JPH0421568A - Fine crystalline sintered compact with high hardness and production thereof - Google Patents

Fine crystalline sintered compact with high hardness and production thereof

Info

Publication number
JPH0421568A
JPH0421568A JP2125815A JP12581590A JPH0421568A JP H0421568 A JPH0421568 A JP H0421568A JP 2125815 A JP2125815 A JP 2125815A JP 12581590 A JP12581590 A JP 12581590A JP H0421568 A JPH0421568 A JP H0421568A
Authority
JP
Japan
Prior art keywords
diamond
less
powder
sintered body
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2125815A
Other languages
Japanese (ja)
Other versions
JP2747358B2 (en
Inventor
Manabu Miyamoto
学 宮本
Kojiro Kitahata
北畑 浩二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2125815A priority Critical patent/JP2747358B2/en
Publication of JPH0421568A publication Critical patent/JPH0421568A/en
Application granted granted Critical
Publication of JP2747358B2 publication Critical patent/JP2747358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain the title sintered compact with improved wear resistance by bringing a metal (alloy) containing a specified amount of another metal in the iron group into contact with a resin-derived noncrystalline carbon incorporated with each specified size of diamond powder and high-pressure phase-type boron nitride powder etc., followed by sintering under pressure at specified conditions. CONSTITUTION:Firstly, a resin-derived noncrystalline carbon is incorporated with (A) diamond powder 1-3mum in size and (B) high-pressure phase-type boron nitride powder <=3mum (in size and/or (C) diamond powder <=1mum in size. Thence, the resulting noncrystalline carbon is brought into contact with a metal (alloy) containing >=5wt.% of another metal in the iron group to effect manifestation of catalytic activity. The resulting noncrystalline carbon is then sintered at >=1250 deg.C under a pressure corresponding to the diamond-stable region in terms of thermodynamics.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削用工具の刃先、ドレッサー、ダイス等の
耐摩耗性部品として有用な高硬度微細結晶焼結体及びそ
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-hardness microcrystalline sintered body useful as a wear-resistant part such as the cutting edge of a cutting tool, a dresser, a die, etc., and a method for manufacturing the same. be.

[従来の技術] ダイヤモンド焼結体は高硬度で且つ耐摩耗性の優れたも
のであるところから、従来より切削用工具の刃先や線引
ダイス等の素材どして使用されている。しかし天然ダイ
ヤモンド隼石工具に比較すると加工物の仕上面精度が悪
く、鏡面と呼ばれ得る程の緻密な面は得られないという
欠点を有していた。即ち市販のダイヤモンド焼結体にお
ける構成ダイヤモンド粒子の粒径は3〜20μm程度で
あって、この焼結体を用いた切削工具の刃先には結晶粒
子の大きさにほぼ対応する凹凸があり、天然ダイヤモン
ド単石工其の様な鋭い刃先でないことがその主な原因で
あると考えられている(特公昭58−32224号参照
)。
[Prior Art] Diamond sintered bodies have high hardness and excellent wear resistance, and have thus far been used as materials for cutting tool edges, wire drawing dies, and the like. However, compared to natural diamond meteorite tools, the finished surface accuracy of the workpiece is poor, and it has the disadvantage that it is impossible to obtain a surface that is so precise that it can be called a mirror surface. In other words, the particle size of the constituent diamond particles in a commercially available diamond sintered body is approximately 3 to 20 μm, and the cutting tool edge using this sintered body has irregularities that roughly correspond to the size of the crystal grains. It is thought that the main reason for this is that the cutting edge is not as sharp as that of diamond single stone masonry (see Japanese Patent Publication No. 58-32224).

