JPH04216425A - Installing method of optical fiber sensor - Google Patents

Installing method of optical fiber sensor

Info

Publication number
JPH04216425A
JPH04216425A JP2417932A JP41793290A JPH04216425A JP H04216425 A JPH04216425 A JP H04216425A JP 2417932 A JP2417932 A JP 2417932A JP 41793290 A JP41793290 A JP 41793290A JP H04216425 A JPH04216425 A JP H04216425A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber sensor
sensor
pulley
turning point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417932A
Other languages
Japanese (ja)
Inventor
Yozo Ota
大田 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2417932A priority Critical patent/JPH04216425A/en
Publication of JPH04216425A publication Critical patent/JPH04216425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily install an optical fiber sensor to a concrete object without damaging the sensor when the temperature distribution of the concrete object is to be continuously measured with the use of a DTS measuring system by mounting a temporary fixing ring to the object and passing the optical fiber sensor through the ring, with using a pulley at a turning point of the sensor. CONSTITUTION:A temporary fixing ring is mounted to a reinforcing bar. An optical fiber sensor is extended through the temporary fixing ring. A pulley is provided at a turning point. The extending direction of the sensor is reversed by the pulley. After the optical fiber sensor is installed at a predetermined position, the ring is fixed and the pulley at the turning point is exchanged with a fixing member having the curvature not smaller than the permissible bending radius of the sensor. The optical fiber sensor is fixed along the fixing member.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光ファイバ自身をセンサ
としてコンクリート躯体の温度分布を連続的に測定する
場合の対象物への光ファイバセンサの布設方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of installing an optical fiber sensor on an object when continuously measuring the temperature distribution of a concrete structure using the optical fiber itself as a sensor.

【0002】0002

【従来の技術】温度測定を目的とするセンサとしては熱
電対が広く用いられている。これは2種の金属線の接合
点を加熱又は冷却するときにゼーベック効果によって発
生する熱起電力を利用するものである。又温度によって
電気抵抗が変化する温度センサとしてサーミスタ等もあ
るが、これらはいずれも点の温度を測定するものであり
、連続的な温度分布は測定できない。
2. Description of the Related Art Thermocouples are widely used as sensors for measuring temperature. This utilizes thermoelectromotive force generated by the Seebeck effect when heating or cooling the junction of two types of metal wires. There are also thermistors and the like as temperature sensors whose electrical resistance changes with temperature, but all of these measure temperature at a point and cannot measure continuous temperature distribution.

【0003】一方、光ファイバ自身をセンサとし、この
センサに沿った物理量を連続的に測定できる技術の一つ
としてDTS(Destributed  Tempe
rature  Sensor)と呼ばれる温度計測シ
ステムが開発されている。これは、測定対象物に布設さ
れた光ファイバからなるセンサ部、光ファイバの一端に
接続されたレーザ光源、受光回路等からなる計測部及び
コンピュータによる処理部からなっている。そして、レ
ーザ光源から光ファイバに光パルスを入射し、その後方
散乱光の遅延時間を計測することによって後方散乱光の
発生位置を求め、さらに、後方散乱光に含まれるラマン
散乱光の強度を検出することにより、各位置での温度を
求めるものである。従って、DTSを利用すれば、光フ
ァイバの長さ方向に連続した温度データを測定すること
が可能となる。
On the other hand, DTS (Detributed Temperature Transmission) is one of the technologies that can continuously measure physical quantities along the sensor using an optical fiber itself as a sensor.
A temperature measurement system called a temperature sensor has been developed. This consists of a sensor section made of an optical fiber installed on the object to be measured, a laser light source connected to one end of the optical fiber, a measurement section made up of a light receiving circuit, etc., and a processing section using a computer. Then, by inputting a light pulse from a laser light source into an optical fiber and measuring the delay time of the backscattered light, the generation position of the backscattered light is determined, and then the intensity of the Raman scattered light included in the backscattered light is detected. By doing this, the temperature at each position is determined. Therefore, by using DTS, it becomes possible to measure continuous temperature data in the length direction of the optical fiber.

