JPH0421578A - Deterioration of concrete - Google Patents
Deterioration of concreteInfo
- Publication number
- JPH0421578A JPH0421578A JP12108390A JP12108390A JPH0421578A JP H0421578 A JPH0421578 A JP H0421578A JP 12108390 A JP12108390 A JP 12108390A JP 12108390 A JP12108390 A JP 12108390A JP H0421578 A JPH0421578 A JP H0421578A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- electrodes
- electrolyte
- test
- exposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006866 deterioration Effects 0.000 title claims description 6
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 11
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 9
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 8
- 239000000460 chlorine Substances 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 230000000593 degrading effect Effects 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 26
- 238000010828 elution Methods 0.000 description 9
- 239000004568 cement Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- -1 and in this case Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Aftertreatments Of Artificial And Natural Stones (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、コンクリートを変質させ、その強度などを
劣化させる方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of altering concrete and deteriorating its strength.
(発明の背景)
コンクリートの強度発現機構は、その確定的な詳細は解
明されていないが、竹材間でセメントか硬化することに
より発揮されると一般的には解されており、この場合の
セメントの硬化は、主としてけい酸カルシウム水和物(
CS H)の微細な結晶が生成される水和反応に基づい
ている。(Background of the invention) Although the precise details of the mechanism by which concrete develops strength have not been elucidated, it is generally understood that it is achieved by hardening of cement between bamboo materials, and in this case, cement The curing is mainly caused by calcium silicate hydrate (
It is based on a hydration reaction in which fine crystals of CS H) are produced.
従って、硬化後のコンクリートの強度は、セメント水和
組織と密接な関係にあることが予測され、水和組織の変
質か強度を大きく左右させる要因となる。Therefore, it is predicted that the strength of concrete after hardening is closely related to the cement hydration structure, and the alteration of the hydration structure is a factor that greatly influences the strength.
ところで、現在までのコンクリートに関する研究開発で
は、その強度などを増加させることが主流となっていて
、コンクリートを弱体化させることはあまり研究されて
いないのが実状である。By the way, research and development regarding concrete to date has focused on increasing its strength, and the reality is that there has been little research into weakening concrete.
この発明は、このような背景に鑑みてなされたものであ
り、その目的とするところは、比較的短期間にコンクリ
ートを変質劣化させることができる方法を提供すること
にある。This invention was made in view of this background, and its purpose is to provide a method that can alter and deteriorate concrete in a relatively short period of time.
(課題を解決するための手段)
上記目的を達成するために、本発明は、コンクリートの
劣化方法において、前記コンクリートを劣化させようと
する部分を電解液中に露出させ、この露出部分に対向し
て一対の電極を設置し、この電極に直流電圧を印加し、
前記電解液中に前記コンクリートからカルシウムイオン
を溶出させることを特徴とする。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a concrete deterioration method in which a portion of the concrete to be deteriorated is exposed in an electrolytic solution, and a portion facing the exposed portion is provided. A pair of electrodes is installed, and a DC voltage is applied to the electrodes.
The method is characterized in that calcium ions are eluted from the concrete into the electrolytic solution.
上記電解質としては、水が好適である。Water is suitable as the electrolyte.
また、この電解質には、塩素およびまたは硫酸イオンを
含せることかできる。The electrolyte may also contain chlorine and/or sulfate ions.
(発明の作用効果)
上記構成のコンクリートの劣化方法によれば、電解液中
に露出された部分に対向して設置された一対の電極間に
直流電圧を印加すると、電解質中に電界が形成され、コ
ンクリート中に含まれているカルシウムイオンは、正に
帯電しているので、負極側に吸引され、電解質中に溶出
され、これによりコンクリート中には空洞部が形成され
、その強度が低下する。(Operations and Effects of the Invention) According to the method for degrading concrete having the above configuration, when a DC voltage is applied between a pair of electrodes installed opposite to the portion exposed in the electrolyte, an electric field is formed in the electrolyte. Since the calcium ions contained in concrete are positively charged, they are attracted to the negative electrode side and eluted into the electrolyte, thereby forming cavities in the concrete and reducing its strength.
このときの溶出の度合いは、電極間の直流電圧にほぼ比
例するので、カルシウムイオンの溶出の程度は、電極間
の直流電圧の大きさを調整することで簡単に変更でき、
コンクリートの劣化を短時間で行なわせることかできる
。The degree of elution at this time is approximately proportional to the DC voltage between the electrodes, so the degree of calcium ion elution can be easily changed by adjusting the magnitude of the DC voltage between the electrodes.
It is possible to make concrete deteriorate in a short period of time.
また、電解質として通常の水を選択し、この水に適宜濃
度の塩素や硫酸イオンを溶解させれば、塩素や硫酸イオ
ンが負に帯電しているので、上述したカルシウムイオン
とは逆に、これが電極の正極側に吸引されるので、カル
シウムイオンの溶出に加え、これらのイオンをコンクリ
ート中に電気力で侵入させることができ、コンクリート
の劣化をさらに促進することができる。In addition, if you select normal water as the electrolyte and dissolve chlorine or sulfate ions at an appropriate concentration in this water, the chlorine and sulfate ions are negatively charged, so they are the opposite of the calcium ions mentioned above. Since calcium ions are attracted to the positive side of the electrode, in addition to elution of calcium ions, these ions can be caused to enter concrete by electric force, thereby further accelerating the deterioration of concrete.
(実施例)
以下、この発明の好適な実施例について添付図面を参照
にして詳細に説明する。(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本発明方法の作用効果を確認するために行な
った試験の状況を示している。FIG. 1 shows the status of a test conducted to confirm the effects of the method of the present invention.
同図に示す試験では、電解液として水Aが収納された容
器Cと、直径が5cmで高さが1印の円筒状のモルタル
製の試験体Xとを準備した。In the test shown in the figure, a container C containing water A as an electrolytic solution and a cylindrical mortar test specimen X with a diameter of 5 cm and a height of 1 mark were prepared.
試験体Xは、No、1〜No、3の3つを準備し、これ
らのそれぞれをその両端面が露出するようにして塩ビ製
の支持体Fに埋め込んで、これを水A中に浸漬した。For test specimens X, three specimens No. 1 to No. 3 were prepared, each of which was embedded in a support F made of PVC with both end surfaces exposed, and this was immersed in water A. .
そして、試験体Xの各露出面に対向するようにして炭素
製の一対の電極板B、Dを設置し、一方の電極板Bを直
流電源Eの正極側に、他方の電極板pを直流電源Eの負
極側にそれぞれ接続した。Then, a pair of electrode plates B and D made of carbon are installed so as to face each exposed surface of the test specimen Each was connected to the negative electrode side of power source E.
ここで、各試験体Xのモルタル組成は、普通ポルトラン
ドセメントと標準砂とを水で、1:2二0.65の割り
合いで混合したものであり、試験開始時期の材令は4週
間の水中養生とした。Here, the mortar composition of each test specimen It was cured in water.
なお、第1図に示した符号Hの装置は、水Aを室温に保
つためのヒータである。Note that the device designated by the symbol H shown in FIG. 1 is a heater for keeping the water A at room temperature.
電気的な試験条件は、当初は定電流による実験を計画し
たが、カルシウムイオンの溶出が増加するにしたがって
定電流の条件を維持することができなかったので、25
Vの定電圧とした。The electrical test conditions were initially planned to be constant current, but as the elution of calcium ions increased, it was not possible to maintain constant current conditions, so
A constant voltage of V was used.
第2図がこの試験によって得られた結果である。Figure 2 shows the results obtained from this test.
同図では、丸印で示したものが、直流電圧を印加しない
場合の測定結果である。In the figure, the circles indicate the measurement results when no DC voltage is applied.
同図に示す結果ら明らかなように、電極C,D間に直流
電圧を印加するとモルタル中のカルシウムイオンの溶出
が大きく促進されることが解る。As is clear from the results shown in the same figure, it can be seen that applying a DC voltage between electrodes C and D greatly promotes the elution of calcium ions from the mortar.
なお、この試験では、No、2とNo、3との試験体を
93日および48日でそれぞれ取り出し、その断面の性
状を観察した。In this test, test specimens No. 2 and No. 3 were taken out at 93 days and 48 days, respectively, and the properties of their cross sections were observed.
No、3試験体では、+側の表面から2〜3 mmの範
囲は、暗灰色を呈し、その組織は緻密であった。In the No. 3 test specimen, the area within 2 to 3 mm from the + side surface exhibited a dark gray color, and its structure was dense.
一方、それ以外の範囲はうすい灰色を呈し、その組織は
前者に比べて粗であった。On the other hand, the other areas exhibited a pale gray color, and the texture was coarser than that of the former.
このような状態からすれば、−側がら徐々にカルシウム
イオンが溶出していることを示唆している。This condition suggests that calcium ions are gradually eluted from the negative side.
また、No、3試験体よりも溶出を促進させたNo、2
試験体では、緻密な部分が全く認められず、すべてうす
い灰色を呈し、その組織は粗であった。In addition, No. 2, which promoted elution more than No. 3 test specimen.
In the test specimen, no dense parts were observed, all the specimens were pale gray in color, and the structure was coarse.
これは、試験によって試験体のカルシウムイオンが殆ど
溶出したものと考えられる。This is considered to be because most of the calcium ions in the test specimen were eluted during the test.
第3図は、NO,2,No、3試験体のX線回折図を示
している。FIG. 3 shows the X-ray diffraction patterns of the NO, 2, No, 3 test specimens.
第3図(A)に示すように、試験前の試料では、おもな
セメント水和物であるC a (OH) 2とCSRと
の回折線が明瞭に認められる。As shown in FIG. 3(A), in the sample before the test, diffraction lines of C a (OH) 2 and CSR, which are the main cement hydrates, are clearly observed.
ところが、目視観察で暗灰色を呈し、緻密な組織と判定
された部分(第3図(B) 、No、3試験体の+側)
では、試験前のものと同様に、Ca(OH)2とC5H
との回折線が明瞭に認められ、この部分は変質していな
いと判定できる。However, upon visual observation, the part exhibited a dark gray color and was determined to have a dense structure (Fig. 3 (B), No. 3, + side of specimen).
Now, as before the test, Ca(OH)2 and C5H
A diffraction line with .
一方、目視観察でうすい灰色を呈し、組織が粗くなって
いると判定された部分(第3図(C)、No、3試験体
の一側)では、C5Hの回折線のみでCa (OH)
2の回折線は認められず、この部分はCa (OH)
2が既に溶出し終わっており、変質していると判定でき
る。On the other hand, in the part that exhibited a pale gray color and was judged to have a coarse structure by visual observation (Fig. 3 (C), No. 3, one side of the specimen), only the C5H diffraction line showed Ca (OH).
The diffraction line 2 was not observed, and this part was Ca(OH)
2 has already finished eluting, and it can be determined that the quality has changed.
また、第3図(D、E)に示したN022試験体では、
中央部分から+側および一側とに2分割した試料ともC
3Hの回折線のみが認められるだけであり、この試験体
ではすべてのCa (OH)2が溶出し終ったものと判
定される。In addition, in the N022 test specimen shown in Figure 3 (D, E),
C
Only the 3H diffraction line was observed, and it was determined that all of the Ca(OH)2 had been eluted from this test specimen.
さらに、NO,2およびNo、3試験体について単位体
積重量および吸水率の変化を測定してみた。Furthermore, changes in unit volume weight and water absorption were measured for the NO.2 and No.3 test specimens.
以下に表はその測定結果を示している。The table below shows the measurement results.
この結果から明らかなように、試験後の試験体は試験前
に比べて単位体積重量が約8%減少し、吸水率が約38
%増大している。As is clear from these results, the unit volume weight of the specimen after the test decreased by approximately 8% compared to that before the test, and the water absorption rate decreased by approximately 38%.
% has increased.
この結果は、Ca (OH) 2とC3Hとの溶出によ
って空隙が増大し、これにより単位体積重量が減少し、
吸水率が増大したと考えられる。This result shows that the elution of Ca (OH) 2 and C3H increases the void space, which reduces the unit volume weight.
It is thought that the water absorption rate increased.
なお、以上の説明では、カルシウムイオンの溶出のだけ
について説明したが、水A中に塩素や硫酸イオンを溶解
させれば、塩素や硫酸イオンが負に帯電しているので、
上述したカルシウムイオンとは逆に、これが電極の正極
側に吸引され、上記実施例と同じ原理によりこれらのイ
オンをコンクリート中に電気力で侵入させることができ
、塩素ないしは硫酸イオンの作用によりコンクリートが
劣化することは良く知られているので、カルシウムイオ
ンの溶出と塩素およびまたは硫酸イオンとの相互作用に
より、コンクリートの劣化をより早期に促進させること
は、充分に予測できる。In addition, in the above explanation, only the elution of calcium ions was explained, but if chlorine or sulfate ions are dissolved in water A, the chlorine or sulfate ions are negatively charged, so
Contrary to the above-mentioned calcium ions, these ions are attracted to the positive side of the electrode, and using the same principle as in the above embodiment, these ions can be made to penetrate into the concrete by electric force, and the concrete is damaged by the action of the chlorine or sulfate ions. Since it is well known that concrete deteriorates, it can be fully predicted that the elution of calcium ions and the interaction with chlorine and/or sulfate ions will accelerate the deterioration of concrete.