上記不都合を回避する為に、焼結体を構成するダイヤモ
ンド結晶粒子を3μm以下の極めて微細なものとすると
いったことは一応着想し得るところである。ところが従
来から一般的に実施されている高温高圧法では、希望す
る様な微細粒子構造の焼結体を製造することばできない
。即ち本発明者らが実験によって確認したところでは、
原料ダイヤモンド粉末として3μm以下の微細粒子を使
用し、これをCo板の間に挟み込んで超高圧高温発生装
置により60キロバール、1450℃の条件で焼結する
と、ダイヤモンド微細粒子の一部が50〜500μm程
度の粗大粒子に成長してしまい、希望する微細粒子構造
の焼結体を得ることはできなかフた。これに対し原料ダ
イヤモンド粉末として3μm以上のものを使用すると焼
結工程で粒成長が起こらず、均一な組織を有する焼結体
を得ることができた。こうしたことが、市販ダイヤモン
ド焼結体を構成する原料ダイヤモンド粒子の最適粒径が
3μm程度とされていた理由と思われる。
In order to avoid the above-mentioned disadvantages, it is conceivable to make the diamond crystal grains constituting the sintered body extremely fine, with a diameter of 3 μm or less. However, it is not possible to produce a sintered body with a desired fine grain structure using the high temperature and high pressure method that has been commonly practiced. That is, as confirmed by the inventors through experiments,
Fine particles of 3 μm or less are used as raw material diamond powder, and when these are sandwiched between Co plates and sintered in an ultra-high pressure and high temperature generator at 60 kilobar and 1450°C, some of the diamond fine particles are about 50 to 500 μm in size. The particles grew into coarse particles, making it impossible to obtain a sintered body with the desired fine grain structure. On the other hand, when diamond powder having a diameter of 3 μm or more was used as the raw material diamond powder, grain growth did not occur during the sintering process, and a sintered body with a uniform structure could be obtained. This is considered to be the reason why the optimum particle size of the raw material diamond particles constituting commercially available diamond sintered bodies is about 3 μm.

他方、3μm以下のダイヤモンド粉末を原料として用い
た場合でも焼結時の粒成長を抑制することのできる技術
は、例えば前述の特公昭58−32224号公報に見ら
れる様に一応は開発されている。この技術は、1μm以
下のダイヤモンド粒子と共に、1μm以下の周期律表4
a、5a。
On the other hand, a technique capable of suppressing grain growth during sintering even when diamond powder of 3 μm or less is used as a raw material has been developed, for example, as seen in the above-mentioned Japanese Patent Publication No. 58-32224. . This technology works with diamond particles of less than 1 μm as well as diamond particles of less than 1 μm.
a.5a.

6a族金属の炭化物、窒化物、硼化物若しくはこれらの
混合物又は相互固溶体化合物等を原料として併用し、こ
れらによって微細ダイヤモンド粒子の粒成長を抑制しよ
うとするものである。
The purpose is to use group 6a metal carbides, nitrides, borides, mixtures thereof, or mutual solid solution compounds as raw materials, and to suppress the growth of fine diamond particles using these materials.

しかしながら本発明者らが上記技術内容に従って実際に
焼結体を試作して検討したところ、上記化合物の添加に
よるダイヤモンド粒子の粒成長抑制効果は確かに認めら
れたものの、焼結体の硬度は通常のダイヤモンド焼結体
に比べて著しく低くなることが判明した。これは、併用
される上記化合物の硬度がダイヤモンドの硬度よりも遥
かに小さいことによるものと考えられる。しかも上記技
術では、粉末状の原料を使用しているので原料粉末の表
面にガスが吸着し易く、そのため焼結が阻害されて未焼
結部分が残ってしまうという問題もあった。
However, when the present inventors actually produced and examined a prototype sintered body according to the above-mentioned technical content, it was found that the addition of the above compound certainly had the effect of suppressing the grain growth of diamond particles, but the hardness of the sintered body was was found to be significantly lower than that of diamond sintered bodies. This is thought to be because the hardness of the above-mentioned compound used in combination is much smaller than that of diamond. Moreover, since the above-mentioned technique uses a powdered raw material, there is a problem in that gas is easily adsorbed on the surface of the raw material powder, which inhibits sintering and leaves an unsintered portion.

そこで本発明者らは、焼結体の硬度を下げることなく、
焼結時における微細ダイヤモンドの粒成長も抑制するこ
とのできる方法として、微細ダイヤモンドを、1μm以
下の微細な高圧相型窒化硼素と混合して焼結させる方法
を開発し、特開平1−133977号として提案した。
Therefore, the inventors of the present invention solved the problem without reducing the hardness of the sintered body.
As a method that can also suppress the grain growth of fine diamonds during sintering, we developed a method in which fine diamonds are mixed with fine high-pressure phase boron nitride of 1 μm or less and sintered. proposed as.

ところがその夜更に研究を進めたところ、原料として微
細ダイヤモンドを使用する先願発明の焼結体は、3μm
程度の粗粒ダイヤモンドを用いて得られる焼結体に比べ
ると耐摩耗性が不十分であり、この点で改善の余地が残
されていることが明らかとなった。
However, when further research was carried out that night, it was discovered that the sintered body of the prior invention, which uses fine diamond as a raw material, has a diameter of 3 μm.
It has become clear that the wear resistance is insufficient compared to a sintered body obtained using coarse-grained diamond, and that there is still room for improvement in this respect.