【0004】0004

【発明が解決しようとする課題】上述した従来の熱電対
等のポイントセンサで温度分布を測定するためには、極
めて多数のセンサが必要となり高価になる。又センサケ
ーブルの布設が複雑となるため自ずとセンサの数が制限
されるという問題がある。
SUMMARY OF THE INVENTION In order to measure temperature distribution using the conventional point sensors such as thermocouples described above, an extremely large number of sensors are required and the cost becomes high. Furthermore, since the installation of sensor cables becomes complicated, there is a problem that the number of sensors is naturally limited.

【0005】これに対し、光ファイバ1本を布設するこ
とで長さ方向の温度が連続的に計測できるDTSを適用
することにより、前記の問題は解決される。ところが、
コンクリート打設時には、注入生コンクリートによる圧
力、バイブレータによる震動等が光ファイバに作用する
ため、DTSの適用にあたっては、これらの外力から光
ファイバを保護し、かつ容易に光ファイバを布設できる
ことが課題であった。
[0005] On the other hand, the above problem can be solved by applying a DTS that can continuously measure the temperature in the longitudinal direction by installing a single optical fiber. However,
When pouring concrete, pressure from the poured concrete and vibrations from the vibrator act on the optical fiber, so when applying DTS, the challenge is to protect the optical fiber from these external forces and to be able to easily install the optical fiber. there were.

【0006】[0006]

【課題を解決するための手段】本発明は上述の問題点を
解消し、容易に光ファイバが布設でき、かつ、光ファイ
バに作用する外力から光ファイバを保護して、DTSに
よる温度分布測定を可能とした光ファイバセンサの布設
方法を提供するもので、その特徴は、構築された鉄筋に
適当間隔で仮止めリングを取り付けると共に、折返し点
に滑車を配設し、光ファイバセンサを前記仮止めリング
の中を通して延線し、折返し点においては前記滑車を介
して反転させ、光ファイバセンサを所定の位置に布設し
た後前記リングを固定し、折返し部においては滑車に代
えて光ファイバセンサの許容曲げ半径以上の曲率を有す
る固定部材を設置し、これに沿わせて固定することにあ
る。
[Means for Solving the Problems] The present invention solves the above-mentioned problems, allows easy installation of optical fibers, protects the optical fibers from external forces acting on the optical fibers, and enables temperature distribution measurement by DTS. The present invention provides a method for installing an optical fiber sensor, which is characterized by attaching temporary fixing rings to the constructed reinforcing bars at appropriate intervals, and arranging a pulley at the turning point, so that the optical fiber sensor can be installed at the temporary fixing point. The wire is extended through the ring, and at the turning point, it is reversed through the pulley, and after the optical fiber sensor is laid in a predetermined position, the ring is fixed, and at the turning point, the optical fiber sensor is used in place of the pulley. A fixing member having a curvature greater than the bending radius is installed and fixed along the fixing member.

【0007】[0007]

【作用】コンクリート構造物内部の鉄筋に沿わせて光フ
ァイバセンサを布設する場合の問題として、延線中に光
ファイバセンサが隣接する他の鉄筋へ絡みついたり、又
折返し部において、鉄筋との摩擦により光ファイバが断
線、損傷することがある。本発明の布設方法では、布設
の対象となる鉄筋へインシュロック等で仮止めリングを
適当間隔で取り付けておき、この中を光ファイバセンサ
を通して延線するため、他の鉄筋への絡みつきを防止で
きる。又光ファイバセンサの折返し部では、金車等の滑
車を配設し、これを介して光ファイバセンサを反転させ
るので、断線や損傷を与える程の摩擦は生じない。
[Operation] When installing optical fiber sensors along the reinforcing bars inside a concrete structure, there are problems such as the optical fiber sensor becoming entangled with other adjacent reinforcing bars during the wire extension, or friction with the reinforcing bars at the folded part. This may cause the optical fiber to break or be damaged. In the installation method of the present invention, temporary fixing rings are attached at appropriate intervals to the reinforcing bars to be installed using insulation locks, etc., and the wire is extended through the optical fiber sensor, thereby preventing entanglement with other reinforcing bars. Further, at the folded portion of the optical fiber sensor, a pulley such as a metal wheel is provided, and the optical fiber sensor is reversed via this, so that friction that may cause wire breakage or damage does not occur.