第1図は本発明にかかるコンクリートの劣化方法の作用
効果を確認するために行なった試験の説明図、第2図は
同試験の試験結果のグラフ、第3図は試験体のX線回折
グラフである。
0・・・・・・・・・柱
4・・・・・・・・・水(電解質)
6・・・・・・・・・電極
8・・・・・・・・・直流電源Figure 1 is an explanatory diagram of a test conducted to confirm the effects of the concrete deterioration method according to the present invention, Figure 2 is a graph of the test results, and Figure 3 is an X-ray diffraction graph of the test specimen. It is. 0...... Pillar 4... Water (electrolyte) 6... Electrode 8... DC power supply
Claims (3)
ートを劣化させようとする部分を電解液中に露出させ、
この露出部分に対向して一対の電極を設置し、この電極
に直流電圧を印加し、前記電解液中に前記コンクリート
からカルシウムイオンを溶出させることを特徴とするコ
ンクリートの劣化方法。(1) In a concrete deterioration method, a portion of the concrete to be deteriorated is exposed to an electrolytic solution,
A method for degrading concrete, which comprises installing a pair of electrodes facing the exposed portion, applying a DC voltage to the electrodes, and eluting calcium ions from the concrete into the electrolytic solution.
1記載のコンクリートの劣化方法。(2) The method for degrading concrete according to claim 1, wherein the electrolyte comprises water.
むことを特徴とする請求項1または2記載のコンクリー
トの劣化方法。(3) The method for degrading concrete according to claim 1 or 2, wherein the electrolyte contains chlorine and/or sulfate ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12108390A JPH0421578A (en) | 1990-05-14 | 1990-05-14 | Deterioration of concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12108390A JPH0421578A (en) | 1990-05-14 | 1990-05-14 | Deterioration of concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0421578A true JPH0421578A (en) | 1992-01-24 |
Family
ID=14802443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12108390A Pending JPH0421578A (en) | 1990-05-14 | 1990-05-14 | Deterioration of concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0421578A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292187A (en) * | 2007-05-22 | 2008-12-04 | Railway Technical Res Inst | Concrete degradation determination method |
-
1990
- 1990-05-14 JP JP12108390A patent/JPH0421578A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292187A (en) * | 2007-05-22 | 2008-12-04 | Railway Technical Res Inst | Concrete degradation determination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alonso et al. | Chloride threshold dependence of pitting potential of reinforcements | |
Dotto et al. | Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars | |
Asavadorndeja et al. | Electrokinetic strengthening of soft clay using the anode depolarization method | |
Ihekwaba et al. | Carbonation and electrochemical chloride extraction from concrete | |
Castellote et al. | Oxygen and chloride diffusion in cement pastes as a validation of chloride diffusion coefficients obtained by steady-state migration tests | |
Shan et al. | Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of silicate ion | |
AU2005211622B2 (en) | Process for the protection of reinforcement in reinforced concrete | |
KR20110067045A (en) | Process for the electrokinetic decontamination of a porous solid medium | |
Banfill | Re-alkalisation of carbonated concrete—Effect on concrete properties | |
Ottosen et al. | Desalination of a brick by application of an electric DC field | |
Babaahmadi et al. | Development of an electro-chemical accelerated ageing method for leaching of calcium from cementitious materials | |
Bouzeghaia et al. | Effect of passivation on chloride concentration threshold of steel reinforcement corrosion | |
JPH0421578A (en) | Deterioration of concrete | |
IL104837A (en) | Method for electrochemical treatment of reinforcing steel in concrete having embedded steel reinforcement | |
US6322691B1 (en) | Method for passivating steel in large structures formed of steel-reinforced concrete | |
Hassanein et al. | Effect of intermittent cathodic protection on chloride and hydroxyl concentration profiles in reinforced concrete | |
JP6968466B2 (en) | Lightweight conductive mortar material, its manufacturing method and use | |
JP2006232559A (en) | Electrolytic corrosion protection method of concrete | |
JPH0688435A (en) | Repairing method for concrete structure | |
JP2600436B2 (en) | Concrete destruction method | |
Castellote et al. | Phenomenological mass-balance-based model of migration tests in stationary conditions: Application to non-steady-state tests | |
Otero et al. | Electrochemical chloride removal from reinforced concrete structures and its ability to repassivate prerusted steel surfaces | |
Castellote et al. | Accelerated leaching of ultra high performance concretes by application of electrical fields to simulate their natural degradation | |
JPH0820439B2 (en) | Accelerated alteration test method for concrete | |
JPH07291767A (en) | Reforming method of concrete |