[発明が解決しようとする課題] 本発明はこうした従来技術がもつ問題点を解決する為に
なされたものであって、その目的は、切削用工具の刃先
や線引ダイス等に用いた場合に優れた仕上面精度が得ら
れ、かつ耐摩耗性に優れた高硬度微細結晶焼結体及びそ
の製造方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made to solve the problems of the prior art, and its purpose is to solve the problems of the prior art. The object of the present invention is to provide a high-hardness, microcrystalline sintered body that has excellent finished surface accuracy and excellent wear resistance, and a method for manufacturing the same.

[課題を解決するための手段] 本発明に係る高硬度微細結晶焼結体とは、1μm超3μ
m以下のダイヤモンド:30〜93体積%、3μm以下
の高圧相型窒化硼素:2〜20体積%、残部がダイヤモ
ンド合成用金属触媒(但し鉄族金属を5重量%以上含む
)またはこれと1μm以下のダイヤモンドから成り、組
織上ダイヤそントが直結々合相を形成している点に要旨
を有するものである。
[Means for solving the problem] The high hardness microcrystalline sintered body according to the present invention is
Diamond with a diameter of 3 μm or less: 30 to 93% by volume, high-pressure phase boron nitride with a diameter of 3 μm or less: 2 to 20% by volume, the balance being a metal catalyst for diamond synthesis (containing 5% by weight or more of iron group metals) or a metal catalyst with a diameter of 1 μm or less The key point is that the diamonds are directly connected to each other and form an interlocking phase.

又本発明に係る高硬度微細結晶焼結体の製造方法とは、
上記比率のダイヤモンド粉末と高圧相型窒化硼素粉末を
含有する樹脂由来非晶質炭素に、鉄族金属を5重量%以
上含む金属又は合金を接触させ、1250℃以上の温度
で且つ熱力学的なダイヤモンド安定領域の圧力で加圧焼
結する点に要旨を有するものである。
Furthermore, the method for producing a high hardness microcrystalline sintered body according to the present invention is as follows:
Resin-derived amorphous carbon containing diamond powder and high-pressure phase type boron nitride powder in the above ratio is brought into contact with a metal or alloy containing 5% by weight or more of iron group metal, and at a temperature of 1250°C or higher and thermodynamically The key point is that pressure sintering is performed at a pressure in the diamond stable region.

[作用] 前記公開公報でも明らかにした様に、ダイヤモンドに次
ぐ硬度を有する高正相型窒化硼素を、粒径1μm以下の
ダイヤモンド粉末中に分散させて高温・高圧下で焼結さ
せると、ダイヤモンドの焼結時における粒成長を抑制し
つつ高硬度の微細結晶焼結体が得られる。
[Function] As clarified in the above-mentioned publication, when high-phase boron nitride, which has a hardness second only to diamond, is dispersed in diamond powder with a particle size of 1 μm or less and sintered at high temperature and high pressure, it becomes diamond. A highly hard microcrystalline sintered body can be obtained while suppressing grain growth during sintering.

しかしこの様に微細なダイヤモンド粉末を用いた焼結体
では前述の如く耐摩耗性が乏しく、工具の刃先材として
使用したときの寿命は意外に短い。ところがダイヤモン
ド粉末として1μm超3μm以下のものを使用すると、
焼結体は高硬度で且つ非常に優れた耐摩耗性を示すもの
となり、刃先材として使用したときの寿命を大幅に延長
し得ることが確認された。
However, a sintered body using such fine diamond powder has poor wear resistance as described above, and has a surprisingly short lifespan when used as a cutting edge material for a tool. However, when diamond powder with a diameter of more than 1 μm and less than 3 μm is used,
It was confirmed that the sintered body has high hardness and excellent wear resistance, and can significantly extend the life when used as a cutting edge material.

また従来技術では、前述の如く粉末状の原料を焼結して
いたのでガス吸着等の不都合が発生していたが、本発明
ではダイヤモンド粉末と高圧相型窒化硼素粉末とを含有
させた樹脂由来非晶質炭素を原料として使用することに
より、前記の様な不都合をも解消することができる。
In addition, in the conventional technology, as mentioned above, powdered raw materials were sintered, which caused problems such as gas adsorption, but in the present invention, a resin-based material containing diamond powder and high-pressure phase type boron nitride powder was used. By using amorphous carbon as a raw material, the above-mentioned disadvantages can also be overcome.

