JPH04215255A - Manufacture of electrode for fuel cell - Google Patents
Manufacture of electrode for fuel cellInfo
- Publication number
- JPH04215255A JPH04215255A JP2402078A JP40207890A JPH04215255A JP H04215255 A JPH04215255 A JP H04215255A JP 2402078 A JP2402078 A JP 2402078A JP 40207890 A JP40207890 A JP 40207890A JP H04215255 A JPH04215255 A JP H04215255A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- solvent
- electrode
- fuel cell
- dried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000000446 fuel Substances 0.000 title claims description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 75
- 239000002904 solvent Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 25
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 25
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000006185 dispersion Substances 0.000 claims abstract description 11
- 239000003208 petroleum Substances 0.000 claims abstract description 11
- 238000001125 extrusion Methods 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 34
- 238000005096 rolling process Methods 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000001476 alcoholic effect Effects 0.000 claims 4
- 239000011261 inert gas Substances 0.000 claims 4
- 230000002093 peripheral effect Effects 0.000 claims 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000010008 shearing Methods 0.000 abstract description 2
- 206010061592 cardiac fibrillation Diseases 0.000 abstract 1
- 230000002600 fibrillogenic effect Effects 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000005456 alcohol based solvent Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は燃料電池の電極を製造す
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing fuel cell electrodes.
【0002】0002
【従来の技術】燃料電池は燃料の持つ化学エネルギーを
直接電気エネルギーに変換するものであり、電解液層を
挟んで上下に配置された一対の各電極に、外部のガス供
給系から燃料ガスと酸化剤ガスを供給し、各電極の電極
触媒層上で燃料ガスおよび酸化剤ガスを電気化学的に反
応させ、その結果として系外に電気エネルギーを取り出
す配電装置の一種である。[Prior Art] A fuel cell is a device that directly converts the chemical energy of fuel into electrical energy, and a pair of electrodes placed one above the other with an electrolyte layer in between is supplied with fuel gas from an external gas supply system. It is a type of power distribution device that supplies oxidizing gas, causes the fuel gas and oxidizing gas to electrochemically react on the electrode catalyst layer of each electrode, and as a result extracts electrical energy outside the system.
【0003】図4はその電極および電解液層の構成を示
した縦断面の模式図である。図4において、電極1は電
解液層2を挟んで上下に配置されるが、ここでは便宜上
電極1を一方のみ図示してある。電極1は多孔質カーボ
ン基材3の上に電極触媒層4を付着して構成され、その
電極触媒層4は、触媒担体5の表面に貴金属微粒子6を
担持した触媒粒子7を、弗素樹脂粒子8により結着して
形成したものである。電解液層2は電解液9中にSiC
微粒子10を分散したものである。そして電極触媒層4
の内部で、カーボン基材3側からのガスと電解液層2か
らの電解液9とが接触し、三相界面が形成されて電気化
学的反応が進行する。この電気化学的反応を効率よく行
なわせるためには、貴金属微粒子6を担持した触媒粒子
7と弗素樹脂粒子8をできるだけ微粒子とすること、お
よび電解液9に濡れやすい触媒粒子7と電解液9に濡れ
難い弗素樹脂粒子8とを均一に分散させ、触媒粒子7(
固相)と図示してない反応ガス(気相)と電解液9(液
相)とが接する三相界面を増やすことが必要である。FIG. 4 is a schematic vertical cross-sectional view showing the structure of the electrode and electrolyte layer. In FIG. 4, the electrodes 1 are arranged one above the other with the electrolyte layer 2 in between, but only one of the electrodes 1 is shown here for convenience. The electrode 1 is constructed by adhering an electrode catalyst layer 4 on a porous carbon base material 3, and the electrode catalyst layer 4 consists of catalyst particles 7 carrying noble metal fine particles 6 on the surface of a catalyst carrier 5, and fluororesin particles. It is formed by binding with 8. The electrolyte layer 2 contains SiC in the electrolyte 9.
The fine particles 10 are dispersed therein. and electrode catalyst layer 4
Inside, the gas from the carbon base material 3 side and the electrolytic solution 9 from the electrolytic solution layer 2 come into contact, a three-phase interface is formed, and an electrochemical reaction progresses. In order to carry out this electrochemical reaction efficiently, it is necessary to make the catalyst particles 7 supporting the noble metal fine particles 6 and the fluororesin particles 8 as fine as possible, and also to make the catalyst particles 7 and the electrolyte 9 that are easily wetted by the electrolyte 9. The catalyst particles 7 (
It is necessary to increase the number of three-phase interfaces where the electrolytic solution 9 (solid phase), reaction gas (not shown) (gas phase), and electrolytic solution 9 (liquid phase) are in contact.
