JPH0421398B2 - - Google Patents

Info

Publication number
JPH0421398B2
JPH0421398B2 JP57037994A JP3799482A JPH0421398B2 JP H0421398 B2 JPH0421398 B2 JP H0421398B2 JP 57037994 A JP57037994 A JP 57037994A JP 3799482 A JP3799482 A JP 3799482A JP H0421398 B2 JPH0421398 B2 JP H0421398B2
Authority
JP
Japan
Prior art keywords
frequency
low
signal
carrier
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57037994A
Other languages
Japanese (ja)
Other versions
JPS58156283A (en
Inventor
Noboru Kojima
Tomomitsu Azeyanagi
Akira Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57037994A priority Critical patent/JPS58156283A/en
Priority to US06/438,246 priority patent/US4554596A/en
Priority to ES517033A priority patent/ES517033A0/en
Priority to EP82110123A priority patent/EP0078542B1/en
Priority to CA000414756A priority patent/CA1192996A/en
Priority to BR8206389A priority patent/BR8206389A/en
Priority to AT82110123T priority patent/ATE27883T1/en
Priority to DE8282110123T priority patent/DE3276606D1/en
Priority to AU90148/82A priority patent/AU542594B2/en
Publication of JPS58156283A publication Critical patent/JPS58156283A/en
Publication of JPH0421398B2 publication Critical patent/JPH0421398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 本発明は輝度信号をFM信号に変換し、クロマ
信号を低域に変換し、両信号をアジマス角の互に
異る2個のヘツドを用いてテープ上に記録するク
ロスアジマス方式ヘリカルスキヤン形ビデオテー
プレコーダに係り、特にNTSC方式のクロマ信号
の記録再生回路に関する。
[Detailed Description of the Invention] The present invention converts a luminance signal into an FM signal, converts a chroma signal into a low frequency signal, and records both signals on a tape using two heads with different azimuth angles. The present invention relates to a cross-azimuth helical scan video tape recorder, and particularly to a recording/reproducing circuit for NTSC chroma signals.

NTSC方式のクロスアジマス方式ヘリカルスキ
ヤン形ビデオテープレコーダに用いられているク
ロマ信号記録方式として、β方式がある。この方
式の問題点は(1)高速動作の必要なフリツプフロツ
プ(以下FFと称す)を多く必要とし、IC化しに
くい、(2)クロマ信号の帯域を確保しにくい、特に
トラツクキング制御のパイロツト信号を多重記録
する場合問題となる、(3)NTSC方式とPAL方式
の両方に使用可能なクロマ信号用ICが極めて複
雑になる、(4)クロマ信号記録回路とパイロツト信
号発生回路を兼用にできないという問題点があつ
た。
There is a β method as a chroma signal recording method used in NTSC cross-azimuth helical scan video tape recorders. The problems with this method are (1) it requires a large number of flip-flops (hereinafter referred to as FFs) that require high-speed operation, making it difficult to integrate into ICs, and (2) it is difficult to secure a bandwidth for the chroma signal, especially for tracking control pilot signals. There are problems when performing multiplex recording: (3) the chroma signal IC that can be used for both the NTSC and PAL systems becomes extremely complex, and (4) the chroma signal recording circuit and pilot signal generation circuit cannot be used in combination. The dot was hot.

以下に図面を用いて、従来の問題点を詳しく説
明する。第1図はβ方式ビデオテープレコーダの
クロマ信号記録回路の要部を示すブロツク図であ
る。
The conventional problems will be explained in detail below using the drawings. FIG. 1 is a block diagram showing the main parts of a chroma signal recording circuit of a β-system video tape recorder.

先ずβ方式ビデオテープレコーダのNTSCクロ
マ信号の記録の仕方について説明する。β方式で
は3.58MHzのクロマ信号を(44−1/4)H,(Hは 水平同期周波数)の周波数に変換するとともに、
第1のトラツクでは上記周波数変換されたクロマ
信号をそのま記録し、第2のトラツクでは上記周
波数変換されたクロマ信号を1水平周期毎に位相
反転することでクロマ周波数を(44−1/4±1/2)H に変換して記録している。以上により、記録ク
ロマ信号周波数の必要十分条件である、H/4のオ フセツトを持つことと、トラツク間の周波数差が
H/2となることを満足させている。
First, the method of recording NTSC chroma signals in a β-scheme video tape recorder will be explained. In the β method, the 3.58MHz chroma signal is converted to a frequency of (44-1/4) H , ( H is the horizontal synchronization frequency), and
The first track records the frequency-converted chroma signal as it is, and the second track inverts the phase of the frequency-converted chroma signal every horizontal period to change the chroma frequency to (44-1/4). ±1/2) Converted to H and recorded. As a result of the above, the recording chroma signal frequency has an offset of H /4, which is a necessary and sufficient condition, and the frequency difference between tracks is
H /2 is satisfied.