即ち樹脂由来非晶質炭素は、後に詳述する如く液体状千
ツマ−から製造できるので、高圧相型窒化硼素粉末とダ
イヤモンド粉末を相互にうまく分散させることができ、
従来技術で述べたガス吸着等の不都合を発生することな
く、希望する高硬度微細結晶焼結体を得ることが可能と
なる。
That is, since the resin-derived amorphous carbon can be produced from liquid powder as will be explained in detail later, the high-pressure phase type boron nitride powder and the diamond powder can be well dispersed in each other.
It becomes possible to obtain a desired high hardness fine crystal sintered body without causing the disadvantages such as gas adsorption described in the prior art.

樹脂由来非晶質炭素はグラッシーカーボンとも呼ばれて
おり、代表例としてはフラン樹脂由来非晶質炭素が挙げ
られ、これはフルフリルアルコールに酸触媒を添加して
脱水縮合し、得られたフラン樹脂を炭化処理したもので
ある。従って本発明において樹脂由来非晶質炭素として
フラン樹脂由来非晶質炭素を用いる場合には、フルフリ
ルアルコール中に原料粉末を混合分散させてから上記処
理を行なうことによって、所定量の原料粉末を含有する
固形のフラン樹脂由来非晶質炭素が得られる。こうして
得られた原料粉末含有樹脂由来非晶質炭素を高温真空下
で脱ガス処理した後、金属触媒を積層又は同心円状に配
置して接触させ、高温、高圧下で焼結させると、前記樹
脂由来非晶質炭素自体がダイヤモンドに変換されると共
に、全体としてはダイヤモンドを直結々合相とする高硬
度の焼結体となる。
Resin-derived amorphous carbon is also called glassy carbon, and a typical example is furan resin-derived amorphous carbon, which is produced by adding an acid catalyst to furfuryl alcohol and subjecting it to dehydration condensation. This is a resin that has been carbonized. Therefore, in the case of using furan resin-derived amorphous carbon as the resin-derived amorphous carbon in the present invention, a predetermined amount of the raw material powder is mixed and dispersed in furfuryl alcohol and then subjected to the above treatment. A solid amorphous carbon derived from furan resin is obtained. After degassing the resin-derived amorphous carbon containing raw material powder obtained in this way under high-temperature vacuum, metal catalysts are arranged in layers or concentrically and brought into contact with each other, and sintered at high temperature and high pressure. The originating amorphous carbon itself is converted into diamond, and the whole becomes a highly hard sintered body with diamond as a directly bonded phase.

原料粉末を分散含有した樹脂由来非晶質炭素は緻密な固
形物てあり、−旦脱ガス処理した後はガス成分の吸着が
殆んど起こらず、しかも原料粉末がカーホンで均一に被
覆されたものとなる。
The resin-derived amorphous carbon that contains the raw material powder dispersedly is a dense solid substance, and after degassing, there is almost no adsorption of gas components, and the raw material powder is evenly coated with carphone. Become something.

尚上記では、樹脂由来非晶質炭素の代表例としてフラン
樹脂を炭化処理したフラン樹脂由来非晶質炭素を示した
が、本発明で用いる樹脂由来非晶質炭素はフラン樹脂由
来のものに限らず、その他フェノールホルムアルデヒド
樹脂、アセトン・フルフラール共重合樹脂、フルフリル
アルコール・フェノール共重合樹脂、尿素樹脂、メラミ
ン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂
等の熱硬化性樹脂由来のものであっても同様に使用する
ことができる。
In the above, furan resin-derived amorphous carbon obtained by carbonizing furan resin was shown as a representative example of resin-derived amorphous carbon, but the resin-derived amorphous carbon used in the present invention is limited to that derived from furan resin. However, even if it is derived from other thermosetting resins such as phenol formaldehyde resin, acetone/furfural copolymer resin, furfuryl alcohol/phenol copolymer resin, urea resin, melamine resin, xylene resin, toluene resin, guanamine resin, etc. Can be used similarly.

