JPH0421367A - Actuator - Google Patents

Actuator

Info

Publication number
JPH0421367A
JPH0421367A JP12266389A JP12266389A JPH0421367A JP H0421367 A JPH0421367 A JP H0421367A JP 12266389 A JP12266389 A JP 12266389A JP 12266389 A JP12266389 A JP 12266389A JP H0421367 A JPH0421367 A JP H0421367A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
dielectric constant
actuator
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12266389A
Other languages
Japanese (ja)
Inventor
Takeshi Takemoto
武 竹本
Kakuji Murakami
格二 村上
Kiyofumi Nagai
希世文 永井
Masanori Horiie
正紀 堀家
Koji Izumi
泉 耕二
Akira Oyamaguchi
大山口 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JPH0421367A publication Critical patent/JPH0421367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance driving force drastically by filling the gap between first and second electrodes with a material having high dielectric constant and applying a voltage between the first and second electrodes thereby displacing a movable member. CONSTITUTION:An actuator mainly comprises a glass substrate 1, a silicon 2, a movable section(thin silicon film) 3 and an electrode 4. A fluid material having high dielectric constant is mixed with a solid state powder having high dielectric constant to produce a fluid material 5 which is placed between the electrodes. When a voltage is applied between the first and second electrodes, the first or the second electrode can be displaced. Consequently, driving force is enhanced drastically and a device which is conventionally moved only with a faint force can function as an actuator.

Description

【発明の詳細な説明】 投先光更 本発明は、アクチュエータに関し、例えば、モータ、記
録ヘットの駆動素子、ポンプ、微小な駆動等に適用され
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an actuator, and is applied to, for example, a motor, a drive element of a recording head, a pump, a minute drive, and the like.

k末技生 本発明に係る従来技術として、(1)単結晶シリコン薄
膜を用いた静電マイクロサーボシステムがある。これは
、単結晶シリコンの異方性エツチング技術を用いて、シ
リコンに薄膜を作り、このシリコン薄膜を電極とし、静
電引力により変位させるマイクロアクチュエータを作成
したものである。また、(2)  rcLO5ED L
OOP C0NTR0L OF ANELECTRO3
TATICLINEARACTUATORAND IT
SAPPLICATION To A MICRORE
LAYJ(14th AnnualConferenc
e of IEEE Industrial Elec
tronicsSociety ’lEC0N’88 
24−280ctober  1988SINGAPO
RE)には、平板に駆動電極を帯状に配置し、その上を
ローラ電極がころがるようにしたリニアアクチュエータ
が開示されており、駆動電極に順次電圧を印加すること
により、ローラ電極が移動するものである。
As a prior art related to the present invention, there is (1) an electrostatic micro servo system using a single crystal silicon thin film. This is a microactuator that uses anisotropic etching technology for single-crystal silicon to create a thin film on silicon, uses this silicon thin film as an electrode, and uses electrostatic attraction to cause displacement. Also, (2) rcLO5ED L
OOP C0NTR0L OF ANELECTRO3
TATICLINEARACTUATORANDIT
SAPPLICATION To A MICRORE
LAYJ (14th Annual Conference
e of IEEE Industrial Elec
tronicsSociety '1EC0N'88
24-280ctober 1988SINGAPO
RE) discloses a linear actuator in which driving electrodes are arranged in a band shape on a flat plate, on which roller electrodes roll, and the roller electrodes are moved by sequentially applying voltage to the driving electrodes. It is.

アクチュエータの駆動力として、一般に電磁力が使われ
ているが、超小型になってくると、電磁力は体積力であ
る為に急激に駆動力が低下し、−方、静電力は面積力の
為に電磁力に比べて駆動力の低下が小さくて有利となる
。しかし、有利とはなるが、従来の構成では、駆動力は
やはり小さく、実用化するとなると、さらにその駆動方
向上が望まれている。
Electromagnetic force is generally used as the driving force for actuators, but as the actuator becomes ultra-small, the driving force rapidly decreases because electromagnetic force is body force. Therefore, compared to electromagnetic force, the drop in driving force is smaller, making it advantageous. However, although advantageous, in the conventional configuration, the driving force is still small, and if it is to be put into practical use, it is desired that the driving force be improved in the driving direction.

■−一」η 本発明は、上述のごとき実情に鐙みてなされたもので、
駆動力が飛躍的に向上したアクチュエータを提供するこ
とを目的としてなされたものである。
■-1"η The present invention was made in consideration of the above-mentioned actual situation,
This was done with the aim of providing an actuator with dramatically improved driving force.

碧−一一収 本発明は、上記目的を達成するために、(1)可動部材
を第1の電極とし、該可動部材と対向して第2の電極を
有し、該第1の電極と該第2の電極との間に高い比誘電
率を持つ物質を介在又は充満させ、該第1の電極及び該
第2の電極との間に電圧を印加して、該可動部材を変位
させること、(2)第1の電極と、第2の電極との間に
高い比誘電率を持つ流動体に、高い比誘電率を持つ固体
の粉末を混入させたものを介在又は充満させ、該第1の
電極及び該第2の電極との間に電圧を印加して、該第1
の電極又は該第2の電極を変位させることを特徴とした
ものである。以下、本発明の実施例に基づいて説明する
In order to achieve the above object, the present invention has (1) a movable member as a first electrode, a second electrode facing the movable member, and a second electrode that is connected to the first electrode. Displacing the movable member by interposing or filling a substance with a high dielectric constant between the movable member and the second electrode, and applying a voltage between the first electrode and the second electrode. (2) interposing or filling a fluid having a high dielectric constant with a solid powder having a high dielectric constant between the first electrode and the second electrode; Applying a voltage between the first electrode and the second electrode,
or the second electrode is displaced. Hereinafter, the present invention will be explained based on examples.

まず、第4図に基づいて、電極間に働く力について説明
する。図中、1はガラス基板、2はシリコン、3は可動
部(シリコン薄膜)、4は電極である。電極間に働く力
Pは下記の式で示される。
First, the force acting between the electrodes will be explained based on FIG. 4. In the figure, 1 is a glass substrate, 2 is silicon, 3 is a movable part (silicon thin film), and 4 is an electrode. The force P acting between the electrodes is expressed by the following formula.

したがって、 (但し、■=印加電圧、ε=空気の誘電率、S=電極の
面積、εr=比誘電率(空気は1.0005) 、io
=真空の誘電率(8,854X 10− ”F/m)、
Q =電極間の長さ)従ってこの場合、駆動力を向上さ
せる為には、電界が作用する面積Sを大きくするか、電
極間の長さを短かくするか、印加電圧■を大きくするか
などの手段が考えられる。しかしながら、面積Sを大き
く取ることは、小型化することにとっては致命的な問題
であり、むやみに大きくすることはできない。又、電極
間の長さQを小さくすることは、Me破壌が発生しやす
くするばかりでなく、加工上も難しくなる。印加電圧を
大きくすることは、電源容量が大きくなり、ドライブ回
路に負担がかかり、ひいてはコスト大になる。
Therefore, (where ■=applied voltage, ε=permittivity of air, S=area of electrode, εr=relative permittivity (air is 1.0005), io
= Dielectric constant of vacuum (8,854X 10-”F/m),
Q = length between electrodes) Therefore, in this case, in order to improve the driving force, should we increase the area S on which the electric field acts, shorten the length between the electrodes, or increase the applied voltage ■? Possible methods include: However, increasing the area S is a fatal problem for miniaturization, and it cannot be increased unnecessarily. Further, reducing the length Q between the electrodes not only makes it easier for Me destruction to occur, but also makes it difficult to process. Increasing the applied voltage increases the power supply capacity, puts a burden on the drive circuit, and ultimately increases costs.

本発明は、上記不具合を発生することなく、駆動力を大
きくし、静電力アクチュエータを実用に供するものであ
る。
The present invention is intended to increase the driving force without causing the above-mentioned problems, and to put an electrostatic actuator into practical use.

第1図は1本発明によるアクチュエータの一実施例を説
明するための構成図で、図中、5は比誘電率の高い液体
に比誘電率の高い固体の粉末を混入したもので、その他
第4図の場合と同様の作用をする部分1〜4は第4図の
場合と同一の参照番号を付しである。
FIG. 1 is a configuration diagram for explaining one embodiment of the actuator according to the present invention. Parts 1 to 4 which act in the same way as in FIG. 4 are given the same reference numerals as in FIG.

具体的には、電極間に比誘電率の高い流動体にさらに高
い比誘電率を持つ固体の粉末を混入させ、流動体として
の比誘電率を高め、そこに電圧を印加し、発生する駆動
力を高めるものである。比誘電率の高い流動体としては
、すなわち、グリセリンは42.5、水は約80、メチ
ルアルコールは33.64、などがあげられる。好まし
くは10以上のものが良い。しかし、さらに高い駆動力
を必要とする時に最も好都合なものは、強誘電性液晶で
あり、比誘電率4000〜6000を超えるものもある
。これら流動体に、さらに高い誘電率を持つ固体の粉末
、例えば、ロッシェル塩、PZT、チタン酸バリウムな
どを混入する。特にチタン酸バリウムは粉末で比誘電率
が17000程度のものもある。例えば、比誘電率35
.7のニトロベンゼンにチタン酸バリウムの粉末を混入
すると、その重量比によって違った値になるが、ニトロ
ベンゼン2ccに対しチタン酸バリウム30g程度で、
その比誘電率は220前後になる。第1図は、第4図の
電極に囲まれた空間内にこのまぜ合わせたものを満たし
たものである。このような構成においては、第4図で発
生する駆動力に対して、その比誘電率に見あった駆動力
を得ることができる。又、流動体を強誘電性液晶、粉末
をチタン酸バリウムとして混入することにより、さらに
大きな比誘電率を有するものになり、発生する駆動力は
増大する。
Specifically, solid powder with an even higher relative permittivity is mixed into a fluid with a high relative permittivity between the electrodes to increase the relative permittivity of the fluid, and a voltage is applied thereto to generate the drive. It increases power. Examples of fluids with high dielectric constants include glycerin, which has a dielectric constant of 42.5, water, which has a dielectric constant of about 80, and methyl alcohol, which has a dielectric constant of 33.64. Preferably it is 10 or more. However, when a higher driving force is required, the most convenient liquid crystal is a ferroelectric liquid crystal, and some have a dielectric constant exceeding 4,000 to 6,000. These fluids are further mixed with solid powders having a higher dielectric constant, such as Rochelle salt, PZT, barium titanate, and the like. In particular, some barium titanate powders have a dielectric constant of about 17,000. For example, dielectric constant 35
.. When barium titanate powder is mixed with nitrobenzene in step 7, the value will vary depending on the weight ratio, but at about 30 g of barium titanate for 2 cc of nitrobenzene,
Its dielectric constant is around 220. In FIG. 1, the space surrounded by the electrodes in FIG. 4 is filled with this mixture. In such a configuration, it is possible to obtain a driving force commensurate with the relative permittivity of the driving force generated in FIG. 4. Furthermore, by mixing the fluid as a ferroelectric liquid crystal and the powder as barium titanate, the material has an even larger dielectric constant and the generated driving force increases.

従来技術の箇所で前述した(2)の文献に示されている
ような円筒電極を転がすリニアアクチュエータがあるが
、これについては第2図に示しである。図中、6は円筒
電極、7は帯状電極、8は電圧を印加した電極、9は比
誘電率の大きい物質。
There is a linear actuator that rolls a cylindrical electrode as shown in document (2) mentioned above in the prior art section, and this is shown in FIG. In the figure, 6 is a cylindrical electrode, 7 is a strip-shaped electrode, 8 is an electrode to which a voltage is applied, and 9 is a material with a high dielectric constant.

10は絶縁一体、11はステータである。なお、円筒電
極の矢印は回転方向を示している。これによると、ステ
ータ11に埋め込まれた帯状電極7と円筒電極6との間
に比誘電率の大きい物質9を介在させることにより、そ
の回転力を飛躍的に大きくすることが可能となる。誘電
率の大きい物質で、絶縁性の小さいものを使用する時は
、各電極には適宜、絶縁処理10を施すことが好ましい
。このようなアクチュエータの応用例としては、第3図
に示すようなポンプが考えられる。図中、12は天板、
13は逆止弁、14は流路である。シリコン薄膜部13
を流体の流れる流路14に接するようにし、その流路1
4の一方に逆止弁13をつけたものである。シリコン薄
膜3の振動により供給側より流体が流れ込み、シリコン
薄膜3の振動によるエネルギーにより流体に移動エネル
ギーが与えられ、逆止弁13によりその移動方向が一方
に制御される。
10 is an insulating unit, and 11 is a stator. Note that the arrow on the cylindrical electrode indicates the direction of rotation. According to this, by interposing the material 9 having a high relative dielectric constant between the strip electrode 7 and the cylindrical electrode 6 embedded in the stator 11, it becomes possible to dramatically increase the rotational force. When using a material with a high dielectric constant and low insulating properties, it is preferable to apply insulation treatment 10 to each electrode as appropriate. As an example of application of such an actuator, a pump as shown in FIG. 3 can be considered. In the figure, 12 is the top plate,
13 is a check valve, and 14 is a flow path. Silicon thin film part 13
is in contact with the flow path 14 through which the fluid flows, and the flow path 1
A check valve 13 is attached to one side of 4. The vibration of the silicon thin film 3 causes fluid to flow in from the supply side, and the energy generated by the vibration of the silicon thin film 3 imparts movement energy to the fluid, and the check valve 13 controls the direction of movement of the fluid to one side.

羞−一果 以上の説明から明らかなように、本発明によると、発生
する駆動力が飛躍的に向上し、従来微弱な力でしか動か
なかったものが、アクチュエータとして機能するように
なり、マイクロアクチュエータの実現性を開いたもので
ある。
As is clear from the above explanation, according to the present invention, the generated driving force has been dramatically improved, and what used to be able to move with only a weak force can now function as an actuator. This opens up possibilities for actuators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるアクチュエータの一実施例を説
明するための構成図、第2図は、円筒電極を転がすリニ
アアクチュエータの例を示す図、第3図は、ポンプに適
用した本発明によるアクチュエータの応用例を示す図、
第4図は、アクチュエータの電極間に働く力を説明する
ための図である。 1・・ガラス基板、2・・・シリコン部材、3・・・可
動部(シリコン薄膜)、4・・・電極、5・・・比誘電
率の高い液体と比誘電率の高い固体粉末との混合物。 第 区 第 区 第 区 第 乙 図
FIG. 1 is a configuration diagram for explaining one embodiment of the actuator according to the present invention, FIG. 2 is a diagram showing an example of a linear actuator that rolls a cylindrical electrode, and FIG. 3 is a diagram showing an example of the linear actuator according to the present invention applied to a pump. Diagrams showing application examples of actuators,
FIG. 4 is a diagram for explaining the force acting between the electrodes of the actuator. 1... Glass substrate, 2... Silicon member, 3... Movable part (silicon thin film), 4... Electrode, 5... Liquid with high relative permittivity and solid powder with high relative permittivity blend. Ward No. 1 Ward No. Otsu map

Claims (1)

【特許請求の範囲】 1、可動部材を第1の電極とし、該可動部材と対向して
第2の電極を有し、該第1の電極と該第2の電極との間
に高い比誘電率を持つ物質を介在又は充満させ、該第1
の電極及び該第2の電極との間に電圧を印加して、該可
動部材を変位させることを特徴とするアクチュエータ。 2、第1の電極と、第2の電極との間に高い比誘電率を
持つ流動体に、高い比誘電率を持つ固体の粉末を混入さ
せたものを介在又は充満させ、該第1の電極及び該第2
の電極との間に電圧を印加して、該第1の電極又は該第
2の電極を変位させることを特徴とするアクチュエータ
[Claims] 1. A movable member is a first electrode, a second electrode is provided opposite to the movable member, and a high relative dielectric potential is provided between the first electrode and the second electrode. interpose or fill with a substance having a certain
An actuator characterized in that the movable member is displaced by applying a voltage between the electrode and the second electrode. 2. A fluid having a high relative permittivity mixed with a solid powder having a high relative permittivity is interposed or filled between the first electrode and the second electrode; electrode and the second
An actuator characterized in that the first electrode or the second electrode is displaced by applying a voltage between the first electrode and the second electrode.
JP12266389A 1989-02-14 1989-05-15 Actuator Pending JPH0421367A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-35454 1989-02-14
JP3545489 1989-02-14

Publications (1)

Publication Number Publication Date
JPH0421367A true JPH0421367A (en) 1992-01-24

Family

ID=12442249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12266389A Pending JPH0421367A (en) 1989-02-14 1989-05-15 Actuator

Country Status (1)

Country Link
JP (1) JPH0421367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990762A (en) * 1996-05-23 1999-11-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage filter with multiple inside busbar lead-out electrodes
BE1011730A4 (en) * 1998-02-05 1999-12-07 Bousse Georges Albert Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser
US6348845B2 (en) 1996-05-23 2002-02-19 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage surface acoustic wave filter
US6801100B2 (en) 1996-05-23 2004-10-05 Matsushita Electric Industrial Co., Ltd. Inter-digital transducer, surface acoustic wave filter and communication apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990762A (en) * 1996-05-23 1999-11-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage filter with multiple inside busbar lead-out electrodes
US6348845B2 (en) 1996-05-23 2002-02-19 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage surface acoustic wave filter
US6351196B1 (en) 1996-05-23 2002-02-26 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage surface acoustic wave filter
US6801100B2 (en) 1996-05-23 2004-10-05 Matsushita Electric Industrial Co., Ltd. Inter-digital transducer, surface acoustic wave filter and communication apparatus using the same
BE1011730A4 (en) * 1998-02-05 1999-12-07 Bousse Georges Albert Generator, that produces a mechanical capacity by using the attractive force between the poles of an equal tension electrically charged condenser

Similar Documents

Publication Publication Date Title
Gao et al. Piezoelectric actuators and motors: materials, designs, and applications
Uchino Materials issues in design and performance of piezoelectric actuators: an overview
EP1548487B1 (en) Micro-actuators with dielectrophoretic micro- emulsions
EP0890216A1 (en) Piezoelectric actuator or motor, method therefor and method for fabrication thereof
JP7022127B2 (en) Light beam processing device
RU2748051C2 (en) Stiffness control for electroactive executive devices
JPH0421367A (en) Actuator
Zhu et al. Design and fabrication of a novel piezoelectric multilayer actuator by thick-film screen printing technology
US11041896B2 (en) Piezoelectric property measuring apparatus for liquid or viscous material
EP1639657B1 (en) Method of producing piezoelectric tubes
JPH10209517A (en) Piezoelectric element
EP0619598A2 (en) Bonded member of insulator and conductor and method for bonding
RU2740346C2 (en) Friction control device and method
JP3263971B2 (en) Electrostatic actuator
US6873229B2 (en) In line structure for agitation of fluid dielectrics in RF devices
US7994685B2 (en) Electromechanical transducer—artificial muscle
Tartarisco et al. Polyurethane unimorph bender microfabricated with Pressure Assisted Microsyringe (PAM) for biomedical applications
Yoon et al. Piezoelectric ultrasonic motor by co-extrusion process
Glazounov et al. New torsional actuator based on shear piezoelectric response
JP3470920B2 (en) converter
JP2719365B2 (en) Pyroelectric actuator
Sounart et al. Electrostatic actuation without electrolysis in microfluidic MEMS
Jones et al. Adaptive devices for precise position control
Pan et al. Electroactive actuator materials: investigations on stress and temperature characteristics
Wang et al. A piezoelectric pseudoshear multilayer actuator