【0004】そのために、従来、界面活性剤を含む水に
、超音波等を用いて微粒子の触媒粒子7を分散させ、こ
れに微粒子の弗素樹脂粒子8のディスパージョンを加え
て、触媒粒子7と弗素樹脂粒子8の均一な分散状態を得
ている。そして電極触媒層4を製造するには、多孔質カ
ーボン基材3の上に触媒粒子7と弗素樹脂粒子8とを均
一に分散させたインクを塗布し、乾燥,焼成を行なうか
、もしくは有機溶剤を助剤として触媒粒子7と弗素樹脂
粒子8の共凝集を行ない、固液分離後固形分を混練し、
これを圧延してシート状の触媒層とした後、乾燥,焼成
し多孔質カーボン基材3の上に固着させて電極1として
いる。図5はその固形分を圧延する状況を示す模式図で
あり、11はカレンダーロール,12はシート状触媒層
を表わす。For this purpose, conventionally, fine catalyst particles 7 are dispersed in water containing a surfactant using ultrasonic waves or the like, and a dispersion of fine fluororesin particles 8 is added thereto to disperse the catalyst particles 7 and the water containing a surfactant. A uniform dispersion state of the fluororesin particles 8 is obtained. In order to manufacture the electrode catalyst layer 4, an ink in which catalyst particles 7 and fluororesin particles 8 are uniformly dispersed is applied onto the porous carbon base material 3, and then dried and fired, or an organic solvent is used. The catalyst particles 7 and the fluororesin particles 8 are co-agglomerated using as an auxiliary agent, and after solid-liquid separation, the solid content is kneaded,
This is rolled to form a sheet-like catalyst layer, then dried, fired, and fixed onto a porous carbon base material 3 to form an electrode 1. FIG. 5 is a schematic diagram showing the situation in which the solid content is rolled, and 11 represents a calender roll and 12 represents a sheet-like catalyst layer.
【0005】しかし、燃料電池の商品化が近く、燃料電
池電極の信頼性とコストダウンの要求が高くなっている
今日、電極触媒層4の製造に関して次のような問題があ
る。[0005] However, as fuel cells are about to be commercialized and demands for reliability and cost reduction of fuel cell electrodes are increasing, there are the following problems regarding the production of the electrode catalyst layer 4.
【0006】[0006]
【発明が解決しようとする課題】問題は多孔質カーボン
基材3上に触媒粒子7と弗素樹脂粒子8のインクを塗布
する従来の方法は、電極触媒層4の機械的強度が弱いた
めに、製造工程中または製造後の電極触媒層4にひび割
れを生じやすく、これが原因でガス漏れや電解液9の漏
れ等による電池特性の低下が大きいことである。そこで
、触媒粒子7と弗素樹脂粒子8を圧延シート化すること
により、手作業を機械化して工数低減によるコストダウ
ンとともに、電極触媒層4の機械的強度を改善して信頼
性の向上を図っているが、まだ強度不足であり機械化す
るのは難しいという問題もある。[Problems to be Solved by the Invention] The problem is that the conventional method of applying an ink of catalyst particles 7 and fluororesin particles 8 on a porous carbon substrate 3 has a weak mechanical strength of the electrode catalyst layer 4. Cracks are likely to occur in the electrode catalyst layer 4 during or after the manufacturing process, and this causes significant deterioration in battery characteristics due to gas leakage, electrolyte 9 leakage, and the like. Therefore, by forming the catalyst particles 7 and the fluororesin particles 8 into a rolled sheet, it is possible to mechanize manual work and reduce costs by reducing man-hours, as well as improve the mechanical strength of the electrode catalyst layer 4 and improve reliability. However, there is still a problem that it is not strong enough and it is difficult to mechanize it.
【0007】したがって、電極触媒層4はさらに機械的
強度を高めなければならず、シート触媒層の乾燥工程で
は、乾燥効率の点で真空乾燥より加熱乾燥の方が有利で
あることから、加熱乾燥を試みた所、シート状触媒層の
乾燥時の収縮による面積の減少や、しわが生ずるという
問題があり、これを防止するためシート状触媒層の端部
を固定して行なうと、やはり乾燥時の収縮によって亀裂
が発生するなどの不都合が起きる。Therefore, the mechanical strength of the electrode catalyst layer 4 must be further increased, and in the drying process of the sheet catalyst layer, heat drying is more advantageous than vacuum drying in terms of drying efficiency. However, when we tried this method, there was a problem that the area of the sheet-like catalyst layer decreased due to shrinkage during drying and wrinkles appeared.To prevent this, we tried fixing the edges of the sheet-like catalyst layer, but the drying time still increased. Inconveniences such as cracks occur due to shrinkage.