希望する複合焼結体を得る為の焼結温度は1250℃以
上とする必要があり、1250を未満ては焼結性が劣る
。又焼結の際の圧力としては、当然のことながら熱力学
的なダイヤモンド安定領域の圧力とする必要があり、約
40キロバール以上の圧力が必要となる。更に焼結工程
で用いる金属触媒としては鉄、コバルト、ニッケル等ノ
鉄族金属が使用され、鉄族金属のいずれかを5重量%以
上含有する合金であれば十分な触媒作用を発揮する。し
かし鉄族金属か5重量%未満のものでは触媒作用が有効
に発揮されず、焼結性が低下する。
In order to obtain the desired composite sintered body, the sintering temperature must be 1250° C. or higher; if it is less than 1250° C., the sinterability is poor. Moreover, the pressure during sintering must naturally be within the thermodynamic diamond stability region, and a pressure of about 40 kilobar or more is required. Further, as the metal catalyst used in the sintering step, iron group metals such as iron, cobalt, and nickel are used, and an alloy containing 5% by weight or more of any of the iron group metals exhibits a sufficient catalytic effect. However, if the amount of iron group metal is less than 5% by weight, the catalytic action will not be effectively exhibited and the sinterability will deteriorate.

ところて本発明ではダイヤモンド粉末として1μm超3
μm以下のものを選択使用するところに大きな特徴を有
するものであり、1μm未満の超微粉末では、仕上精度
の高い切削工具等を与える焼結体は得られるものの、耐
摩耗性が乏しいものとなり、一方3μmを超える粗粒物
を使用すると焼結体に微細な凹凸かできるため、仕上精
度の高い切削工具用等としての適性を欠くものとなる。
However, in the present invention, the diamond powder has a diameter of more than 1 μm.
The major feature is that ultrafine powder of less than 1 μm is selected and used, and although it is possible to obtain a sintered body that provides cutting tools with high finishing accuracy, it has poor wear resistance. On the other hand, if coarse grains exceeding 3 μm are used, the sintered body will have minute irregularities, making it unsuitable for use in cutting tools with high finishing accuracy.

しかし1μm超3μm以下のものを使用すると、耐摩耗
性および表面精度の両方を満足する焼結体を得ることが
できる。
However, if the diameter is more than 1 μm but not more than 3 μm, it is possible to obtain a sintered body that satisfies both wear resistance and surface precision.

尚本発明における高圧相型窒化硼素とは、立方晶型窒化
硼素とウルツ鉱型窒化硼素の2種類を包含する意味であ
り、従って本発明においてはどちらか一方を単独で使用
してもよく、画すを氾仝17て使用することもあり得る
。但し、ウルツ鉱型窒化硼素粉末は粒径3μm以下のも
のが一般的であるのでそのまま使用すればよいが、立方
晶型窒化硼素粉末は粗いものから1μm以下の微細なも
のまであるので、本発明において立方晶型窒化硼素を使
用する際には粒径3μm以下のものを選択し或は分級し
て使用する必要がある。なお同一添加量を比較すると、
高圧相型窒化硼素の粒径は小さい程ダイヤモンドの粒成
長抑制効果が大であるので、好ましくは1μm以下のも
のを使用することが望まれる。
Note that the high-pressure phase type boron nitride in the present invention includes two types, cubic type boron nitride and wurtzite type boron nitride, and therefore, in the present invention, either one may be used alone. It is also possible to use multiple images. However, since wurtzite-type boron nitride powder generally has a particle size of 3 μm or less, it can be used as is, but cubic-type boron nitride powder ranges from coarse to fine particles of 1 μm or less, so the present invention When using cubic boron nitride, it is necessary to select one with a particle size of 3 μm or less, or to use it after classification. In addition, when comparing the same amount of addition,
Since the smaller the grain size of the high-pressure phase type boron nitride, the greater the effect of suppressing diamond grain growth, it is desirable to use a grain size of 1 μm or less.

