいてこの発明を詳
述する。なお、これによってこの発明は限定を受けるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments shown in the drawings. Note that this invention is not limited by this.

【0016】まず、図1に示すように、ゲート1を有す
るSi基板2上の全面に、熱酸化法によって0.01μ
mの膜厚を有するSiO2膜3を形成し、さらにそのS
iO2膜上に0.01μmの膜厚を有するSiN膜4を
積層し、次に、SiN膜上にCVD法によってサイドウ
ォール形成用のHTO膜(SiO2膜)5を積層する[
図2参照]。次に、HTO膜5を反応性イオンエッチン
グ法とHFクリーンによってSiN膜4が露出するまで
エッチングし、ゲート側壁のみにサイドウォール6を形
成し[図3参照]、熱酸化SiO2膜3およびSiN膜
4の2層膜7をイオン注入用のマスクにして砒素イオン
の注入を行いイオン注入層(図示せず)を形成し、再び
反応性イオンエッチング法とHFクリーンによって図4
に示すように、サイドウォール6を除去し、続いてリン
酸ボイルによりSiN膜4のみを除去した[図5参照]
後ゲート1を含むSi基板2上の全面に熱酸化SiO2
膜3を介してNSG,BPSG膜等の層間絶縁膜を積層
し、N2アニールの熱処理を付して層間絶縁膜を平坦化
する。その後、公知の方法でコンタクトホールや配線部
などを形成してMOSデバイスの素子を作成する。
First, as shown in FIG. 1, a layer of 0.01μ is deposited on the entire surface of the Si substrate 2 having the gate 1 by thermal oxidation.
A SiO2 film 3 having a thickness of m is formed, and the S
A SiN film 4 having a thickness of 0.01 μm is laminated on the iO2 film, and then an HTO film (SiO2 film) 5 for sidewall formation is laminated on the SiN film by CVD method.
See Figure 2]. Next, the HTO film 5 is etched using a reactive ion etching method and an HF clean until the SiN film 4 is exposed, and a sidewall 6 is formed only on the gate sidewall [see FIG. 3], and the thermally oxidized SiO2 film 3 and the SiN film are Using the two-layer film 7 of 4 as a mask for ion implantation, arsenic ions are implanted to form an ion implantation layer (not shown), and then reactive ion etching and HF clean are performed again to form the ion implantation layer (FIG. 4).
As shown in Figure 5, the sidewall 6 was removed, and then only the SiN film 4 was removed using phosphoric acid boiling [see Figure 5].
Thermal oxidation SiO2 is applied to the entire surface of the Si substrate 2 including the rear gate 1.
An interlayer insulating film such as an NSG or BPSG film is laminated via the film 3, and the interlayer insulating film is planarized by N2 annealing heat treatment. Thereafter, contact holes, wiring portions, etc. are formed using a known method to create a MOS device.

【0017】このように本実施例では、従来、SiO2
膜を通してAsイオンの注入を行うと、多量の酸素原子
がSi基板中にノックオンされ、結晶欠陥を誘起してい
たのを、SiO2膜上にSiN膜を積層したマスクを通
してAsイオンの注入を行うようにしたので、Si基板
に打込まれる窒素原子量は絶対的に少なく、結晶欠陥が
誘起するのをSiN膜とSiO2膜との相乗効果によっ
て防止できる。すなわち、上記のプロセスに於いては、
注入前のマスクの膜厚の制御が容易であり、バラツキが
生ずることはない。またサイドウォールを除去してアニ
ールを行っているため、N2アニール時にストレスがS
i基板に加わらず、欠陥も発生し難しくなる。
As described above, in this embodiment, conventional SiO2
When As ions were implanted through the film, a large amount of oxygen atoms were knocked into the Si substrate, inducing crystal defects. Therefore, the amount of nitrogen atoms implanted into the Si substrate is absolutely small, and the synergistic effect of the SiN film and the SiO2 film can prevent crystal defects from being induced. That is, in the above process,
It is easy to control the film thickness of the mask before injection, and no variations occur. Also, since the sidewalls are removed before annealing, stress is reduced during N2 annealing.
It will not be added to the i-substrate, and defects will occur, making it difficult.