【0008】本発明は上述の点に鑑みなされたものであ
り、その目的は触媒と弗素樹脂と潤滑剤の混練物を高粘
性ペーストとして、加熱状態で成形加工することにより
、乾燥時の収縮のない高強度のシート状電極触媒層を得
る燃料電池の電極の製造方法を提供することにある。The present invention has been made in view of the above points, and its object is to reduce the shrinkage during drying by molding a highly viscous paste of a catalyst, a fluororesin, and a lubricant in a heated state. It is an object of the present invention to provide a method for producing a fuel cell electrode that obtains a sheet-like electrode catalyst layer with high strength.
【0009】[0009]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の方法はシート状触媒層を、その原料であ
る触媒と弗素樹脂(PTFE)に、石油系やアルコール
系の高沸点溶剤を少量加えて高粘性の混練物を作製し、
弗素樹脂をフィビル化しやすくするため、加熱状態で押
し出し成形加工と圧延成形加工の少なくとも一つを用い
ることにより高剪断応力を与えてシート状としたもので
ある。[Means for Solving the Problems] In order to solve the above-mentioned problems, the method of the present invention uses high-boiling point petroleum-based or alcohol-based materials to form a sheet-like catalyst layer on its raw materials, the catalyst and fluororesin (PTFE). Add a small amount of solvent to create a highly viscous kneaded material,
In order to facilitate fibilization of the fluororesin, it is made into a sheet by applying high shear stress by using at least one of extrusion molding and rolling molding in a heated state.
【0010】0010
【作用】本発明は以上の方法により、石油系溶剤を用い
るときは、加熱乾燥時にシート端部の2辺または全周囲
を支持して、シートが収縮するのを防ぎ、アルコール系
溶剤を用いるときは、純水で洗浄した後真空乾燥または
凍結真空乾燥が可能であるから、同様にシートの収縮を
防止することができ、また押し出し機、圧延機の順に高
剪断応力であり、高い強度を持つシートを効率良く製造
することができる。[Function] By the method described above, the present invention supports two sides or the entire periphery of the sheet edge during heat drying when petroleum-based solvents are used to prevent the sheet from shrinking, and when alcohol-based solvents are used. can be vacuum-dried or freeze-vacuum-dried after washing with pure water, which can similarly prevent sheet shrinkage, and has high shear stress and high strength in the order of extruder and rolling machine. Sheets can be manufactured efficiently.
【0011】[0011]
【実施例】以下、本発明を実施例により説明する。[Examples] The present invention will be explained below with reference to Examples.
【0012】まず、アセチレンブラックを担体とし白金
を担持した触媒に、界面活性剤を含む水を加え、これに
超音波を印加して触媒を十分に分散させた後、平均粒径
が0.2μmの弗素樹脂であるPTFE(ポリテトラフ
ルオロレチレン)のディスパージョンを加えよく混合し
て真空乾燥し、触媒とPTFEの混合粉体を作製する。
次にこれに沸点180〜250℃の石油系溶剤、例えば
ケロシン(灯油)を20〜70重量%添加混合し、粘土
状固形物とする。次いでこの粘土状固形物を圧延するが
、このとき、圧延機のロール内部に温水または蒸気を循
環させ、ロール温度を50〜150℃に設定しておき、
粘土状固形物を圧延して厚さ200μmのシート状触媒
層を作製する。次にシート状とした触媒層を中抜きの枠
にはめるか、または基材上に載せたまま、2辺または全
周を固定した状態とし、窒素ガス中で100〜250℃
で乾燥後、300℃の予備焼成を行ない、350℃,5
〜10kg/cm2 で加熱焼成することにより電極を
得る。First, water containing a surfactant is added to a catalyst in which platinum is supported using acetylene black as a carrier, and ultrasonic waves are applied to the catalyst to sufficiently disperse the catalyst, and the average particle size is 0.2 μm. A dispersion of PTFE (polytetrafluoroethylene), which is a fluororesin, is added, mixed well, and vacuum dried to produce a mixed powder of catalyst and PTFE. Next, 20 to 70% by weight of a petroleum solvent having a boiling point of 180 to 250°C, such as kerosene (kerosene), is added and mixed to form a clay-like solid. Next, this clay-like solid material is rolled. At this time, hot water or steam is circulated inside the rolls of the rolling mill, and the roll temperature is set at 50 to 150 ° C.
A clay-like solid material is rolled to produce a sheet-like catalyst layer with a thickness of 200 μm. Next, the sheet-shaped catalyst layer is placed in a hollow frame or placed on a base material with two sides or the entire circumference fixed, and heated at 100 to 250°C in nitrogen gas.
After drying at 300℃, pre-baking at 350℃, 5
An electrode is obtained by heating and firing at ~10 kg/cm2.