【0008】コンクリートの打設においては、生コンク
リートを鉄筋の隅々までいきわたらせる目的で、バイブ
レータにより生コンクリートに震動を与え流れを加速す
る方法が広く用いられているが、本発明の布設方法では
生コンクリートの流れによる圧力、バイブレータによる
震動は、鉄筋及び折返し部に配設した固定部材が受ける
ことにより、光ファイバセンサを保護することに有効に
作用する。
[0008] When placing concrete, a method is widely used in which the fresh concrete is vibrated with a vibrator to accelerate the flow in order to spread the fresh concrete to every corner of the reinforcing bars, but the laying method of the present invention In this case, the pressure caused by the flow of fresh concrete and the vibration caused by the vibrator are received by the reinforcing bars and the fixing member disposed at the folded portion, thereby effectively acting on protecting the optical fiber sensor.

【0009】[0009]

【実施例】図1は本発明の光ファイバセンサの布設方法
における延線の説明図である。図面において、1は光フ
ァイバセンサ、2は構築された鉄筋、3は鉄筋2に適当
間隔で取り付けた仮止めリング、4は折返し点に配設し
た金車等の滑車である。光ファイバセンサ1は図の矢印
aの方向に、仮止めリング3の中を通して延線していく
。そして、折返し点に設けた滑車4を介してその方向を
反転させ、上方の鉄筋2に取り付けた仮止めリング3の
中を通して矢印bの方向に延線していく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of a wire extension in the method of laying an optical fiber sensor according to the present invention. In the drawing, 1 is an optical fiber sensor, 2 is a constructed reinforcing bar, 3 is a temporary ring attached to the reinforcing bar 2 at appropriate intervals, and 4 is a pulley such as a metal wheel arranged at a turning point. The optical fiber sensor 1 is extended through the temporary fixing ring 3 in the direction of arrow a in the figure. Then, the direction of the wire is reversed via a pulley 4 provided at the turning point, and the wire is extended in the direction of arrow b through a temporary fixing ring 3 attached to the reinforcing bar 2 above.

【0010】図2は延線終了後、光ファイバセンサを鉄
筋に固定した状態図である。光ファイバセンサ1を所定
の位置に布設した後、前記リングを固定3´する。又滑
車4を取り外し、滑車4に代えて、光ファイバセンサの
許容曲げ半径より大きい曲率をもった固定部材5を折返
し点に設置し、光ファイバセンサ1を上記固定部材5に
沿わせて固定し、光ファイバセンサ1の布設を終了する
FIG. 2 is a diagram showing the state in which the optical fiber sensor is fixed to the reinforcing steel after the wire has been laid. After installing the optical fiber sensor 1 at a predetermined position, the ring is fixed 3'. Also, the pulley 4 is removed, and instead of the pulley 4, a fixing member 5 having a curvature larger than the allowable bending radius of the optical fiber sensor is installed at the turning point, and the optical fiber sensor 1 is fixed along the fixing member 5. , the installation of the optical fiber sensor 1 is completed.

【0011】図3は本発明の布設方法の確認のための実
験における光ファイバセンサの布設状態図である。高さ
1700mm×幅1400mm×長さ20000mmの
コンクリート躯体6内部の鉄筋2に本発明の布設方法で
120m長さの光ファイバセンサ1を約250mmピッ
チで7段に折返し布設した。この実験では、布設作業は
容易であり、コンクリート打設後の光ファイバセンサの
損失増加は1dB以下で、DTSによる温度分布測定に
は全く支障がないことが確認された。
FIG. 3 is a diagram showing the installation state of an optical fiber sensor in an experiment to confirm the installation method of the present invention. Optical fiber sensors 1 with a length of 120 m were folded in seven stages at a pitch of about 250 mm and laid on reinforcing bars 2 inside a concrete frame 6 measuring 1,700 mm in height x 1,400 mm in width x 20,000 mm in length using the laying method of the present invention. In this experiment, it was confirmed that the installation work was easy, the loss increase in the optical fiber sensor after concrete placement was less than 1 dB, and there was no problem at all with temperature distribution measurement by DTS.