本発明に係る焼結体においては、1μm超3μm以下の
微細ダイヤモンドの含有量を30〜93体積%とする必
要がある。即ちダイヤモンドの含有量が93体積%を超
える場合は、高圧相型窒化硼素が相対的に不足気味とな
って焼結時におけるダイヤモンドの粒成長抑制効果が十
分に発揮されず、一方30%未満では、目標レベルの耐
摩耗性が得られない。又高圧相型窒化硼素の含有量は、
2〜20体積%とする必要がある。これは高圧相型窒化
硼素の含有量が20体積%を超えると耐摩耗性が不十分
となり、また2体積%未満では焼結時におけるダイヤモ
ンドの粒成長抑制効果が有効に発揮されなくなるからで
ある。尚本発明においては、更に他の成分として1μm
以下のダイヤモンド微粉末を少量配合し、焼結体の焼結
性を更に高めることも可能である。しかし配合量が多過
ぎると耐摩耗性が不十分となるので、50体積%程度以
下に抑えるのがよい。
In the sintered body according to the present invention, the content of fine diamonds exceeding 1 μm and 3 μm or less needs to be 30 to 93% by volume. In other words, when the diamond content exceeds 93% by volume, the high-pressure phase type boron nitride becomes relatively insufficient, and the effect of suppressing diamond grain growth during sintering is not sufficiently exhibited.On the other hand, when the diamond content is less than 30%, , the target level of wear resistance cannot be achieved. In addition, the content of high pressure phase type boron nitride is
It is necessary to set it as 2-20 volume%. This is because if the content of high-pressure phase type boron nitride exceeds 20% by volume, wear resistance will be insufficient, and if it is less than 2% by volume, the effect of suppressing diamond grain growth during sintering will not be effectively exhibited. . In addition, in the present invention, as another component, 1 μm
It is also possible to further improve the sinterability of the sintered body by blending a small amount of the following fine diamond powder. However, if the amount is too large, the wear resistance will be insufficient, so it is preferable to limit the amount to about 50% by volume or less.

また本発明の焼結体は、前述の如くその製造段階で鉄族
金属を5%以上含む金属又は合金を金属触媒として使用
するので、得られる焼結体は当該金属触媒を当然含んだ
ものとなる。
Furthermore, as mentioned above, in the sintered body of the present invention, a metal or alloy containing 5% or more of iron group metal is used as a metal catalyst in the manufacturing stage, so the obtained sintered body naturally contains the metal catalyst. Become.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に適合し得る範囲で適当に変更して実施する
ことはいずれも本発明の技術的範囲に含まれるものであ
る。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
It is within the technical scope of the present invention that any suitable changes and implementations may be made within the scope of the spirit described below.

[実施例] 粒径1μm以下および1μm超3μm以下のダイヤモン
ド粉末と、粒径1μm以下および1μm超3μm以下の
立方晶型窒化硼素粉末(CBN)とを各種割合で十分混
合した混合粉末にフルフリルアルコールを加えて更に混
合し、微量の硝酸を添加した後70℃に加熱して脱水縮
合し、フルフリルアルコールを樹脂化した。これを80
0tで炭化処理し、原料粉末を含有した緻密な固形のフ
ラン樹脂由来非晶質炭素を得た。
[Example] Furfuril was added to a mixed powder in which diamond powder with a particle size of 1 μm or less and more than 1 μm and less than 3 μm and cubic boron nitride powder (CBN) with a particle size of less than 1 μm and more than 1 μm and less than 3 μm were thoroughly mixed in various ratios. Alcohol was added and further mixed, and after adding a small amount of nitric acid, the mixture was heated to 70°C for dehydration condensation to convert furfuryl alcohol into a resin. This is 80
Carbonization was performed at 0 t to obtain dense solid furan resin-derived amorphous carbon containing raw material powder.

得られたフラン樹脂由来非晶質炭素を直径1゜■、厚さ
1mmの円板状に加工し、1 x 10−’Torr。
The obtained amorphous carbon derived from furan resin was processed into a disk shape with a diameter of 1° and a thickness of 1 mm, and heated to 1 x 10-'Torr.

1450℃の条件で脱ガス処理を行なった。これらを触
媒作用を有する10%CO含有超硬合金板及びコバルト
板で挟み、超高圧高温発生装置を用いて60キロバール
、1480℃の条件で焼結を行ない、焼結体No、1〜
7およびNo、1’〜5゜を得た。
Degassing treatment was performed at 1450°C. These were sandwiched between 10% CO-containing cemented carbide plates and cobalt plates with catalytic action, and sintered at 60 kilobar and 1480°C using an ultra-high pressure and high temperature generator.
7 and No. 1' to 5° were obtained.

得られた各焼結体について構成4分の配合割合、焼結体
組織及び切削テストによる耐摩耗性を調査したところ、
下記第1表に示す結果が得られた。
For each of the obtained sintered bodies, we investigated the composition ratio of the four constituents, the structure of the sintered body, and the wear resistance by cutting tests.
The results shown in Table 1 below were obtained.