次に第1図を用いて、上記の動作を説明する。
1はクロマ信号の入力端子、2は175Hの周波数
で発振する電圧制御型発振器(以下VCOと称
す)、3は1/4分周器、4は第1の周波数変換器、
5は4の出力から和周波数の信号を抜き出すフイ
ルタ、6は第1のトラツクでは何もせず、第2の
トラツクでは1水平周期毎に位相反転を行なう回
路、40はトラツクを示す信号の入力端子、7は
第2の周波数変換器、8は7の出力から差周波数
の信号を抜き出すローパスフイルタ、9は1/175
分周器で1/5分周器10、1/5分周器11、1/7分
周器12、で構成されている。13は位相比較器
であり、分周器9の出力信号と端子17に印加さ
れた水平同期信号との位相差を検出しVCO2を
駆動する。14は3.58MHzのX′talVCOであり位
相比較器15は14の出力信号とバーストゲート
回路16の出力信号の位相差を検出する。したが
つてVCO14の出力には端子1に印加されたク
ロマ信号と周波数の一致したキヤリアが得らる。
フイルタ5の出力には(175/4H+3.58)MHzの信 号が取り出され、位相反転回路6の出力には第1
のトラツクでは(175/4H+3.58)MHz,第2のト ラツでは{(175/4+1/2)H+3.58}MHzの信号
が 夫々得られる。したがつて、低域変換クロマ信号
出力端子19には第1のトラツクに対しては175/
Hの周波数に変換されたクロマ信号が出力され、
第2のトラツクに対しては(175/4±1/2)Hの周 波数に変換されたクロマ信号が出力される。
Next, the above operation will be explained using FIG.
1 is a chroma signal input terminal, 2 is a voltage controlled oscillator (hereinafter referred to as VCO) that oscillates at a frequency of 175 H , 3 is a 1/4 frequency divider, 4 is a first frequency converter,
5 is a filter that extracts the sum frequency signal from the output of 4; 6 is a circuit that does nothing on the first track and inverts the phase every horizontal period on the second track; 40 is an input terminal for a signal indicating the track. , 7 is a second frequency converter, 8 is a low-pass filter that extracts the difference frequency signal from the output of 7, 9 is 1/175
The frequency divider is composed of a 1/5 frequency divider 10, a 1/5 frequency divider 11, and a 1/7 frequency divider 12. A phase comparator 13 detects the phase difference between the output signal of the frequency divider 9 and the horizontal synchronizing signal applied to the terminal 17, and drives the VCO 2. 14 is a 3.58MHz X'tal VCO, and a phase comparator 15 detects the phase difference between the output signal of 14 and the output signal of the burst gate circuit 16. Therefore, a carrier whose frequency matches that of the chroma signal applied to terminal 1 is obtained at the output of VCO 14.
A (175/4 H +3.58) MHz signal is taken out from the output of the filter 5, and the first signal is taken out from the output of the phase inversion circuit 6.
A signal of (175/4 H +3.58) MHz is obtained on the first track, and a signal of {(175/4+1/2) H +3.58} MHz is obtained on the second track. Therefore, the low frequency conversion chroma signal output terminal 19 has a signal of 175/1 for the first track.
The chroma signal converted to 4H frequency is output,
For the second track, a chroma signal converted to a frequency of (175/4±1/2) H is output.

次に前述した(1)の問題点について説明する。第
1図では1/175分周器9が必要であり、この分周
器9を最小チツプサイズ、最小消費電力になるよ
う設計するためには、第1図のように1/5分周器
10,11,1/7分周器12に分割し、特に分周
器10は175H(2.75MHz)を分周可能なように高
速のフリツプフロツプ(以下FFと称す)で構成
される。
Next, the above-mentioned problem (1) will be explained. In Figure 1, a 1/175 frequency divider 9 is required, and in order to design this frequency divider 9 to have the minimum chip size and minimum power consumption, a 1/5 frequency divider 10 is required as shown in Figure 1. .

第2図は第1図の分周器10の具体例を示す回
路図である。2MHz以上を分周するには第2図に
示す同期形カウンタが必要であり、FF22,2
3,24の全てが175H(=2.75MHz)で動作する
必要がある。2MHz以上で動作するFFは500KHz
以下で動作するFFに比べ必要チツプサイズ、消
費電力とも約10倍程度であり、高速FFの数をい
かに減らすかがポイントである。第1図のシステ
ムの分周器9においては高速FFが3個必要であ
りチツプイズ、消費電力の増大を招くという問題
がある。
FIG. 2 is a circuit diagram showing a specific example of the frequency divider 10 of FIG. 1. To divide frequencies over 2MHz, a synchronous counter shown in Figure 2 is required, and FF22, 2
All of 3 and 24 must operate at 175H (=2.75MHz). FF operating at 2MHz or higher is 500KHz
The required chip size and power consumption are approximately 10 times larger than FFs that operate at the following speeds, so the key point is how to reduce the number of high-speed FFs. The frequency divider 9 of the system shown in FIG. 1 requires three high-speed FFs, which causes problems such as chipping and increased power consumption.

次に前述した(2)の問題点について説明する。第
3図はクロマ信号帯域の記録信号スペクトル2
6、パイロツト信号スペクトル27、テープヘツ
ド系周波数特性25を夫々示している。図から解
るようにクロマ信号の下側波はテープヘツド系の
カツトオフ周波数にかかつており、クロマ信号の
帯域幅を十分に確保しようとすればさらに低域変
換周波数を688KHzから700kHz以上に上げる必要
がある。
Next, the above-mentioned problem (2) will be explained. Figure 3 shows the recorded signal spectrum 2 of the chroma signal band.
6, a pilot signal spectrum 27, and a tape head system frequency characteristic 25 are shown, respectively. As you can see from the figure, the lower side wave of the chroma signal is close to the cutoff frequency of the tape head system, and if you want to secure a sufficient bandwidth of the chroma signal, it is necessary to further increase the low frequency conversion frequency from 688KHz to 700kHz or more. .