【0013】以上の過程で石油系溶剤の代わりにアルコ
ール系溶剤例えばエチレングリコール(沸点192℃)
を用いることもできる。この場合得られたシート状触媒
層は50〜250℃で乾燥後、300℃の予備焼成を行
ない、またシート状触媒層は純水で洗浄した後真空乾燥
することにより、多孔質の触媒層の内部のアルコールを
純水で置換することができるから、真空乾燥時に水分が
凍結して凍結真空乾燥となり、シート状触媒層の収縮を
防止することができ、2辺または全周の固定を省略する
ことも可能である。勿論、2辺または全周を固定して窒
素ガス中で100〜250℃の加熱乾燥を行なってもよ
い。In the above process, an alcohol-based solvent such as ethylene glycol (boiling point 192°C) is used instead of petroleum-based solvent.
You can also use The sheet-like catalyst layer obtained in this case is dried at 50 to 250°C and then pre-calcined at 300°C, and the sheet-like catalyst layer is washed with pure water and then vacuum-dried to form a porous catalyst layer. Since the alcohol inside can be replaced with pure water, the moisture freezes during vacuum drying, resulting in freeze-vacuum drying, which prevents shrinkage of the sheet catalyst layer and eliminates fixing on two sides or the entire circumference. It is also possible. Of course, it is also possible to heat dry at 100 to 250° C. in nitrogen gas with two sides or the entire circumference fixed.
【0014】また、石油系溶剤もしくはアルコール系溶
剤の添加量が20〜70重量%では、触媒,PTFEと
の混合状態が悪いこともあるので、はじめに、石油系も
しくはアルコール系の溶剤を150重量%と多量に添加
して均一混合し、粘土状固形物を作製してこれをフィル
ターに載せ、外部から加圧し余分の溶剤を除去すること
により溶剤量が20〜70重量%となるようにし、その
後は上述したように、それぞれ石油系溶剤,アルコール
系溶剤を用いた場合と同様の工程を経て電極を作製する
ことができる。[0014] Also, if the amount of petroleum-based solvent or alcohol-based solvent added is 20 to 70% by weight, the mixing condition with the catalyst and PTFE may be poor. A large amount of solvent is added and mixed uniformly to create a clay-like solid, which is placed on a filter and pressurized from the outside to remove excess solvent so that the amount of solvent is 20 to 70% by weight. As described above, electrodes can be produced through the same steps as those using petroleum-based solvents and alcohol-based solvents, respectively.
【0015】上の例ではPTFEディスパージョンを用
いた場合であるが、PTFEの水分散物であるPTFE
ディスパージョンを乾燥状態の触媒粉と混合分散させる
ためには、あらかじめ触媒粉を界面活性剤を含む水に分
散させ、これにPTFEディスパージョンを加える必要
がある。そして溶剤を添加混合し粘土状固形物を得るた
めに、PTFEと触媒を混合させた液を一旦乾燥させ、
水分を取り除いておき、その後に粘土状固形物とするに
必要な量の溶剤を加え混合している。これに対して、P
TFEのファインパウダーを用いれば、PTFEファイ
ンダーは乾燥粒子であるから、そのまま触媒粉と混合し
た状態で、必要量の溶剤を添加混合することにより、粘
土状固形物を得ることができる。即ち、PTFEディス
パージョン使用の場合は、粘土状固形物を得るために乾
燥工程を必要とするが、PTFEファインパウダー使用
の場合は、粘土状固形物を得るために乾燥工程を必要と
しないので、PTFEのファインパウダーを用いるのも
有効である。[0015] In the above example, a PTFE dispersion is used, but PTFE, which is an aqueous dispersion of PTFE, is used.
In order to mix and disperse the dispersion with the dry catalyst powder, it is necessary to first disperse the catalyst powder in water containing a surfactant, and then add the PTFE dispersion thereto. Then, in order to obtain a clay-like solid by adding and mixing a solvent, the mixture of PTFE and catalyst is once dried.
After removing the water, the amount of solvent necessary to form a clay-like solid is added and mixed. On the other hand, P
If TFE fine powder is used, since the PTFE finder is a dry particle, a clay-like solid can be obtained by mixing it with catalyst powder as it is and adding and mixing the required amount of solvent. That is, when using PTFE dispersion, a drying process is required to obtain a clay-like solid, but when using PTFE fine powder, a drying process is not required to obtain a clay-like solid. It is also effective to use fine powder of PTFE.