尚切削テストは各焼結体を切断して切削チップを作成し
、被剛材として直径80mmの丸棒のA112%Si合
金に対して、切削速度300m/分、送り0.02m+
n/回転、切込み0.05mmの条件で行なった。但し
焼結体No、2’ 、4°については粗粒化しているの
で切削テストは行なっていない。
In the cutting test, each sintered body was cut to create a cutting chip, and a round bar of A112% Si alloy with a diameter of 80 mm was cut at a cutting speed of 300 m/min and a feed of 0.02 m +.
The cutting was carried out under the conditions of n/rotation and a cutting depth of 0.05 mm. However, cutting tests were not conducted for sintered bodies No. 2' and 4° because the grains were coarse.

その結果、被削材の加工面の粗度は、天然ダイヤモンド
車石工具を用いて同条件で切削したものと殆んど差が認
められず、鏡面に近い仕上げ面が得られた。
As a result, there was almost no difference in the roughness of the machined surface of the work material compared to that obtained by cutting under the same conditions using a natural diamond stone tool, and a nearly mirror-like finished surface was obtained.

また耐摩耗性は、各チップの寿命に至るまでの時間を、
No、1’を1として評価し、第1表に示す結果を得た
Wear resistance also refers to the time it takes to reach the end of each chip's lifespan.
No. 1' was evaluated as 1, and the results shown in Table 1 were obtained.

第1表より次のように考えることができる。From Table 1, it can be considered as follows.

(1)符号1〜7は本発明を充足する実施例で、均質な
微細組織が得られており、切削テストでは良好な仕上面
が得られると共に、耐摩耗性はいずれも比較例1°の2
倍以上であり切削部材として非常に優れていることが分
かる。
(1) Examples 1 to 7 are examples that satisfy the present invention, in which a homogeneous microstructure was obtained, a good finished surface was obtained in the cutting test, and the wear resistance was lower than that of the comparative example 1°. 2
It can be seen that it is more than twice as good as the cutting member.

(2)符号1′〜5゛は以下に示す如く本発明で定める
要件のいずれかを欠く比較例であり、耐摩耗性はいずれ
も本発明の局以下となっている。
(2) Reference numerals 1' to 5' are comparative examples lacking any of the requirements defined by the present invention as shown below, and the abrasion resistance of all of them is below that of the present invention.

符号1° :1μm超3μm以下のダイヤモンドが配合
されていない。
Code 1°: Diamonds with a diameter of more than 1 μm and less than 3 μm are not blended.

符号2″、4° :高圧相型窒化硼素量が規定範囲未満
であるため、焼結体は 部組粒化している。
Code 2″, 4°: The amount of high-pressure phase type boron nitride is less than the specified range, so the sintered body is partially grained.

符号3゛ :1μm超3μm以下のダイヤモンド量が規
定範囲未満であり耐摩耗 性の大幅な向上が見られない。
Code 3゛: The amount of diamonds larger than 1 μm and 3 μm or less is less than the specified range, and no significant improvement in wear resistance is observed.

符号5° :高圧相型窒化硼素量が規定範囲を超えてお
り耐摩耗性に劣る。
Code 5°: The amount of high-pressure phase type boron nitride exceeds the specified range and the wear resistance is poor.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、耐摩耗性が良好でかつ優れた仕上面精度
を与える高硬度の加工々具等に適した微細結晶焼結体を
提供し得ることになった。
[Effects of the Invention] As described above, according to the present invention, by employing the above-mentioned configuration, fine particles suitable for high-hardness machining tools, etc. that have good wear resistance and excellent finished surface accuracy can be produced. It is now possible to provide a crystal sintered body.

Claims (2)