【0018】なお、本実施例では注入イオンとしてAs
イオンを用いたものを示したが、BF2イオンなども適
用である。
Note that in this example, As implanted ions were used.
Although the method using ions is shown, BF2 ions and the like are also applicable.

【0019】[0019]

【発明の効果】以上のようにこの発明によれば、MOS
デバイスの製造プロセスに於いて、ゲート電極形成後に
イオン注入のマスクとしてSiO2/SiNの2層膜を
形成し、CVD酸化膜を堆積した後、RIEとHFクリ
ーンによりゲート電極にサイドウォールを形成し、Si
O2/SiNの2層膜を介してイオン注入を行い、さら
にSiNを除去しアニールを行うようにしたので、無欠
陥の拡散層を形成できる効果がある。
[Effects of the Invention] As described above, according to this invention, MOS
In the device manufacturing process, after forming the gate electrode, a two-layer film of SiO2/SiN is formed as a mask for ion implantation, and after depositing a CVD oxide film, sidewalls are formed on the gate electrode by RIE and HF clean. Si
Since ion implantation is performed through the O2/SiN two-layer film, and then the SiN is removed and annealing is performed, a defect-free diffusion layer can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1はこの発明の一実施例における製造工程の
第1ステップを示す製造工程説明図である。
FIG. 1 is a manufacturing process explanatory diagram showing the first step of the manufacturing process in an embodiment of the present invention.

【図2】図2は上記実施例における製造工程の第2ステ
ップを示す製造工程説明図である。
FIG. 2 is a manufacturing process explanatory diagram showing the second step of the manufacturing process in the above embodiment.

【図3】図3は上記実施例における製造工程の第3ステ
ップを示す製造工程説明図である。
FIG. 3 is a manufacturing process explanatory diagram showing the third step of the manufacturing process in the above embodiment.

【図4】図4は上記実施例における製造工程の第4ステ
ップを示す製造工程説明図である。
FIG. 4 is a manufacturing process explanatory diagram showing the fourth step of the manufacturing process in the above embodiment.

【図5】図5は上記実施例における製造工程の第5ステ
ップを示す製造工程説明図である。
FIG. 5 is a manufacturing process explanatory diagram showing the fifth step of the manufacturing process in the above embodiment.

【図6】図6は上記実施例におけるAsイオン注入層内
での欠陥密度のSiN/SiO2膜厚比依存性を示す特
性図である。
FIG. 6 is a characteristic diagram showing the dependence of the defect density in the As ion-implanted layer in the above example on the SiN/SiO2 film thickness ratio.

【図7】図7は従来例のAsイオン注入層内における欠
陥密度の注入マスクとしてのSiO2膜厚依存性を示す
特性図である。
FIG. 7 is a characteristic diagram showing the dependence of defect density in a conventional As ion implantation layer on the SiO2 film thickness as an implantation mask.

【図8】図8はノックオン酸素に帰因してAsイオン注
入層に発生する欠陥を示す構成説明図である。
FIG. 8 is a configuration explanatory diagram showing defects generated in the As ion-implanted layer due to knock-on oxygen.

【図9】図9は従来法の1例の第1ステップを示す製造
工程説明図である。
FIG. 9 is a manufacturing process explanatory diagram showing the first step of an example of a conventional method.

【図10】図10は従来法の1例の第2ステップを示す
製造工程説明図である。
FIG. 10 is a manufacturing process explanatory diagram showing the second step of an example of a conventional method.

【図11】図11は従来法の他の例の第1ステップを示
す製造工程説明図である。
FIG. 11 is a manufacturing process explanatory diagram showing the first step of another example of the conventional method.

【図12】図12は従来法の他の例の第2ステップを示
す製造工程説明図である。
FIG. 12 is a manufacturing process explanatory diagram showing the second step of another example of the conventional method.

【図13】図13は従来法の他の例の第3ステップを示
す製造工程説明図である。
FIG. 13 is a manufacturing process explanatory diagram showing the third step of another example of the conventional method.

【符号の説明】[Explanation of symbols]

1  ゲート電極 2  Si基板 3  熱酸化膜(SiO2膜) 4  SiN膜 5  HTO膜(CVD酸化膜) 6  サイドウォール 7  Asイオン注入用のマスク 1 Gate electrode 2 Si substrate 3 Thermal oxide film (SiO2 film) 4 SiN film 5 HTO film (CVD oxide film) 6 Side wall 7 Mask for As ion implantation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ゲートを有するSi基板上の全面に、
熱酸化法によって所定の膜厚を有するSiO2膜を形成
し、さらにそのSiO2膜上に所定の膜厚を有するSi
N膜を積層し、次に、SiN膜上にCVD法によってサ
イドウォール形成用の酸化膜を積層した後これを反応性
イオンエッチング法とHFクリーンによってSiN膜が
露出するまでエッチングし、ゲート側壁のみにサイドウ
ォールを形成し、上記熱酸化SiO2膜およびSiN膜
の2層膜をイオン注入用のマスクにしてイオン注入を行
い、再び反応性イオンエッチング法とHFクリーンによ
って上記サイドウォールを除去し、続いて上記SiN膜
のみを除去した後ゲートを含むSi基板上の全面に上記
熱酸化SiO2膜を介して層間絶縁膜を積層し、熱処理
を付して層間絶縁膜を平坦化することよりなる半導体装
置の製造方法。
Claim 1: Over the entire surface of a Si substrate having a gate,
A SiO2 film having a predetermined thickness is formed by a thermal oxidation method, and then a SiO2 film having a predetermined thickness is formed on the SiO2 film.
A N film is laminated, and then an oxide film for sidewall formation is laminated on the SiN film by CVD, and then this is etched by reactive ion etching and HF clean until the SiN film is exposed, leaving only the gate sidewalls. ion implantation was performed using the two-layer film of the thermally oxidized SiO2 film and SiN film as a mask for ion implantation, and the sidewall was removed again by reactive ion etching and HF clean. After removing only the SiN film, an interlayer insulating film is laminated on the entire surface of the Si substrate including the gate via the thermally oxidized SiO2 film, and the interlayer insulating film is flattened by heat treatment. manufacturing method.
JP41771190A 1990-02-20 1990-12-14 Manufacture of semiconductor device Pending JPH04216634A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP41771190A JPH04216634A (en) 1990-12-14 1990-12-14 Manufacture of semiconductor device
US07/932,746 US5298446A (en) 1990-02-20 1992-08-25 Process for producing semiconductor device
US07/979,457 US5420079A (en) 1990-02-20 1992-11-20 Process for producing semiconductor device comprising two step annealing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41771190A JPH04216634A (en) 1990-12-14 1990-12-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04216634A true JPH04216634A (en) 1992-08-06

Family

ID=18525770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41771190A Pending JPH04216634A (en) 1990-02-20 1990-12-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04216634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182289A (en) * 2008-02-01 2009-08-13 Sanyo Electric Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182289A (en) * 2008-02-01 2009-08-13 Sanyo Electric Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
CN100355076C (en) Semiconductor substrate manufacturing method and semiconductor device manufacturing method, and semiconductor substrate and semiconductor device manufactured by the methods
KR19980033016A (en) Semiconductor Integrated Circuit Manufacturing Method
JPS6340337A (en) Method of isolating integrated circuit
JPH0279445A (en) Forming method of element isolating region
KR100273281B1 (en) Method of forming insulator film of semiconductor device
JP3363420B2 (en) Method of manufacturing patterned silicon-on-insulator substrate with self-aligned trench
JP3385981B2 (en) Semiconductor device and manufacturing method thereof
US6146972A (en) Method for fabricating semiconductor device
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPH08125010A (en) Isolation structure of semiconductor device and formation thereof
JPH04216634A (en) Manufacture of semiconductor device
JP2693046B2 (en) Method for manufacturing semiconductor device
JPH04151852A (en) Manufacture of semiconductor device
JPH04267336A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
JPH04123431A (en) Semiconductor device and its manufacture
JPH05326497A (en) Manufacture of semiconductor device
JPH065588A (en) Manufacture of semiconductor device
JPH04739A (en) Manufacture of semiconductor device
JPH06224187A (en) Forming method for locos oxide film
KR100242380B1 (en) Method of forming a field isolation film in a semiconductor device
KR100348305B1 (en) Method for fabricating isolation film of semiconductor device
JP2584887B2 (en) Method for manufacturing semiconductor device
JPS6062135A (en) Manufacture of semiconductor device