【0016】ところで、PTFEのディスパージョンや
ファインパウダーのPTFE粒子は、適量の有機溶剤の
存在下で剪断力を加えると一部繊維化し、この繊維化は
30℃以上の加熱状態で行なうことにより促進される。
このようにフィビル化されたPTFEを含む電極は機械
的強度を増す。これまで述べてきた各種の電極製造方法
は、PTFEをフィビル化しやすくするために、圧延加
工によりシート状触媒層を作製する場合について説明し
たものであるが、本発明の方法では、圧延加工だけでな
く、その前段として押し出し加工を施し、これらを組み
合わせた成形加工を行なうことにより、一層の効果を挙
げることができる。即ち、圧延加工のみ行なう場合は、
圧延→シートの折り返し→圧延という過程を繰り返し行
ない、PTFEのフィビル化を促進させて、機械的強度
を高めねばならないが、圧延加工の前段として押し出し
加工を付加すると、押し出し加工によりPTFEのフィ
ビル化が進んでいるので、そのまま圧延加工するだけで
機械的強度が確保され、圧延機における繰り返しの加工
を行なう必要はなくなる。By the way, some of the PTFE particles in PTFE dispersions and fine powders become fibrous when shearing force is applied in the presence of an appropriate amount of organic solvent, and this fibrosis is accelerated by heating at 30° C. or higher. be done. Electrodes containing fibilized PTFE have increased mechanical strength. In the various electrode manufacturing methods described so far, the sheet-shaped catalyst layer is manufactured by rolling in order to facilitate fibilization of PTFE, but in the method of the present invention, only rolling is required. Instead, by performing extrusion processing as a preliminary step and performing a molding process that combines these, further effects can be achieved. In other words, when only rolling is performed,
The process of rolling → folding the sheet → rolling must be repeated to promote fibilization of PTFE and increase its mechanical strength. However, if extrusion is added as a pre-rolling process, the extrusion process will cause the fibilization of PTFE to increase. Since the material is advanced, mechanical strength can be ensured simply by rolling it as it is, and there is no need for repeated processing in a rolling mill.
【0017】図1は図5に示した圧延加工の前段として
、押し出し機13を設置した状態を表わす模式図であり
、図5と共通部分を同一符号で示す。このようにすると
、押し出しと圧延の一連の連続加工の自動化も可能とな
り、シート状触媒層の機械的強度とともに加工効率も同
時に高めることができる。この際、押し出し加工では圧
延加工ほど幅寸法がとり難く、押し出し加工後の圧延加
工はシート幅が小さくなりやすいので、押し出し機13
のシリンダやノズルの寸法を大きくする等の考慮が必要
である。FIG. 1 is a schematic diagram showing a state in which an extruder 13 is installed as a pre-stage of the rolling process shown in FIG. 5, and parts common to those in FIG. 5 are designated by the same reference numerals. In this way, it becomes possible to automate a series of continuous processing such as extrusion and rolling, and it is possible to simultaneously improve the mechanical strength of the sheet-like catalyst layer and the processing efficiency. At this time, in extrusion processing, it is difficult to obtain the width dimension as in rolling processing, and in rolling processing after extrusion processing, the sheet width tends to become smaller, so the extruder 13
It is necessary to consider increasing the dimensions of the cylinder and nozzle.
【0018】本発明により得られる電極のシート状触媒
層の機械的強度は、600〜1000g/mm2 であ
り、これは従来のシート状触媒層の機械的強度が100
〜120g/mm2 であったのに比べて5な10倍も
高くなっている。図2の棒グラフは、その比較を示すも
のである。それぞれ(イ),(ロ),(ハ),(ニ)は
、ばらつきも含めた本発明の方法により得られた触媒層
の引張強度であり、(ホ)は、従来の製造方法による値
である。図3は本発明により得られた電極を備えた燃料
電池の出力特性を示す線図であり、横軸は運転時間,縦
軸はセル電圧である。図3の曲線(イ)は本発明による
電極,曲線(ロ)は従来の製造方法による電極を表わす
。
図3から本発明により得られた電極を有する燃料電池は
、長時間の運転に対しても安定な特性を持続することが
わかる。The mechanical strength of the sheet catalyst layer of the electrode obtained by the present invention is 600 to 1000 g/mm2, which is higher than the mechanical strength of the conventional sheet catalyst layer of 100 g/mm2.
This is 10 times higher than the previous value of ~120 g/mm2. The bar graph in FIG. 2 shows the comparison. (A), (B), (C), and (D) are the tensile strengths of the catalyst layer obtained by the method of the present invention, including variations, and (E) is the value obtained by the conventional manufacturing method. be. FIG. 3 is a diagram showing the output characteristics of a fuel cell equipped with an electrode obtained according to the present invention, in which the horizontal axis represents operating time and the vertical axis represents cell voltage. The curve (a) in FIG. 3 represents the electrode according to the present invention, and the curve (b) represents the electrode manufactured by the conventional manufacturing method. It can be seen from FIG. 3 that the fuel cell having the electrode obtained according to the present invention maintains stable characteristics even during long-term operation.