【0012】又本発明の布設方法により、高速道路トン
ネル部の底板(高さ1700mm×幅16000mm×
長さ20000mm)となるマスコンクリートに、DT
Sによる温度分布計測システムを適用した。深度方向に
100〜300mmピッチで光ファイバセンサを7段布
設し、長さ方向にこの配置を3列設けた(光ファイバセ
ンサ総長約300m)。光ファイバセンサの長さ方向の
5m毎の温度データはコンクリート躯体の各位置と対応
させ、ソフト処理により躯体断面の色別温度分布表示、
深度方向温度グラフ及び任意の場所の時系列温度変化グ
ラフが抽出できるようにした。この結果、マスコンクリ
ート内部の連続的かつ立体的温度分布の把握が可能にな
った。
[0012] Furthermore, by the installation method of the present invention, the bottom plate of the expressway tunnel section (height 1700 mm x width 16000 mm x
DT is applied to the mass concrete with a length of 20,000 mm.
A temperature distribution measurement system using S was applied. Optical fiber sensors were laid in seven stages at a pitch of 100 to 300 mm in the depth direction, and three rows of this arrangement were provided in the length direction (total length of the optical fiber sensors was about 300 m). Temperature data every 5m along the length of the optical fiber sensor is made to correspond to each position of the concrete structure, and software processing displays temperature distribution by color on the cross section of the structure.
It is now possible to extract depth direction temperature graphs and time-series temperature change graphs at any location. As a result, it has become possible to understand the continuous and three-dimensional temperature distribution inside mass concrete.

【0013】[0013]

【発明の効果】以上説明したように、本発明の光ファイ
バセンサの布設方法によれば、光ファイバセンサの延線
時における他の鉄筋への絡みがなく容易に延線出来、か
つコンクリート打設時においても、光ファイバセンサを
外力から保護することが出来る。
Effects of the Invention As explained above, according to the method for laying an optical fiber sensor of the present invention, the optical fiber sensor can be easily extended without getting entangled with other reinforcing bars when it is being extended, and it can be easily installed in concrete. Even at times, the optical fiber sensor can be protected from external forces.

【0014】従って、DTSによる温度計測システムの
適用によるマスコンクリート内部の連続的、かつ、立体
的な温度分布の把握が可能となり、今後、土木分野にお
いてマスコンクリートの課題の一つである温度ひび割れ
を制御するための温度応力解析、設計上の配慮、施工管
理の面に利用するとき極めて効果的であり、情報管理施
工が期待できる。
[0014] Therefore, by applying the DTS temperature measurement system, it is possible to grasp the continuous and three-dimensional temperature distribution inside mass concrete, and in the future, it will be possible to grasp temperature cracks, which is one of the problems with mass concrete in the civil engineering field. It is extremely effective when used in temperature stress analysis for control, design consideration, and construction management, and can be expected to be used for information management construction.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光ファイバセンサの布設方法における
延線の説明図である。
FIG. 1 is an explanatory diagram of wire extension in the optical fiber sensor installation method of the present invention.

【図2】延線終了後、光ファイバセンサを鉄筋に固定し
た状態図である。
FIG. 2 is a diagram showing the state in which the optical fiber sensor is fixed to the reinforcing steel after the wire has been extended.

【図3】本発明の布設方法の確認のための実験における
光ファイバセンサの布設状態図である。
FIG. 3 is a diagram showing the installation state of an optical fiber sensor in an experiment to confirm the installation method of the present invention.

【符号の説明】 1  光ファイバセンサ 2  鉄筋 3  仮止めリング 4  滑車 5  固定部材 6  コンクリート▲躯▼体[Explanation of symbols] 1 Optical fiber sensor 2 Reinforcing bars 3 Temporary fixing ring 4 Pulley 5 Fixed member 6 Concrete ▲Structure▼Body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光ファイバ自身をセンサとしてコンク
リート躯体の温度を測定する場合の光ファイバセンサの
布設方法であって、構築された鉄筋に適当間隔で仮止め
リングを取り付けると共に、折返し点に滑車を配設し、
光ファイバセンサを前記仮止めリングの中を通して延線
し、折返し点においては前記滑車を介して反転させ、光
ファイバセンサを所定の位置に布設した後前記リングを
固定し、折返し部においては滑車に代えて光ファイバセ
ンサの許容曲げ半径以上の曲率を有する固定部材を設置
し、これに沿わせて固定することを特徴とする光ファイ
バセンサの布設方法。
Claim 1: A method for installing an optical fiber sensor for measuring the temperature of a concrete structure using the optical fiber itself as a sensor, which comprises attaching temporary fixing rings to the constructed reinforcing bars at appropriate intervals, and installing a pulley at the turning point. arranged,
The optical fiber sensor is extended through the temporary fixing ring, and at the turning point, it is reversed via the pulley, and after the optical fiber sensor is installed at a predetermined position, the ring is fixed, and at the turning point, the wire is fixed to the pulley. A method for installing an optical fiber sensor, characterized in that a fixing member having a curvature greater than the allowable bending radius of the optical fiber sensor is installed instead and fixed along the fixing member.
JP2417932A 1990-12-17 1990-12-17 Installing method of optical fiber sensor Pending JPH04216425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417932A JPH04216425A (en) 1990-12-17 1990-12-17 Installing method of optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417932A JPH04216425A (en) 1990-12-17 1990-12-17 Installing method of optical fiber sensor

Publications (1)

Publication Number Publication Date
JPH04216425A true JPH04216425A (en) 1992-08-06

Family

ID=18525930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417932A Pending JPH04216425A (en) 1990-12-17 1990-12-17 Installing method of optical fiber sensor

Country Status (1)

Country Link
JP (1) JPH04216425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417965C (en) * 2005-04-12 2008-09-10 陈兆勋 Imbedded fiber device
WO2009061323A1 (en) 2007-11-09 2009-05-14 Sensortran, Inc. Surface temperature sensing system
WO2012063062A3 (en) * 2010-11-08 2014-06-05 Silixa Ltd Fibre optic monitoring installation, apparatus, and method
JP2020041856A (en) * 2018-09-07 2020-03-19 鹿島建設株式会社 Stress measuring device and stress measurement method
CN113432745A (en) * 2021-06-23 2021-09-24 中国三峡建设管理有限公司 Construction process for switching distributed optical fiber sensing temperature measurement system of concrete dam into permanent monitoring corridor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417965C (en) * 2005-04-12 2008-09-10 陈兆勋 Imbedded fiber device
WO2009061323A1 (en) 2007-11-09 2009-05-14 Sensortran, Inc. Surface temperature sensing system
WO2012063062A3 (en) * 2010-11-08 2014-06-05 Silixa Ltd Fibre optic monitoring installation, apparatus, and method
US9651474B2 (en) 2010-11-08 2017-05-16 Silixa Ltd. Fibre optic monitoring installation and method
JP2020041856A (en) * 2018-09-07 2020-03-19 鹿島建設株式会社 Stress measuring device and stress measurement method
CN113432745A (en) * 2021-06-23 2021-09-24 中国三峡建设管理有限公司 Construction process for switching distributed optical fiber sensing temperature measurement system of concrete dam into permanent monitoring corridor

Similar Documents

Publication Publication Date Title
JP5204304B2 (en) Temperature measurement in mold by fiber optic measurement method
US20160223414A1 (en) Fiber bragg grating (fbg) sensor
JPH0921661A (en) Apparatus for monitoring underground state of anchor construction part
GB2524636A (en) Method of monitoring subsurface concrete structures
JP2011529400A5 (en)
JPH04216425A (en) Installing method of optical fiber sensor
JP3457894B2 (en) Optical fiber laying method and strain detecting device using optical fiber
EP1496352B1 (en) Method and apparatus for temperature monitoring of a physical structure
KR20210142082A (en) Apparatus for measuring convergence of slope face using fiber bragg grating sensor
JPH0474813A (en) Method and instrument for measuring wall thickness in blast furnace
CN201607299U (en) Optical fiber sensor of precast concrete rod
KR102323526B1 (en) Prestressing force monitoring system of prestressins strand using smart anchoring plate based on distributed optical fiber sensor, and method for the same
JP2001059797A (en) Optical fiber underlaying method and distortion detecting device through use of optical fiber
KR200404652Y1 (en) Device for Strain Measurement of Concrete Structures using Fiber Bragg Grating Sensor
JP3586611B2 (en) Strain detection method and strain detection system using optical fiber
JP5618422B2 (en) FBG optical fiber sensor type strain sensor
JP2786811B2 (en) Temperature measurement method
JP7075961B2 (en) How to measure internal stress or temperature of concrete structure
JP2008101933A (en) Surface temperature measuring method for steel structure
JPH04177134A (en) Method for laying optical fiber sensor
JP3199591B2 (en) Temperature distribution measurement tool
Schmidt-Hattenberger et al. Bragg grating extensometer rods (BGX) for geotechnical strain measurements
JP2005077113A (en) Distortion detection system
JP2000155040A (en) Monitoring system for survey object with optical fiber
JP2775361B2 (en) Laying cable