さらにトラツキング制御用パイロツト信号27
を多重記録する場合はクロマ信号の記録周波数を
さらに上げる必要がある。パイロツト信号として
最も優れた方式はフイリツプス社の開発したもの
あり、パイロツト周波数は6.5H(102KHz),
7.5H,9.5H,10.5H(165KHz)であり、クロマ周
波数と688wHzとした場合には周波数が接近しす
ぎていて、パイロツト信号による妨害を十分に除
去できないという問題がある。
Furthermore, the pilot signal 27 for tracking control
When multiplexing chroma signals, it is necessary to further increase the recording frequency of the chroma signal. The most excellent method for pilot signals is the one developed by Phillips, with a pilot frequency of 6.5 H (102 KHz),
7.5 H , 9.5 H , 10.5 H (165 KHz), and when set to the chroma frequency and 688 wHz, the frequencies are too close to each other, and there is a problem that interference caused by the pilot signal cannot be sufficiently removed.

次に前述した(3)の問題点について説明する。β
方式ビデオテープレコーダのPALクロマ信号は
第1のトラツクで(44−1/8)H、第2のトラツ クで(44+1/8)Hに周波数を選んでいる。した がつて第1図の構成でNTSCとPALを共用化す
るとVCO2はNTSC時175H,PAL時351H
353Hの3通りに切替る必要がある。さらに分周
器3はNTSC時1/4,PAL時1/8に、分周器9は
NTSC時1/175,PAL時1/351と1/353の3通りに
切替る必要がある。
Next, the problem (3) mentioned above will be explained. β
The frequency of the PAL chroma signal of the video tape recorder is selected to be (44-1/8) H for the first track and (44+1/8) H for the second track. Therefore, if NTSC and PAL are shared in the configuration shown in Figure 1, VCO2 will be 175 H for NTSC, 351 H for PAL,
It is necessary to switch in three ways: 353 H. Furthermore, frequency divider 3 is set to 1/4 for NTSC, 1/8 for PAL, and frequency divider 9 is
It is necessary to switch in three ways: 1/175 for NTSC, 1/351 and 1/353 for PAL.

上記切替の内、分周器9の1/175,1/351,1/35
3の切替は175=5×5×7,135=3×3×3×
13,353=353(素数)となり前述のように分周器
を分周できず1/353分周器を構成する全てのFFを
高速動作させねばならず、結局分周器9をNTSC
とPAL共通とすることは不可能となる。
Among the above switching, 1/175, 1/351, 1/35 of frequency divider 9
3 switching is 175=5×5×7, 135=3×3×3×
13,353 = 353 (prime number), and as mentioned above, the frequency divider cannot be divided, and all the FFs that make up the 1/353 frequency divider must operate at high speed, and in the end, frequency divider 9 is converted to NTSC.
It becomes impossible to make it common to PAL.

次に前述の問題点(4)について説明する。第4図
は第1図のクロマ信号回路にパイロツト信号発生
用分周器28を付加したもので29はパイロツト
信号の出力端子である。分周器28の入力には
175Hの信号が印加されるので分周器28を各ト
ラツク毎に1/17,1/19,1/24,1/28に切替えると
パイロツト信号出力端子29には1=175/17H= 10.29H2=175/19H=9.21H3=175/24
H= 7.29H4=175/28H=6.25Hの信号が夫々得ら
れ る。パイロツト周波数の理想は(n+1/3)H〜 (n+2/3)H,n=6,7,9,10である。これ はテレビからのフライバツクパルスの高調波妨害
を受けにくいことと、パイロツト信号がクロマ信
号や輝度信号に妨害を与えにくいことから決まつ
ている。
Next, the aforementioned problem (4) will be explained. FIG. 4 shows a circuit in which a pilot signal generation frequency divider 28 is added to the chroma signal circuit of FIG. 1, and 29 is an output terminal for the pilot signal. At the input of the frequency divider 28,
Since a signal of 175 H is applied, when the frequency divider 28 is switched to 1/17, 1/19, 1/24, and 1/28 for each track, the pilot signal output terminal 29 receives 1 = 175/17 H = 10.29 H , 2 = 175/19 H = 9.21 H , 3 = 175/24
Signals of H = 7.29 H , 4 = 175/28 H = 6.25 H are obtained, respectively. The ideal pilot frequency is (n+1/3) H to (n+2/3) H , n=6, 7, 9, 10. This is determined by the fact that it is less susceptible to harmonic interference from flyback pulses from the television, and the pilot signal is less likely to interfere with chroma and luminance signals.

さらにトラツキング制御を安定にする条件はA
=|(12)−(34)|とB=|(13
)−(2
4)|ができるだけ零に近いことである。第4
図では周波数が理想よりかなりずれていること
と、A=0.05H,B=0.04Hとかなり大きいこと
が問題となる。
Furthermore, the condition for stabilizing tracking control is A.
= | ( 12 ) − ( 34 ) | and B = | ( 13
)−( 2
−4 ) | is as close to zero as possible. Fourth
In the figure, the problem is that the frequency deviates considerably from the ideal, and that A=0.05 H and B=0.04 H are quite large.

本発明の目的は前述した4つの問題点を全て解
決するNTSC方式のクロマ信号をビデオテープに
記録する回路を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a circuit for recording an NTSC chroma signal on a videotape, which solves all of the above-mentioned four problems.

本発明では、 特定の発振周波数で発振する基準発振器と、 上記基準発振器からの発振信号を基に、低域変
換キヤリアを発生する低域変換キヤリア発生器
と、 上記低域変換キヤリア発生器からの低域変換キ
ヤリアと記録されるべき搬送色信号とを混合して
低域変換搬送色信号を発生する混合器と、 上記低域変換搬送色信号を磁気テープに記録す
る磁気ヘツドとが設けられ、 上記低域変換搬送色信号の搬送周波数が、水平
周波数を47+1/4倍した値となり、この搬送波の
位相が一方のフイールドでは水平期間ごとに反転
し、他方のフイールドでは水平期間ごとの反転が
生じないように、 上記低域変換キヤリアの周波数及び位相推移が
定められることにより 上記低域変換キヤリア発生器に用いられる分周
器に必要な半導体チツプサイズおよび消費電力を
最小とし、クロマ周波数を700kHz以上に選ぶこ
とで帯域幅の確保とパイロツト信号との共存性を
改善する。
The present invention includes: a reference oscillator that oscillates at a specific oscillation frequency; a low-frequency conversion carrier generator that generates a low-frequency conversion carrier based on an oscillation signal from the reference oscillator; and a low-frequency conversion carrier generator that generates a low-frequency conversion carrier from the low-frequency conversion carrier. A mixer for generating a low-frequency converted carrier color signal by mixing the low-frequency converted carrier and a carrier color signal to be recorded, and a magnetic head for recording the low-frequency converted carrier color signal on a magnetic tape, The carrier frequency of the above low-pass conversion carrier color signal is 47+1/4 times the horizontal frequency, and the phase of this carrier wave is inverted every horizontal period in one field, and inverted every horizontal period in the other field. By determining the frequency and phase transition of the low-frequency conversion carrier, the semiconductor chip size and power consumption required for the frequency divider used in the low-frequency conversion carrier generator can be minimized, and the chroma frequency can be increased to 700kHz or higher. By selecting the appropriate signal, you can secure bandwidth and improve coexistence with pilot signals.

以下、本発明の実施例を第5図〜第11図を用
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 11.

第5図は本発明の一実施例のクロマ信号記録回
路の要部を示すブロツク図である。第5図の特徴
はVCO2の発振周波数が189H=3×NHとなつ
ており、N=63=3×3×7に選ばれていること
である。したがつて、第5図が第1図と異る点
は、VCO2の発振周波数と分周器9の構成であ
り、その結果として出力端子19に現れる記録用
クロマ信号の周波数が(47+1/4)Hとなる。1/1 89分周器9は1/3分周器30,31,32と1/7分
周器33で構成されている。1/3分周器30の入
力周波数は189H=2.97MHzであり高速動作を必
要とする。したがつて前述したように同期形カウ
ンタが望ましく第6図に示すFFの構成が考えら
れる。第6図から明らかなようにFFは2個で済
むことになり、分周器9に要するチツプサイズ、
消費電力を最小にしうる。一方、低域変換クロマ
信号の周波数は(47+1/4)H≒743kHzとなり、 第7図に示すこのクロマ信号のスペクトル39と
テープヘツド系の周波数特性25の関係から解る
ように、743±500kHzの帯域を確保するのにちよ
うどよい周波数となつている。
FIG. 5 is a block diagram showing the main parts of a chroma signal recording circuit according to an embodiment of the present invention. The feature of FIG. 5 is that the oscillation frequency of the VCO 2 is 189 H = 3 x N H , and N = 63 = 3 x 3 x 7. Therefore, the difference between FIG. 5 and FIG. 1 is the oscillation frequency of the VCO 2 and the configuration of the frequency divider 9, and as a result, the frequency of the recording chroma signal appearing at the output terminal 19 is (47+1/4). ) becomes H. The 1/189 frequency divider 9 is composed of 1/3 frequency dividers 30, 31, 32 and 1/7 frequency divider 33. The input frequency of the 1/3 frequency divider 30 is 189 H = 2.97MHz, which requires high-speed operation. Therefore, as mentioned above, a synchronous counter is desirable, and the configuration of the FF shown in FIG. 6 can be considered. As is clear from FIG. 6, only two FFs are required, and the chip size required for the frequency divider 9 is
Power consumption can be minimized. On the other hand, the frequency of the low frequency converted chroma signal is (47 + 1/4) H ≒ 743 kHz, and as can be seen from the relationship between the spectrum 39 of this chroma signal and the frequency characteristic 25 of the tape head system shown in Figure 7, the band is 743 ± 500 kHz. It is now the best frequency to ensure that.

また、パイロツト信号27を多重記録する場合
においても、パイロツト信号周波数102〜165KHz
とクロマ信号の下端周波数243kHzとの間に約80k
Hzが取れ、互いの干渉を防ぐに適切な周波数配置
となる。
Also, when multiplexing the pilot signal 27, the pilot signal frequency is 102 to 165 KHz.
Approximately 80k between 243kHz and the lower end frequency of the chroma signal
Hz, and the frequency arrangement is appropriate to prevent mutual interference.

第8図は本発明の別の一実施例のクロマ信号記
録回路の要部を示すブロツク図である。第8図が
第5図と異るところは、第8図では第5図の分周
器3を1/2分周器41,42に分割したことと、
波形整形器43を追加したことと、位相反転回路
6の形式を変えたことである。
FIG. 8 is a block diagram showing the main parts of a chroma signal recording circuit according to another embodiment of the present invention. The difference between FIG. 8 and FIG. 5 is that in FIG. 8, the frequency divider 3 in FIG. 5 is divided into 1/2 frequency dividers 41 and 42.
The reason is that a waveform shaper 43 is added and the type of the phase inversion circuit 6 is changed.

分周器3を1/2分周器41,42に分割した理
由は波形整形器43に189/2Hの信号を供給する
ためと、互に約180゜位相の異つた1899/4Hの信号
を得るためである。(FFのQ,出力をそのまま
利用できる。) 第8図の位相反転回路6には1/2分周器42の
出力信号である互に約180゜位相差のある189/4H
の2つの信号が入力され、第1のトラツクでは片
側の入力信号がそのまま出力され、第2のトラツ
クは2つの入力信号が水平周期毎に交互に出力さ
れるように切替えが行なわれる。
The reason why the frequency divider 3 is divided into the 1/2 frequency dividers 41 and 42 is to supply the 189/2 H signal to the waveform shaper 43, and to supply the 1899/4 H signal, which has a phase difference of about 180° from each other. This is to obtain a signal. (The Q and output of the FF can be used as is.) The phase inversion circuit 6 in FIG .
The first track outputs the input signal on one side as it is, and the second track is switched so that the two input signals are alternately output every horizontal period.

波形整形回路43は位相反転回路6の出力信号
の立上がりのタイミングを整える働きを持つ。波
形整形回路43の一実施例を第9図に示すように
FFのT入力端子45に1/2分周器41の出力信号
をD入力端子46に位相反転回路6の出力信号を
印加することで立上がりのタイミングの整つた信
号が出力端子47に得られる。
The waveform shaping circuit 43 has the function of adjusting the rising timing of the output signal of the phase inversion circuit 6. An embodiment of the waveform shaping circuit 43 is shown in FIG.
By applying the output signal of the 1/2 frequency divider 41 to the T input terminal 45 of the FF and the output signal of the phase inversion circuit 6 to the D input terminal 46, a signal with a well-timed rise can be obtained at the output terminal 47.

第10図は本発明のNTSC方式クロマ信号記録
回路をPAL方式クロマ信号記録回路に用いる場
合の一実施例の要部を示すブロツク図である。
FIG. 10 is a block diagram showing the main parts of an embodiment in which the NTSC chroma signal recording circuit of the present invention is used in a PAL chroma signal recording circuit.

第10図ではNTSCは第1のトラツクにおいて
は(47+1/4)Hにクロマ信号周波数を選び、第 2のトララツクにおいては(47+1/4±1/2)H
と なるよう位相反転を行なう記録方式とし、PAL
は第1のトラツクにおいては(47−1/8)Hとし、 第2のトラツクでは(47−18+1/4)Hとなる よう1水平周期毎に90゜づつ位相が進む位相シフ
トを行なうか、あるいは第2のトラツクでは(47
−1/8−1/4)Hとなるよう1水平周期毎に90゜
づ つ位相が遅れる位相シフトを行なう記録方式とし
ている。
In Figure 10, NTSC chooses the chroma signal frequency to be (47 + 1/4) H in the first track, and (47 + 1/4 ± 1/2) H in the second track.
The recording method performs phase inversion so that PAL
is (47-1/8) H in the first track, and (47-18+1/4) H in the second track, so that the phase is advanced by 90° every horizontal period, or Or in the second track (47
-1/8-1/4) A recording method is used in which a phase shift is performed in which the phase is delayed by 90 degrees every horizontal period so that the signal becomes H.

第10図が第8図と異るところは、1/4分周器
3の出力として0゜,90゜,180゜,270゜と位相の互に
90゜異る4つの信号を出していること、位相反転
回路6の代りに、NTSCとPALの第1のトラツ
クでは位相反転も位相シフトもせず、第2のトラ
ツクに対してはNTSCでは位相反転をPALでは
90゜位相シフトを行なう位相選択回路48を設け
たこと、NTSCでは入力クロマ信号と同一の周波
数(SC=3.579545MHz)を第1のコンバータ4に
入力し、PALでは入力のクロマ信号の周波数
SC=4.433618MHz)より3/8Hだけ低い周波数の
キヤリアを第1のコンバータ4に入力するための
スイツチ50、X′talオシレータ51を設けたこ
と、NTSCとPALを切替るための制御信号入力
端子49を設けたこと、パイロツト信号発生回路
52、パイロツト信号出力端子53を設けたこと
である。
The difference between Fig. 10 and Fig. 8 is that the output of the 1/4 frequency divider 3 has different phases of 0°, 90°, 180°, and 270°.
It outputs four signals that differ by 90 degrees, and instead of the phase inversion circuit 6, there is no phase inversion or phase shift for the first track in NTSC and PAL, and a phase inversion in NTSC for the second track. In PAL
In NTSC, the same frequency as the input chroma signal ( SC = 3.579545MHz) is input to the first converter 4, and in PAL, the frequency of the input chroma signal ( SC = 3.579545MHz) is provided. = 4.433618MHz), a switch 50 for inputting a carrier with a frequency 3/8 H lower than 4.433618MHz) to the first converter 4, an X'tal oscillator 51, and a control signal input terminal for switching between NTSC and PAL. 49, a pilot signal generation circuit 52, and a pilot signal output terminal 53.

パイロツト信号発生回路52は、1=189/18H= 10.50H2=189/20H=9.45H3=189/25
H= 7.56H4=189/29H=6.52Hの4信号を出力す
る ことができ、パイロツト周波数の理想値である。
(n+1/3)H1234<(n+2/
3)Hを 満足している。又、A=|(12)−(34

=0.01H、B=|(13)−(24)|=0.0
1H
なり、パイロツト信号として必要十分な特性を確
保している。
The pilot signal generation circuit 52 has the following formulas: 1 = 189/18 H = 10.50 H , 2 = 189/20 H = 9.45 H , 3 = 189/25
It can output four signals: H = 7.56 H , 4 = 189/29 H = 6.52 H , which is the ideal value for the pilot frequency.
(n+1/3) H < 1 , 2 , 3 , 4 < (n+2/
3) H is satisfied. Also, A=|( 12 )−( 34 )

=0.01 H , B=|( 13 )−( 24 )|=0.0
1H , ensuring sufficient characteristics as a pilot signal.

第11図は第10図で述べたNTSCとPALの
クロマ信号記録回路の別の一実施例を示すブロツ
ク図である。第11図が第10図と異るところ
は、VCO2の発振周波数がNTSCでは(47+
1/4)×8H=378H,PALでは(47−1/8)×8
H= 375Hとなること、分周器9がNTSCでは1/378= 1/3×1/3×1/3×1/2×1/7,PALでは1
/375=1/3 ×1/5×1/5×1/5となるように選んでおり、特
に 分周器9のIC化する場合のチツプサイズ、消費
電力が最小となるよう、1/3分周器31をNTSC
とPALで共通化し、分周器55をNTSCで1/6、
PALで1/5となるよう切替え、分周器56を
NTSCで1/3,PALで1/5となるよう切替え、分
周器57をNTSCで1/7,PALで1/5となるよう
切替えている。
FIG. 11 is a block diagram showing another embodiment of the NTSC and PAL chroma signal recording circuit described in FIG. 10. The difference between Figure 11 and Figure 10 is that the oscillation frequency of VCO2 is (47 +
1/4) x 8 H = 378 H , (47-1/8) x 8 for PAL
H = 375 H , frequency divider 9 is 1/378 = 1/3 x 1/3 x 1/3 x 1/2 x 1/7 for NTSC, 1 for PAL.
/375 = 1/3 × 1/5 × 1/5 × 1/5, and in particular, to minimize the chip size and power consumption when converting the frequency divider 9 into an IC, 1/3 Frequency divider 31 is NTSC
and PAL, and the frequency divider 55 is 1/6 for NTSC,
Switch to 1/5 in PAL, and set frequency divider 56.
The frequency divider 57 is switched to 1/3 for NTSC and 1/5 for PAL, and the frequency divider 57 is switched to 1/7 for NTSC and 1/5 for PAL.

又、1/2分周器54を新設することで、分周器
54の出力はNTSCで189H,PALで(187+
1/2)Hとなる。このため、第10図で設けたス イツチ50,X′talオンレータ51が不要となつ
ている。
In addition, by newly installing the 1/2 frequency divider 54, the output of the frequency divider 54 is 189H for NTSC and (187+H for PAL).
1/2) becomes H. Therefore, the switch 50 and the X'tal onrator 51 provided in FIG. 10 are no longer necessary.

本発明によれば、高速動作を必要とするフリツ
プフロツプの数を最小とすることができ、IC化
に際してそのチツプイズ、消費電力を最小にする
ことができる。又、NTSC方式とPAL方式のク
ロマ信号記録回路を類似のものとすることがで
き、NTSC,PAL両用のICを極めて容易に設計
できる。さらに、本発明のクロマ信号記録回路は
パイロツト信号発生回路との兼用が極めて容易で
あり、かつ得られるパイロツト信号周波数を最適
値とすることができる。
According to the present invention, the number of flip-flops that require high-speed operation can be minimized, and when integrated into an IC, the chip size and power consumption can be minimized. Furthermore, the chroma signal recording circuits for the NTSC and PAL systems can be made similar, making it extremely easy to design an IC for both NTSC and PAL. Further, the chroma signal recording circuit of the present invention can be used in combination with a pilot signal generation circuit very easily, and the resulting pilot signal frequency can be set to an optimum value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はβ方式ビデオテープレコーダのNTSC
クロマ信号記録回路の要部を示すブロツク図、第
2図は1/5分周器の一例を示す回路図、第3図は
β方式ビデオテープレコーダのクロマ信号スペク
トルとテープヘツド系の周波数特性を示す特性
図、第4図は第1図のクロマ回路からパイロツト
信号を発生させる場合の一例を示すブロツク図、
第5図は本発明の一実施例の要部を示すブロツク
図、第6図は1/3分周器の一例を示す回路図、第
7図は本発明のクロマ信号スペクトルの一実施例
とテープヘツド系の周波数特性を示す特性図、第
8図は本発明の別の一実施例の要部を示すブロツ
ク図、第9図は波形整形回路の一例を示す回路
図、第10図は本発明のクロマ信号記録回路を
PALに用いる場合の一実施例の要部を示すブロ
ツク図、第11図は本発明のNTSC方式クロマ信
号記録回路とこれと相性のよいPAL方式クロマ
信号記録回路との両回路に兼用できるクロマ信号
記録回路の一実施例の要部を示すブロツク図であ
る。 <符号の説明>、1…クロマ信号の入力端子、
4…第1の周波数変換器、6…位相反転回路、7
…第2の周波数変換器、2…電圧制御発振器、9
…分周器、2…パイロツト信号、30…1/3分周
器、43…波形成形回路。
Figure 1 shows the NTSC β format video tape recorder.
A block diagram showing the main parts of the chroma signal recording circuit, Figure 2 is a circuit diagram showing an example of a 1/5 frequency divider, and Figure 3 shows the chroma signal spectrum of a β-format video tape recorder and the frequency characteristics of the tape head system. 4 is a block diagram showing an example of generating a pilot signal from the chroma circuit shown in FIG. 1.
FIG. 5 is a block diagram showing the main part of an embodiment of the present invention, FIG. 6 is a circuit diagram showing an example of a 1/3 frequency divider, and FIG. 7 is an embodiment of the chroma signal spectrum of the present invention. A characteristic diagram showing the frequency characteristics of a tape head system, FIG. 8 is a block diagram showing the main part of another embodiment of the present invention, FIG. 9 is a circuit diagram showing an example of a waveform shaping circuit, and FIG. 10 is a diagram showing the main part of another embodiment of the present invention. chroma signal recording circuit
FIG. 11 is a block diagram showing the essential parts of an embodiment for use in PAL, and shows a chroma signal that can be used both in the NTSC chroma signal recording circuit of the present invention and in the PAL chroma signal recording circuit that is compatible with the NTSC chroma signal recording circuit. FIG. 2 is a block diagram showing the main parts of an embodiment of a recording circuit. <Explanation of symbols>, 1... Chroma signal input terminal,
4...First frequency converter, 6...Phase inversion circuit, 7
...Second frequency converter, 2...Voltage controlled oscillator, 9
... Frequency divider, 2... Pilot signal, 30... 1/3 frequency divider, 43... Waveform shaping circuit.

Claims (1)

【特許請求の範囲】 1 特定の発振周波数で発振する基準発振器と、 上記基準発振器からの発振信号を基に、低域変
換キヤリアを発生する低域変換キヤリア発生器
と、 上記低域変換キヤリア発生器からの低域変換キ
ヤリアと記録されるべき搬送色信号とを混合して
低域変換搬送色信号を発生する混合器と、 上記低域変換搬送色信号を磁気テープに記録す
る磁気ヘツドとからなり、 上記低域変換搬送色信号の搬送周波数が、水平
周波数を47+1/4倍した値となり、この搬送波の
位相が一方のフイールドでは水平期間ごとに反転
し、他方のフイールドでは水平期間ごとの反転が
生じないように、 上記低域変換キヤリアの周波数及び位相推移が
定められる ことを特徴とするNTSC方式クロマ信号の記録装
置。 2 特定の発振周波数で発振する基準発振器と、 上記基準発振器からの発振信号を基に、低域変
換キヤリアを発生する低域変換キヤリア発生器
と、 上記低域変換キヤリア発生器からの低域変換キ
ヤリアと記録されるべき搬送色信号とを混合して
低域変換搬送色信号を発生する混合器と、 上記低域変換搬送色信号の周波数を8倍した周
波数を分周した周波数のパイロツト信号を発生す
るパイロツト発生回路と、 上記低域変換搬送色信号と上記パイロツト信号
とを合成する合成回路と、 この合成回路からの出力信号を磁気テープに記
録する磁気ヘツドとからなり、 上記低域変換搬送色信号の搬送周波数が、水平
周波数を47+1/4倍した値となり、この搬送波の
位相が一方のフイールドでは水平期間ごとに反転
し、他方のフイールドでは水平期間ごとの反転が
生じないように、 上記低域変換キヤリアの周波数及び位相推移が
定められる ことを特徴とするNTSC方式クロマ信号の記録装
置。
[Claims] 1. A reference oscillator that oscillates at a specific oscillation frequency, a low-frequency conversion carrier generator that generates a low-frequency conversion carrier based on an oscillation signal from the reference oscillator, and the low-frequency conversion carrier generation. a mixer for generating a low-frequency converted carrier color signal by mixing the low-frequency converted carrier from the receiver with a carrier color signal to be recorded; and a magnetic head for recording the low-frequency converted carrier color signal on a magnetic tape. The carrier frequency of the above low-pass converted carrier color signal is 47 + 1/4 times the horizontal frequency, and the phase of this carrier wave is inverted every horizontal period in one field, and inverted every horizontal period in the other field. A recording device for an NTSC chroma signal, characterized in that the frequency and phase shift of the low-frequency conversion carrier are determined so as not to occur. 2. A reference oscillator that oscillates at a specific oscillation frequency, a low-frequency conversion carrier generator that generates a low-frequency conversion carrier based on the oscillation signal from the reference oscillator, and a low-frequency conversion carrier that generates a low-frequency conversion carrier from the low-frequency conversion carrier generator. A mixer that mixes the carrier and a carrier color signal to be recorded to generate a low-frequency converted carrier color signal, and a pilot signal having a frequency divided by eight times the frequency of the low-frequency converted carrier color signal. It consists of a pilot generation circuit that generates a pilot signal, a synthesis circuit that synthesizes the low-frequency conversion carrier color signal and the pilot signal, and a magnetic head that records the output signal from this synthesis circuit on a magnetic tape. The carrier frequency of the color signal is 47 + 1/4 times the horizontal frequency, and the phase of this carrier wave is inverted every horizontal period in one field, and the above is set so that inversion does not occur in the other field every horizontal period. A recording device for an NTSC chroma signal, characterized in that the frequency and phase transition of a low frequency conversion carrier are determined.
JP57037994A 1981-11-04 1982-03-12 Chroma signal recorder Granted JPS58156283A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57037994A JPS58156283A (en) 1982-03-12 1982-03-12 Chroma signal recorder
US06/438,246 US4554596A (en) 1981-11-04 1982-11-01 Color video signal recording apparatus
ES517033A ES517033A0 (en) 1981-11-04 1982-11-02 A DEVICE FOR RECORDING COLOR VIDEO SIGNALS.
EP82110123A EP0078542B1 (en) 1981-11-04 1982-11-03 Color video signal recording apparatus
CA000414756A CA1192996A (en) 1981-11-04 1982-11-03 Color video signal recording apparatus
BR8206389A BR8206389A (en) 1981-11-04 1982-11-03 COLOR TELEVISION SIGNAL RECORDER
AT82110123T ATE27883T1 (en) 1981-11-04 1982-11-03 DEVICE FOR RECORDING COLOR VIDEO SIGNALS.
DE8282110123T DE3276606D1 (en) 1981-11-04 1982-11-03 Color video signal recording apparatus
AU90148/82A AU542594B2 (en) 1981-11-04 1982-11-04 Color video signal recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037994A JPS58156283A (en) 1982-03-12 1982-03-12 Chroma signal recorder

Publications (2)

Publication Number Publication Date
JPS58156283A JPS58156283A (en) 1983-09-17
JPH0421398B2 true JPH0421398B2 (en) 1992-04-09

Family

ID=12513121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037994A Granted JPS58156283A (en) 1981-11-04 1982-03-12 Chroma signal recorder

Country Status (1)

Country Link
JP (1) JPS58156283A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106034A1 (en) 2016-04-01 2017-10-05 Sandvik Materials Technology Deutschland Gmbh Cold pilger rolling mill and method of making a pipe
DE102016106035A1 (en) 2016-04-01 2017-10-05 Sandvik Materials Technology Deutschland Gmbh Cold pilger rolling mill and method of making a pipe

Also Published As

Publication number Publication date
JPS58156283A (en) 1983-09-17

Similar Documents

Publication Publication Date Title
EP0081802A1 (en) Magnetic recording system
US4010490A (en) Video recording and reproducing apparatus with crosstalk reduction
US4807048A (en) Frequency converter for video tape recorder
EP0078542B1 (en) Color video signal recording apparatus
JPH0421398B2 (en)
US5083213A (en) Chrominance signal processing circuit and video tape recorder having function of processing chrominance signal
US4079412A (en) Signal processing circuit in a color video signal recording and/or reproducing apparatus
KR880000865B1 (en) Video disc player having auxiliary vertical synchronizing generator
US4607292A (en) Automatic phase control color signal circuit for video tape recorders operating in the NTSC or PAL systems
JPH0421399B2 (en)
JPH0422077B2 (en)
JPS6015866A (en) Video recorder adapted to record at least one voice signal
JPS59172898A (en) Clock pulse generating circuit in color video signal reproducing device
EP0476922B1 (en) Circuit for processing the frequency of a signal for a video cassette recorder
JPS607434B2 (en) Color video signal recording device
JPS6012836B2 (en) SECAM color video signal frequency conversion circuit
JP2918603B2 (en) Color signal processing device
Nakagawa et al. New Chrominance Signal Processing LSI for Home VCR
JPS6022668Y2 (en) AFC circuit
JPS63226192A (en) Color signal processor
JPH046318B2 (en)
JPS5837754B2 (en) Carrier color signal processing circuit
JPH0465598B2 (en)
JPS6050100B2 (en) AFC circuit
JPH046316B2 (en)