JPH04214617A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04214617A
JPH04214617A JP2402009A JP40200990A JPH04214617A JP H04214617 A JPH04214617 A JP H04214617A JP 2402009 A JP2402009 A JP 2402009A JP 40200990 A JP40200990 A JP 40200990A JP H04214617 A JPH04214617 A JP H04214617A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
molecular beam
present
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2402009A
Other languages
Japanese (ja)
Inventor
Yasuo Suga
康夫 菅
Masahiro Hosoda
昌宏 細田
Kentaro Tani
健太郎 谷
Kousei Takahashi
向星 高橋
Atsuisa Tsunoda
篤勇 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2402009A priority Critical patent/JPH04214617A/en
Publication of JPH04214617A publication Critical patent/JPH04214617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an integrated semiconductor light emitting device in high density by automatically forming many pieces of semiconductor light emitting elements separately on the same substrate without needing the element isolating process to be attached later. CONSTITUTION:By arranging a substrate, which has step-shaped structure, obliquely to the material beam, using the crystal growth technology, where the material beam supplied to the substrate surface has linearity, and a region, which become the shade of a material beam, is made at the substrate, and the structure where many pieces of isolated layer are stacked is automatically formed on the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、同一基板上に多数個集
積化した集積形半導体発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing integrated semiconductor light emitting devices in which a large number of semiconductor light emitting devices are integrated on the same substrate.

【0002】0002

【従来の技術】AlGaAsをはじめとする直接遷移形
半導体を活性層として有する半導体レーザあるいは発光
ダイオードといった半導体発光素子は、小型,軽量,高
効率といった利点から、光通信や光ディスク用光源ある
いは、表示用発光素子として幅広く応用されている。今
後、この種の半導体発光素子の応用として、光集積回路
の分野におけるチップ間光結合用光源としての利用が期
待される。このような応用において、半導体発光素子は
、個別にではなく同一チップ基板上に多数個集積化され
て用いられるために、独立して動作する隣接した各発光
素子間を分離する工程が不可欠となる。同一基板上の各
発光素子を分離する方法としては、図14に示すエッチ
ング溝あるいは図15に示すプロトン照射による高抵抗
層をフォトリソグラフィによって選択的に形成する方法
が知られている。
[Prior Art] Semiconductor light-emitting devices such as semiconductor lasers or light-emitting diodes, which have direct transition semiconductors such as AlGaAs as their active layers, have advantages such as small size, light weight, and high efficiency, and are used as light sources for optical communication, optical disks, and displays. It is widely used as a light emitting device. In the future, this type of semiconductor light emitting device is expected to be used as a light source for optical coupling between chips in the field of optical integrated circuits. In such applications, semiconductor light emitting devices are used not individually but in large numbers integrated on the same chip substrate, so a process to separate adjacent light emitting devices that operate independently is essential. . As a method for separating light emitting elements on the same substrate, there is known a method of selectively forming an etching groove shown in FIG. 14 or a high resistance layer by proton irradiation shown in FIG. 15 by photolithography.

【0003】0003

【発明が解決しようとする課題】上記のチップ間光結合
用光源のような応用に際しては、微小基板上になるだけ
多くの発光素子を高密度に集積化することが要求される
。しかしながら上記の従来例のように分離用の構造を後
付けする方法では、発光素子が正味必要とする領域に加
えて、エッチング溝等、素子分離のための構造をつくり
つける領域を必要とし、高密度の集積化には不利である
。また、このような素子分離構造をつくりつけようとす
ると、プロセス数が増え、量産性等の低下を招く。また
、高密度に上記のような発光素子を集積化するためには
、個々の素子サイズを微小化する必要があり、従来のフ
ォトリソグラフィによるメサ構造等の形成といった高い
位置合せ精度が要求されるプロセスは極力減らす必要が
ある。
In applications such as the above-mentioned light source for optical coupling between chips, it is required to integrate as many light emitting elements as possible on a microscopic substrate at a high density. However, in the method of retrofitting the isolation structure as in the conventional example above, in addition to the area that is actually required by the light emitting element, an area for creating the structure for element isolation, such as etching grooves, is required, resulting in a high density It is disadvantageous for the integration of Furthermore, if an attempt is made to create such an element isolation structure, the number of processes will increase, leading to a decrease in mass productivity. In addition, in order to integrate the above-mentioned light-emitting elements at high density, it is necessary to miniaturize the size of each individual element, which requires high alignment accuracy such as the formation of mesa structures using conventional photolithography. Processes need to be reduced as much as possible.

【0004】0004

【課題を解決するための手段】上記問題点を解決するた
めの方法を、分子線結晶成長を本発明において用いる結
晶成長法の一例として挙げ、説明する。
[Means for Solving the Problems] A method for solving the above problems will be explained using molecular beam crystal growth as an example of the crystal growth method used in the present invention.

【0005】分子線結晶成長法は、超高真空中において
原料となる固体材料を加熱,蒸発させ、分子線として基
板上に供給し、結晶膜を積層する結晶成長技術であるが
、その一つの特徴として、基板面に供給される分子線が
直進性を有することが挙げられる。このため、図8に示
すように、分子線源と基板の間に、分子線をさえぎるマ
スクを配置すると、影となる部分では分子線がカットさ
れ、この部分では結晶膜が成長しない。このように適当
なマスクを配置すれば結晶成長時に自動的に分離した多
層構造を形成することが可能となる。
Molecular beam crystal growth is a crystal growth technique in which a solid material is heated and evaporated as a raw material in an ultra-high vacuum, and then supplied as molecular beams onto a substrate to form crystal films. A characteristic feature is that the molecular beam supplied to the substrate surface has straight propagation. Therefore, as shown in FIG. 8, if a mask that blocks the molecular beams is placed between the molecular beam source and the substrate, the molecular beams will be cut off in the shadowed areas, and no crystal film will grow in these areas. By arranging a suitable mask in this manner, it becomes possible to form a multilayer structure that is automatically separated during crystal growth.

【0006】本発明においては、階段状構造を有する基
板を、分子線に対して斜めに配置することによって、図
9に示すように分子線の影となる領域をつくり出し、前
記基板上に多数個の分離した多層構造を自動的に形成す
る。この多層構造を、例えばダブルヘテロ構造とするこ
とにより、容易に多数個の分離した半導体発光素子を同
一基板上に形成できる。
In the present invention, by arranging a substrate having a step-like structure obliquely to the molecular beam, a region shaded by the molecular beam is created as shown in FIG. Automatically forms separated multilayer structures. By forming this multilayer structure into, for example, a double heterostructure, a large number of separate semiconductor light emitting devices can be easily formed on the same substrate.

【0007】図10、11は、本発明において、段差構
造を形成する方法の一例である。まず、ある分子線照射
角度に基板を配置し、第一の半導体層を成長する。次に
分子線照射角度が基板表面に対してより浅くなるように
基板の配置を変え第二の半導体層を成長すると、分子線
入射角度の違いによって、分子線が影となる領域の幅が
変化し、図のような段差構造を有する多層構造を形成で
きる。この際形成される段差形状の幅は分子線入射角度
の設定によって容易に制御できる。
FIGS. 10 and 11 show an example of a method for forming a step structure in the present invention. First, a substrate is placed at a certain molecular beam irradiation angle, and a first semiconductor layer is grown. Next, when the substrate is arranged so that the molecular beam irradiation angle becomes shallower with respect to the substrate surface and a second semiconductor layer is grown, the width of the area shadowed by the molecular beam changes depending on the difference in the molecular beam incidence angle. However, a multilayer structure having a step structure as shown in the figure can be formed. The width of the stepped shape formed at this time can be easily controlled by setting the molecular beam incidence angle.

【0008】図12、13は、本発明において、埋め込
み構造を形成する方法の一例である。まず、ある分子線
照射角度に基板を配置し、第一の半導体層を成長する。 次に、前記段差構造の形成とは逆に分子線照射角度が基
板表面に対してより深くなるように基板の配置を変え、
第二の半導体層を成長すると、第一の半導体層を第二の
半導体層で埋め込んだ多層構造を形成できる。
FIGS. 12 and 13 show an example of a method for forming a buried structure in the present invention. First, a substrate is placed at a certain molecular beam irradiation angle, and a first semiconductor layer is grown. Next, contrary to the formation of the step structure, the arrangement of the substrate is changed so that the molecular beam irradiation angle becomes deeper with respect to the substrate surface,
When the second semiconductor layer is grown, a multilayer structure can be formed in which the first semiconductor layer is embedded with the second semiconductor layer.

【0009】[0009]

【作用】本発明によれば、後付けの素子分離プロセスを
必要とすることなく、同一基板上に多数個の半導体発光
素子を自動的に分離して形成でき、高密度な集積形半導
体発光装置の製作が可能である。
[Operation] According to the present invention, a large number of semiconductor light emitting devices can be automatically separated and formed on the same substrate without the need for a subsequent device separation process, and a high density integrated semiconductor light emitting device can be formed. Manufacture is possible.

【0010】0010

【実施例】以下に、本発明による実施例を、一例として
AlGaAs系材料を用いた場合について、図面を参照
しながら説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings, using an AlGaAs material as an example.

【0011】図1は、本発明の第一の実施例として、端
面発光型発光ダイオードを同一基板上に多数個形成した
集積形発光ダイオードの断面図である。まず、n−Ga
As基板10上に例えばフォトリソグラフィにより階段
構造を形成し、これを分子線結晶成長装置内へ導入する
FIG. 1 is a sectional view of an integrated light emitting diode in which a large number of edge-emitting light emitting diodes are formed on the same substrate as a first embodiment of the present invention. First, n-Ga
A staircase structure is formed on the As substrate 10 by, for example, photolithography, and this is introduced into a molecular beam crystal growth apparatus.

【0012】次に、図中の矢印の方向から材料の分子線
が照射されるよう基板を配置し、順次n−GaAsバッ
ファ層11,n−AlGaAs第一クラッド層12(例
えばAl組成比0.2),p−AlGaAs活性層13
(例えばAl組成比0.05),p−AlGaAs第二
クラッド層14(例えばAl組成比0.2),p−Ga
Asコンタクト層15を成長する。通常の分子線結晶成
長法において成長膜の均一性を高めるために行われる基
板回転は、本発明の成長に際しても、分子線の照射方向
を回転中心として、基板面に対する分子線照射角度を一
定に保つよう基板を回転させることはさしつかえない。
Next, the substrate is arranged so that the molecular beam of the material is irradiated from the direction of the arrow in the figure, and the n-GaAs buffer layer 11 and the n-AlGaAs first cladding layer 12 (for example, Al composition ratio 0. 2), p-AlGaAs active layer 13
(for example, Al composition ratio 0.05), p-AlGaAs second cladding layer 14 (for example, Al composition ratio 0.2), p-AlGaAs second cladding layer 14 (for example, Al composition ratio 0.2),
An As contact layer 15 is grown. The rotation of the substrate, which is carried out to improve the uniformity of the grown film in ordinary molecular beam crystal growth methods, is also performed during the growth of the present invention by keeping the molecular beam irradiation angle with respect to the substrate surface constant, with the direction of molecular beam irradiation as the center of rotation. It is permissible to rotate the board to maintain the same.

【0013】最後に、pn両電極16,17を形成する
が、p電極16の形成に際しても、電極材料が、前記結
晶成長時における分子線照射方向と同じ方向から照射さ
れるよう、例えば真空蒸着法で形成すれば、特にマスク
工程を必要とすることなく、自動的に、分離された各発
光ダイオードのp−GaAsコンタクト層15表面のみ
にp電極16が形成される。
Finally, both p-n electrodes 16 and 17 are formed, but when forming the p-electrode 16, the electrode material is also irradiated by vacuum evaporation, for example, so that it is irradiated from the same direction as the molecular beam irradiation direction during the crystal growth. If formed by the method, the p-electrode 16 is automatically formed only on the surface of the p-GaAs contact layer 15 of each separated light emitting diode, without requiring any particular mask process.

【0014】この発光ダイオードの発光は図中に示す方
向からとり出すことができ、以上の製作工程により、同
一基板上に多数個集積化した発光ダイオードを形成でき
る。図2,3,4は、本発明の第2の実施例として、段
差構造を有する発光ダイオードを同一基板上に多数個形
成する場合の製造工程である。
The light emitted from this light emitting diode can be extracted from the direction shown in the figure, and a large number of integrated light emitting diodes can be formed on the same substrate through the above manufacturing process. 2, 3, and 4 show manufacturing steps for forming a large number of light emitting diodes having a stepped structure on the same substrate as a second embodiment of the present invention.

【0015】第1の実施例と同様に、階段構造を有する
n−GaAs基板10を、分子線結晶成長装置内で、ま
ず図2のように基板10に対し、比較的深めの方向(図
中矢印)から材料分子線が照射されるよう配置し、順次
n−GaAsバッファ層11,n−AlGaAs第一ク
ラッド層12(例えばAl組成比0.2),p−AlG
sAs活性層13(例えばAl組成比0.05),p−
AlGaAs第二クラッド層の一部214(例えばAl
組成比0.2)を成長する。
As in the first embodiment, an n-GaAs substrate 10 having a stepped structure is first grown in a relatively deep direction (in the figure) with respect to the substrate 10 as shown in FIG. 2 in a molecular beam crystal growth apparatus. An n-GaAs buffer layer 11, an n-AlGaAs first cladding layer 12 (for example, Al composition ratio 0.2), a p-AlG
sAs active layer 13 (for example, Al composition ratio 0.05), p-
A portion 214 of the AlGaAs second cladding layer (e.g. Al
A composition ratio of 0.2) is grown.

【0016】しかる後に、基板の配置角度を変え、図3
のように、基板面に対してより浅い角度(図中矢印)か
ら材料分子線が照射されるようにし、引き続いて、p−
AlGaAs第二クラッド層224(例えばAl組成比
0.2),p−GaAsコンタクト層15を成長し、最
後に、図4のように前記第一の実施例と同様にp電極1
6,及びn電極(図示せず)を形成する。この構造の発
光ダイオードにおいては、活性層13からの発光波長に
対して、クラッド層は透明であるため、図4に示すよう
に斜め上方に表面から発光を取り出すことが可能となり
、面発光形の集積形発光ダイオードが得られる。
After that, the arrangement angle of the substrate was changed, and as shown in FIG.
As shown in the figure, the material molecular beam is irradiated from a shallower angle (arrow in the figure) with respect to the substrate surface, and then p-
An AlGaAs second cladding layer 224 (for example, Al composition ratio 0.2) and a p-GaAs contact layer 15 are grown, and finally, as shown in FIG.
6, and an n electrode (not shown) are formed. In the light emitting diode with this structure, the cladding layer is transparent to the wavelength of light emitted from the active layer 13, so it is possible to extract light from the surface obliquely upward as shown in FIG. An integrated light emitting diode is obtained.

【0017】図5,6,7は、本発明の第3の実施例と
して、半導体レーザを同一基板上に多数個形成する場合
の製造工程の一例である。まず、階段構造を有するn−
GaAs基板10を、分子線結晶成長装置内で、図5の
ように基板10に対し比較的深い角度をもった方向(図
中矢印)から材料分子線が照射されるように配置し、順
次n−GaAsバッファ層11,n−AlGaAs第一
クラッド層の一部312(例えばAl組成比0.5)を
成長する。
FIGS. 5, 6, and 7 show an example of the manufacturing process when a large number of semiconductor lasers are formed on the same substrate as a third embodiment of the present invention. First, n-
The GaAs substrate 10 is arranged in a molecular beam crystal growth apparatus so that the material molecular beam is irradiated from a direction (arrow in the figure) at a relatively deep angle to the substrate 10 as shown in FIG. -GaAs buffer layer 11 and a part 312 of n-AlGaAs first cladding layer (for example, Al composition ratio 0.5) are grown.

【0018】次に、基板10の配置角度を変え、図6の
ように、基板10面に対してより浅い角度(図中矢印)
から材料分子線が照射されるようにし、引き続いて、n
−AlGaAs第一クラッド層322(例えばAl組成
比0.5),n−AlGaAs活性層13(例えばAl
組成比0.05),n−AlGaAs第二クラッド層1
4(例えばAl組成比0.5)を順次成長する。
Next, the arrangement angle of the substrate 10 is changed to a shallower angle (arrow in the figure) with respect to the surface of the substrate 10, as shown in FIG.
The material molecular beam is irradiated from n.
-AlGaAs first cladding layer 322 (for example, Al composition ratio 0.5), n-AlGaAs active layer 13 (for example, Al
composition ratio 0.05), n-AlGaAs second cladding layer 1
4 (for example, Al composition ratio 0.5) are sequentially grown.

【0019】その後、再び基板の配置角度を変え、図7
のように、材料分子線の照射角度が再び深くなるように
し、図5の方向よりは、少し浅くなるように配置する。 引き続いて、p−AlGaAs埋め込み層332(例え
ばAl組成比0.5),p−GaAsコンタクト層15
を成長する。最後に前記第一の実施例と同様にp,n両
電極(図示せず)を形成し、例えばRIBE(Reac
tive  Ion  Beam  Etching)
法やへき開によって共振器端面を形成することにより、
同一基板上に多数個集積化した半導体レーザが得られる
After that, the arrangement angle of the substrate was changed again, and FIG.
As shown in FIG. 5, the irradiation angle of the material molecular beam becomes deep again, and is arranged so that it is slightly shallower than the direction shown in FIG. Subsequently, a p-AlGaAs buried layer 332 (for example, Al composition ratio 0.5) and a p-GaAs contact layer 15 are formed.
grow. Finally, both p and n electrodes (not shown) are formed in the same manner as in the first embodiment, and, for example, RIBE (Reac
tive Ion Beam Etching)
By forming the resonator end face by cutting or cleavage,
A large number of semiconductor lasers can be integrated on the same substrate.

【0020】本実施例における半導体レーザは、個別に
はTJS(TransverseJunction  
Stripe)レーザの一種であり、最も拡散電位の小
さいp−AlGaAs埋め込み層332とn−AlGa
As活性層13の界面に形成されるpn接合より、選択
的に電流が注入され、レーザ発振に至る。前記図5,6
,7に示した製造工程では、図7の如く各個別素子表面
に段差が生じるが、これを避ける必要があれば、例えば
、図6までの工程終了後、この工程での分子線と同一の
方向から例えば電子ビーム蒸着法によって絶縁膜をn−
AlGaAs第二クラッド層14上に形成し、その後こ
れをマスクとして、図7の工程を選択成長とする,ある
いは、絶縁膜上にも図7の工程で各層を成長した後、リ
フトオフ法によって絶縁膜といっしょにn−AlGaA
s層14上の成長膜のみを剥離するといった手法により
、平坦化も可能である。
[0020] The semiconductor laser in this example is individually TJS (Transverse Junction).
It is a type of laser (Stripe) and has a p-AlGaAs buried layer 332 with the lowest diffusion potential and an n-AlGa
Current is selectively injected through the pn junction formed at the interface of the As active layer 13, leading to laser oscillation. Figures 5 and 6 above
, 7, steps occur on the surface of each individual element as shown in FIG. 7. If it is necessary to avoid this, for example, after the steps up to FIG. For example, the insulating film is deposited from the n-
The insulating film is formed on the AlGaAs second cladding layer 14 and then selectively grown in the process shown in FIG. 7 using this as a mask, or after each layer is grown on the insulating film in the process shown in FIG. with n-AlGaA
Planarization is also possible by peeling off only the grown film on the s-layer 14.

【0021】本発明は、上記第1乃至第3の実施例に示
す半導体レーザあるいは発光ダイオードの発光領域に限
定されるものではなく、上記以外の、例えば分離閉じ込
め構造や活性層を量子井戸構造とする場合においても同
様に実施できる。また、他の材料、例えばInGaAs
P系,AlGaInP系材料を用いた半導体発光装置に
対して広く適用できる。さらに、ここまでは結晶成長法
として分子線結晶成長法を一例として用いて説明および
実施例を示したが、本発明はこの結晶成長法に限定され
るものではなく、直進性のある材料ビームを基板面に照
射して行う他のすべての結晶成長法においても同様に適
用できる。また、ここでは集積形半導体発行装置の製造
に適した方法として述べてきたが、個別の半導体装置の
製造においても、例えば本発明の手法によって結晶成長
時に自動的に断差構造をつくりつけ、すべての工程終了
後に個別チップに切り出すといった適用も可能である。
The present invention is not limited to the light emitting regions of the semiconductor lasers or light emitting diodes shown in the first to third embodiments above, but can also be applied to structures other than those described above, such as a separate confinement structure or a quantum well structure for the active layer. It can be carried out in the same way even when doing so. Also, other materials such as InGaAs
It can be widely applied to semiconductor light emitting devices using P-based and AlGaInP-based materials. Furthermore, although the explanation and examples have been given using the molecular beam crystal growth method as an example of the crystal growth method, the present invention is not limited to this crystal growth method, and the present invention is not limited to this crystal growth method. It can be similarly applied to all other crystal growth methods in which the substrate surface is irradiated. In addition, although this method has been described here as a method suitable for manufacturing integrated semiconductor devices, it is also possible to use the method of the present invention to automatically create a differential structure during crystal growth, and to Applications such as cutting into individual chips after the completion of the process are also possible.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、後
付けの素子分離工程を必要とすることなく、同一基板上
に多数個の半導体発光装置を高密度に集積化した集積形
半導体発光装置の製造が可能となる。
As described above, according to the present invention, an integrated semiconductor light emitting device that can integrate a large number of semiconductor light emitting devices at high density on the same substrate without the need for a subsequent device isolation process is provided. It becomes possible to manufacture the device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例による集積型発光ダイオ
ードの要部断面図である。
FIG. 1 is a sectional view of essential parts of an integrated light emitting diode according to a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための断面図
である。
FIG. 2 is a sectional view for explaining a second embodiment of the present invention.

【図3】本発明の第2の実施例を説明するための断面図
である。
FIG. 3 is a sectional view for explaining a second embodiment of the present invention.

【図4】本発明の第2の実施例を説明するための断面図
である。
FIG. 4 is a sectional view for explaining a second embodiment of the present invention.

【図5】本発明の第3の実施例を説明するための断面図
である。
FIG. 5 is a sectional view for explaining a third embodiment of the present invention.

【図6】本発明の第3の実施例を説明するための断面図
である。
FIG. 6 is a sectional view for explaining a third embodiment of the present invention.

【図7】本発明の第3の実施例を説明するための断面図
である。
FIG. 7 is a sectional view for explaining a third embodiment of the present invention.

【図8】分子線結晶成長法の性質を示した説明図である
FIG. 8 is an explanatory diagram showing the properties of the molecular beam crystal growth method.

【図9】本発明の原理を示した説明図である。FIG. 9 is an explanatory diagram showing the principle of the present invention.

【図10】本発明の原理を示した説明図である。FIG. 10 is an explanatory diagram showing the principle of the present invention.

【図11】本発明の原理を示した説明図である。FIG. 11 is an explanatory diagram showing the principle of the present invention.

【図12】本発明の原理を示した説明図である。FIG. 12 is an explanatory diagram showing the principle of the present invention.

【図13】本発明の原理を示した説明図である。FIG. 13 is an explanatory diagram showing the principle of the present invention.

【図14】従来の素子分離法を示した説明図である。FIG. 14 is an explanatory diagram showing a conventional element isolation method.

【図15】従来の素子分離法を示した説明図である。FIG. 15 is an explanatory diagram showing a conventional element isolation method.

【符号の説明】[Explanation of symbols]

10  n  GaAs基板 11  n  GaAs  バッファ層12  n  
AlGaAs  第1クラッド層13  p  AlG
aAs  活性層14  p  AlGaAs  第2
クラッド層15  p  GaAs  コンタクト層1
6  p電極 17  n電極
10 n GaAs substrate 11 n GaAs buffer layer 12 n
AlGaAs first cladding layer 13 p AlG
aAs active layer 14p AlGaAs 2nd
Cladding layer 15p GaAs contact layer 1
6 p electrode 17 n electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  直進性のある材料ビームを基板面に照
射して結晶を成長させる際、予め基板一主面上に階段状
の構造を形成し、前記基板主面に対して所望の角度を有
する方向から前記材料ビームを照射することを特徴とす
る半導体装置の製造方法。
1. When growing a crystal by irradiating a straight material beam onto a substrate surface, a step-like structure is formed in advance on one main surface of the substrate, and a desired angle is formed with respect to the main surface of the substrate. A method of manufacturing a semiconductor device, characterized in that the material beam is irradiated from a direction having a direction of irradiation.
JP2402009A 1990-12-13 1990-12-13 Manufacture of semiconductor device Pending JPH04214617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402009A JPH04214617A (en) 1990-12-13 1990-12-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402009A JPH04214617A (en) 1990-12-13 1990-12-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04214617A true JPH04214617A (en) 1992-08-05

Family

ID=18511817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402009A Pending JPH04214617A (en) 1990-12-13 1990-12-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04214617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203963A (en) * 2000-12-28 2002-07-19 Fuji Electric Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203963A (en) * 2000-12-28 2002-07-19 Fuji Electric Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5182757A (en) Surface emission type semiconductor laser
US4577321A (en) Integrated quantum well lasers for wavelength division multiplexing
US5313484A (en) Quantum box or quantum wire semiconductor structure and methods of producing same
US4637122A (en) Integrated quantum well lasers for wavelength division multiplexing
JPH06291416A (en) Semiconductor laser and manufacture thereof
US20020006144A1 (en) Surface emitting semiconductor laser and method of fabricating the same
EP0486128A2 (en) A semiconductor optical device and a fabricating method therefor
JPH08307013A (en) Semiconductor laser device and its manufacture
JPH08148757A (en) Manufacture of semiconductor laser
CA2041942C (en) Quantum wire fabricated via photo induced evaporation enhancement during in situ epitaxial growth
JPH0323634A (en) Manufacture of device
JP2002299761A (en) Semiconductor light-emitting device of surface-emitting type, and method of manufacturing the same
JPH04214617A (en) Manufacture of semiconductor device
US5356832A (en) Method of making surface emission type semiconductor laser
JPH1174609A (en) Laser diode and fabrication thereof
EP0275209B1 (en) A semi conductor laser device
JPS63179590A (en) Algainp semiconductor light emitting element
JPH05347432A (en) Semiconductor light-emitting element
KR100261243B1 (en) Laser diode and its manufacturing method
WO2023144960A1 (en) Optical semiconductor device
JPH05343801A (en) Manufacture of multiwavelength laser
JPS60261184A (en) Semiconductor laser device and manufacture thereof
JP4617546B2 (en) Array-type broad stripe semiconductor laser and manufacturing method thereof
JPH05110066A (en) Manufacture of quantum fine wire structure
JPH07193322A (en) Manufacture of semiconductor laser array