【0019】[0019]
【発明の効果】従来、燃料電池の電極を製造する一つの
方法として、触媒粒子と弗素樹脂粒子を水に分散させた
インクに、アルコール系溶剤を加え、触媒粒子と弗素樹
脂粒子を凝集させて、固液分離後の固形物を混練し圧延
成形してシート状触媒層を得、これを基材上に圧着して
いたが、この方法は圧延成形によりシート状触媒層とす
る段階で機械的強度が弱く、割れが生ずるなど製造効率
を高める上でも問題があったが、高い機械的強度を有す
るシート状触媒層を得るために行なった本発明の方法に
よれば、触媒粒子と弗素樹脂粒子と少量の高沸点有機溶
剤を混練した固形物は、加熱状態で大きな剪断応力を与
える塑性加工が可能であることから、押し出し機と圧延
機を続けて通す一連の成形加工により、弗素樹脂粒子の
フィビル化が容易に、しかも極めて効率よく行なうこと
ができ、自動化も可能であるという大きな効果を有する
。[Effects of the Invention] Conventionally, one method for producing electrodes for fuel cells is to add an alcohol-based solvent to an ink in which catalyst particles and fluororesin particles are dispersed in water to cause the catalyst particles and fluororesin particles to coagulate. Previously, the solid material after solid-liquid separation was kneaded and rolled to obtain a sheet-like catalyst layer, which was then crimped onto a substrate, but this method required a mechanical process at the stage of forming the sheet-like catalyst layer by rolling. However, according to the method of the present invention, which was carried out to obtain a sheet-like catalyst layer with high mechanical strength, catalyst particles and fluororesin particles Solid materials kneaded with a small amount of high-boiling point organic solvent can be plastic-processed by applying large shear stress under heating. This method has the great effect that fibilization can be performed easily and extremely efficiently, and automation is also possible.
【図1】本発明の方法におけるシート状触媒層の成形加
工状態を示す模式図[Fig. 1] A schematic diagram showing the state of forming a sheet-like catalyst layer in the method of the present invention.
【図2】本発明の方法により得られるシート状触媒層の
引張強度を従来との比較で示した棒グラフ[Fig. 2] Bar graph showing the tensile strength of the sheet-like catalyst layer obtained by the method of the present invention in comparison with the conventional method.
【図3】従来
法におけるシート状触媒層の圧延状況を示す模式図[Figure 3] Schematic diagram showing the rolling situation of a sheet-like catalyst layer in the conventional method
【図4】従来の電極および電界液層の構成を示した模式
縦断面図[Fig. 4] A schematic vertical cross-sectional view showing the structure of a conventional electrode and electrolyte layer.
【図5】シート状触媒層の圧延状況を表わす模式図[Figure 5] Schematic diagram showing the rolling situation of a sheet-like catalyst layer
1 電極 2 電解液層 3 多孔質カーボン基材 4 電極触媒層 5 触媒担体 6 貴金属粒子 7 触媒粒子 8 弗素樹脂粒子 9 電解液 10 SiC微粒子 11 カレンダーロール 12 シート状触媒層 13 押し出し機 1 Electrode 2 Electrolyte layer 3 Porous carbon base material 4 Electrode catalyst layer 5 Catalyst carrier 6 Precious metal particles 7 Catalyst particles 8 Fluororesin particles 9 Electrolyte 10 SiC fine particles 11 Calendar roll 12 Sheet catalyst layer 13 Extruder
Claims (18)
媒層をカーボン基材上に着圧した燃料電池用電極の製造
方法であって、触媒粒子にPTFE(ポリテトラフルオ
ロエチレン)ディスパージョンを加えて乾燥した粉末に
高沸点溶剤を添加混合して固形物とし、次いで50〜1
50℃の押し出し加工と圧延加工のうちの少なくとも一
つの成形加工を行ないシートとした後、乾燥して前記シ
ート状触媒層を形成する工程を含むことを特徴とする燃
料電池用電極の製造方法。1. A method for producing a fuel cell electrode in which a sheet-like catalyst layer in which catalyst particles are bound with a fluororesin is pressed onto a carbon base material, the method comprising a PTFE (polytetrafluoroethylene) dispersion in the catalyst particles. Add and mix a high boiling point solvent to the dried powder to form a solid substance, then add 50 to 1
A method for producing an electrode for a fuel cell, comprising the step of forming a sheet by performing at least one of extrusion processing and rolling processing at 50° C. and then drying the sheet to form the sheet-like catalyst layer.
として石油系溶剤を20〜70%添加することを特徴と
する燃料電池用電極の製造方法。2. A method for producing an electrode for a fuel cell according to claim 1, characterized in that 20 to 70% of a petroleum solvent is added as the high boiling point solvent.
として石油系溶剤を70%以上添加混合して固形物とし
た後これを圧縮し、余剰の溶剤を除去し溶剤分を20〜
70%とすることを特徴とする燃料電池用電極の製造方
法。3. In the method according to claim 1, 70% or more of a petroleum solvent is added and mixed as a high boiling point solvent to form a solid, which is then compressed, excess solvent is removed, and the solvent content is reduced to 20 to 20%.
70%. A method for producing an electrode for a fuel cell.
ートの乾燥はシートの2辺または全周端部を固定した不
活性ガス雰囲気中で加熱乾燥することを特徴とする燃料
電池用電極の製造方法。4. The method according to claim 1 or 2, wherein the sheet is dried by heating in an inert gas atmosphere with two sides or the entire peripheral edge of the sheet fixed. Production method.
ートの乾燥はシートの2辺または全周端部を固定し不活
性ガス雰囲気中で加熱乾燥することを特徴とする燃料電
池用電極の製造方法。5. The method of claim 1 or 3, wherein the sheet is dried by fixing two sides or the entire peripheral edge of the sheet and heating and drying it in an inert gas atmosphere. Production method.
としてアルコール系溶剤を20〜70%添加し、成形加
工後水洗することを特徴とする燃料電池用電極の製造方
法。6. A method for producing an electrode for a fuel cell according to claim 1, characterized in that 20 to 70% of an alcoholic solvent is added as a high-boiling point solvent, and washing with water is carried out after molding.
としてアルコール系溶剤を用い、70%以上添加混合し
て固形物とした後これを圧縮し、余剰の溶剤を除去し溶
剤分を20〜70%とすることを特徴とする燃料電池用
電極の製造方法。7. In the method according to claim 1, an alcoholic solvent is used as the high boiling point solvent, and after adding and mixing 70% or more to form a solid, this is compressed, excess solvent is removed, and the solvent content is reduced to 20%. 70%.
ートは真空乾燥もしくは凍結真空乾燥することを特徴と
する燃料電池用電極の製造方法。8. A method for producing an electrode for a fuel cell according to claim 1, wherein the sheet is vacuum-dried or freeze-vacuum-dried.
ートは真空乾燥もしくは凍結真空乾燥することを特徴と
する燃料電池用電極の製造方法。9. A method for producing an electrode for a fuel cell according to claim 1 or 7, wherein the sheet is vacuum-dried or freeze-vacuum-dried.
触媒層をカーボン基材上に着圧した燃料電池用電極の製
造方法であって、触媒粒子にPTFE(ポリテトラフル
オロエチレン)ファインパウダーを加えて混合した粉末
に高沸点溶剤を添加混合して固形物とし、次いで50〜
150℃の押し出し加工と圧延加工のうちの少なくとも
一つの成形加工を行ないシートとした後、乾燥して前記
シート状触媒層を形成する工程を含むことを特徴とする
燃料電池用電極の製造方法。10. A method for producing an electrode for a fuel cell in which a sheet-like catalyst layer in which catalyst particles are bound with a fluororesin is pressed onto a carbon base material, the catalyst particles being made of PTFE (polytetrafluoroethylene) fine powder. A high boiling point solvent is added to the mixed powder and mixed to form a solid, and then 50~
A method for producing an electrode for a fuel cell, comprising the steps of forming a sheet by performing at least one of extrusion and rolling at 150° C. and then drying the sheet to form the sheet-like catalyst layer.
溶剤として石油系溶剤を20〜70%添加することを特
徴とする燃料電池用電極の製造方法。11. A method for producing an electrode for a fuel cell according to claim 10, characterized in that 20 to 70% of a petroleum solvent is added as the high boiling point solvent.
溶剤として石油系溶剤を70%以上添加混合して固形物
とした後これを圧縮し、余剰の溶剤を除去し溶剤分を2
0〜70%とすることを特徴とする燃料電池用電極の製
造方法。12. In the method according to claim 10, 70% or more of a petroleum solvent is added and mixed as a high boiling point solvent to form a solid, which is then compressed, excess solvent is removed, and the solvent content is reduced to 2.
A method for producing an electrode for a fuel cell, characterized in that the ratio is 0 to 70%.
て、シートの乾燥はシートの2辺または全周端部を固定
し不活性ガス雰囲気中で加熱乾燥することを特徴とする
燃料電池用電極の製造方法。13. The method of claim 10 or 11, wherein the sheet is dried by fixing two sides or the entire peripheral edge of the sheet and heating and drying it in an inert gas atmosphere. Production method.
て、シートの乾燥はシートの2辺または全周端部を固定
し不活性ガス雰囲気中で加熱乾燥することを特徴とする
燃料電池用電極の製造方法。14. The method of claim 10 or 12, wherein the sheet is dried by fixing two sides or the entire peripheral edge of the sheet and heating and drying it in an inert gas atmosphere. Production method.
溶剤としてアルコール系溶剤を20〜70%添加し、成
形加工後水洗することを特徴とする燃料電池用電極の製
造方法。15. The method for producing an electrode for a fuel cell according to claim 10, wherein 20 to 70% of an alcoholic solvent is added as a high-boiling point solvent, and washing with water is carried out after molding.
溶剤としてアルコール系溶剤を用い、70%以上添加混
合して固形物とした後これを圧縮し、余剰の溶剤を除去
し溶剤分を20〜70%とすることを特徴とする燃料電
池用電極の製造方法。16. In the method according to claim 10, an alcoholic solvent is used as the high boiling point solvent, and after adding and mixing 70% or more to form a solid, this is compressed, excess solvent is removed, and the solvent content is reduced to 20%. 70%.
て、シートは真空乾燥もしくは凍結真空乾燥することを
特徴とする燃料電池用電極の製造方法。17. A method for producing an electrode for a fuel cell according to claim 10 or 15, wherein the sheet is vacuum-dried or freeze-vacuum-dried.
て、シートは真空乾燥もしくは凍結真空乾燥することを
特徴とする燃料電池用電極の製造方法。18. A method for producing an electrode for a fuel cell according to claim 10 or 16, wherein the sheet is vacuum-dried or freeze-vacuum-dried.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2402078A JPH04215255A (en) | 1990-12-14 | 1990-12-14 | Manufacture of electrode for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2402078A JPH04215255A (en) | 1990-12-14 | 1990-12-14 | Manufacture of electrode for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04215255A true JPH04215255A (en) | 1992-08-06 |
Family
ID=18511885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2402078A Pending JPH04215255A (en) | 1990-12-14 | 1990-12-14 | Manufacture of electrode for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04215255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071830A3 (en) * | 2000-03-23 | 2002-01-10 | Gillette Co | Method of making a cathode comprising a catalyst |
-
1990
- 1990-12-14 JP JP2402078A patent/JPH04215255A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071830A3 (en) * | 2000-03-23 | 2002-01-10 | Gillette Co | Method of making a cathode comprising a catalyst |
JP2003528435A (en) * | 2000-03-23 | 2003-09-24 | ザ ジレット カンパニー | Battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2561942C (en) | Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same | |
CA2341494C (en) | Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode | |
EP2922125A1 (en) | Method for manufacturing porous layer member, and method for manufacturing membrane-electrode-gas diffusion layer assembly containing porous layer member | |
US3385736A (en) | Method of making electrode from viscoelastic dough | |
Jiao et al. | Comparison of ultra-fast microwave sintering and conventional thermal sintering in manufacturing of anode support solid oxide fuel cell | |
Liang et al. | A glue method for fabricating membrane electrode assemblies for direct methanol fuel cells | |
JP4876318B2 (en) | Polymer electrolyte fuel cell and manufacturing method thereof | |
CN107732195A (en) | A kind of graphite modified method and graphite/silicon composite | |
JP2006302644A (en) | Catalyst paste for fuel cell electrode and its manufacturing method as well as electrode for fuel cells | |
CN113745550A (en) | Catalyst slurry with good particle size uniformity and dispersibility as well as preparation method and application thereof | |
JP2003208903A (en) | Manufacturing method of catalyst layer for fuel cell electrode and ink for manufacturing catalyst layer for fuel cell electrode | |
JPH04215255A (en) | Manufacture of electrode for fuel cell | |
CN104956531B (en) | Porous layer and its manufacture method | |
WO2022141866A1 (en) | Positive electrode catalyst of magnesium metal-air battery, and continuous coating preparation method therefor | |
JPH0660886A (en) | Manufacture of fuel cell | |
US4205432A (en) | Method of manufacturing plastic bonded battery plates having controlled porosity | |
Abaoud et al. | A hybrid technique for fabricating PEMFC's low platinum loading electrodes | |
JPH0757738A (en) | Manufacture of electrode for fuel cell | |
CN104600322B (en) | Integrated flexible electrode for vanadium cell and preparation method of flexible electrode | |
WO2017142859A1 (en) | Method of making a fuel cell component | |
JP3693254B2 (en) | Method for producing polarizable electrode for electric double layer capacitor | |
JPH0529005A (en) | Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same | |
JP3349382B2 (en) | Method for producing solid electrolyte type electrochemical cell | |
JP2003123774A (en) | Manufacturing method of electrode for fuel cell, electrode for fuel cell, coating composition, manufacturing method for, the composition solid polymer fuel cell, manufacturing method for the cell | |
JP2003297373A (en) | Coating for catalyst bed and manufacturing method of electrolyte membrane electrode junction body using it |