【特許請求の範囲】[Claims] (1)1μm超3μm以下のダイヤモンド:30〜93
体積%、3μm以下の高圧相型窒化硼素:2〜20体積
%、残部がダイヤモンド合成用金属触媒(但し鉄族金属
を5重量%以上含む)またはこれと1μm以下のダイヤ
モンドから成り、組織上ダイヤモンドが直結々合相を形
成していることを特徴とする高硬度微細結晶焼結体。
(1) Diamond over 1 μm and 3 μm or less: 30-93
High-pressure phase boron nitride of 3 μm or less in volume%: 2 to 20 volume%, the balance consisting of a metal catalyst for diamond synthesis (containing 5% by weight or more of iron group metals) or this and diamond of 1 μm or less, which is structurally similar to diamond A high hardness microcrystalline sintered body characterized by forming a directly connected phase.
(2)1μm超3μm以下のダイヤモンド粉末と3μm
以下の高圧相型窒化硼素粉末またはこれと1μm以下の
ダイヤモンド粉末を含有させた樹脂由来非晶質炭素に、
鉄族金属を5重量%以上含む金属又は合金を接触させ、
1250℃以上の温度で且つ熱力学的なダイヤモンド安
定領域の圧力で加圧焼結することを特徴とする高硬度微
細結晶焼結体の製造方法。
(2) Diamond powder of more than 1 μm and less than 3 μm and 3 μm
The resin-derived amorphous carbon containing the following high-pressure phase type boron nitride powder or this and diamond powder of 1 μm or less,
Contacting a metal or alloy containing 5% by weight or more of an iron group metal,
A method for producing a high-hardness microcrystalline sintered body, which comprises pressure sintering at a temperature of 1250° C. or higher and a pressure in the thermodynamic diamond stability region.
JP2125815A 1990-05-15 1990-05-15 High hardness microcrystalline sintered body and method for producing the same Expired - Fee Related JP2747358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125815A JP2747358B2 (en) 1990-05-15 1990-05-15 High hardness microcrystalline sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125815A JP2747358B2 (en) 1990-05-15 1990-05-15 High hardness microcrystalline sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0421568A true JPH0421568A (en) 1992-01-24
JP2747358B2 JP2747358B2 (en) 1998-05-06

Family

ID=14919620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125815A Expired - Fee Related JP2747358B2 (en) 1990-05-15 1990-05-15 High hardness microcrystalline sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2747358B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
JP2006334778A (en) * 2006-08-17 2006-12-14 Mitsubishi Materials Corp Grinding wheel
WO2018074275A1 (en) * 2016-10-21 2018-04-26 住友電気工業株式会社 Composite sintered material
WO2018088174A1 (en) * 2016-11-08 2018-05-17 住友電気工業株式会社 Composite sintered body
CN112055757A (en) * 2018-04-24 2020-12-08 住友电气工业株式会社 Composite sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880617A (en) * 1972-02-04 1973-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880617A (en) * 1972-02-04 1973-10-29

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
JP2006334778A (en) * 2006-08-17 2006-12-14 Mitsubishi Materials Corp Grinding wheel
WO2018074275A1 (en) * 2016-10-21 2018-04-26 住友電気工業株式会社 Composite sintered material
CN109890991A (en) * 2016-10-21 2019-06-14 住友电气工业株式会社 Composite sinter
EP3530767A4 (en) * 2016-10-21 2020-03-04 Sumitomo Electric Industries, Ltd. Composite sintered material
WO2018088174A1 (en) * 2016-11-08 2018-05-17 住友電気工業株式会社 Composite sintered body
CN112055757A (en) * 2018-04-24 2020-12-08 住友电气工业株式会社 Composite sintered body
EP3786309A4 (en) * 2018-04-24 2022-01-19 Sumitomo Electric Industries, Ltd. Composite sintered body
US11920222B2 (en) 2018-04-24 2024-03-05 Sumitomo Electric Industries, Ltd. Composite sintered material

Also Published As

Publication number Publication date
JP2747358B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP5680567B2 (en) Sintered body
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
US5468268A (en) Method of making an abrasive compact
JP6293669B2 (en) Sintered cubic boron nitride cutting tool
GB2560642A (en) Sintered polycrystalline cubic boron nitride material
JP2004160637A (en) Sintered compact used for machining chemically reactive material
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
US20230079359A1 (en) Sintered Polycrystalline Cubic Boron Nitride Material
EP0698447B1 (en) Abrasive body
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
KR20040005011A (en) Sintering body having high hardness for cutting cast iron and The producing method the same
JPH0421568A (en) Fine crystalline sintered compact with high hardness and production thereof
EP3697743B1 (en) Translucent polycrystalline cubic boron nitride body and method of production thereof
JP4714453B2 (en) Diamond or cBN tool and manufacturing method thereof
JPH05132704A (en) High-hardness microcrystal sintered compact and production thereof
JPH01133977A (en) High hardness fine crystal sintered body and its manufacture
JPH0269354A (en) Sintered diamond body and production thereof
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JPH01133978A (en) High hardness combined sintered body having good workability and its manufacture
JPH05194032A (en) Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool
JPH05132703A (en) High-hardness compound sintered compact
JPS6310119B2 (en)
JPS6159392B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees