JPH04213042A - Method for evaluating and testing corrosiveness of exhaust-gas condensed water - Google Patents

Method for evaluating and testing corrosiveness of exhaust-gas condensed water

Info

Publication number
JPH04213042A
JPH04213042A JP40059390A JP40059390A JPH04213042A JP H04213042 A JPH04213042 A JP H04213042A JP 40059390 A JP40059390 A JP 40059390A JP 40059390 A JP40059390 A JP 40059390A JP H04213042 A JPH04213042 A JP H04213042A
Authority
JP
Japan
Prior art keywords
ppm
test
condensed water
corrosion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40059390A
Other languages
Japanese (ja)
Inventor
Makoto Kitazawa
真 北澤
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP40059390A priority Critical patent/JPH04213042A/en
Publication of JPH04213042A publication Critical patent/JPH04213042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To provide the method which can evaluate the corrosion resistance of a metal material used for the exhaust system members of automobiles. CONSTITUTION:A test piece 4 is suspended at the upper part of a tightly closed container 11. A testing solution which contains Cl<-> of 10-5,000ppm, SO4<2-> of 100-10,000ppm, SO3<2-> of 100-10,000ppm, CO3<2-> of 100-10,000ppm and NH4<-> of 100-10,000ppm and which is adjusted at pH of 7-10 is filled in the container. The exhaust gas of an engine is filled in the upper part of the tightly closed container 11. The tightly closed container 11 is kept at 50-100 deg.C for 100-3,000 hours. The evaporation and replenishment of the testing solution are repeated, and the test of the corrosion resistance is conducted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車排気系部材に使
用される金属材料の耐食性を評価する凝縮水腐食性評価
試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensed water corrosion evaluation test method for evaluating the corrosion resistance of metal materials used in automobile exhaust system members.

【0002】0002

【従来の技術】従来から、自動車排ガス凝縮水に対する
自動車排気系材料の耐食性を評価する方法としては、C
l− , SO42− , CO32− , HCHO
, CH3COO− , NH3 + などを含む試験
溶液中に試験材料を半浸漬して試験する方法(たとえば
「自動車技術会前刷集」872昭和62−10 P. 
651 〜654 、「日新製鋼技報」第51号P. 
102〜113 など参照)や試験片を同様の試験溶液
に浸漬した後、この溶液より取り出し乾燥させるいわゆ
るディップアンドドライ試験法(たとえば「鉄と鋼」1
985年S670 参照)などが知られている。
[Prior Art] Conventionally, as a method for evaluating the corrosion resistance of automobile exhaust system materials against automobile exhaust gas condensed water, C
l-, SO42-, CO32-, HCHO
, CH3COO- , NH3 + , etc. (for example, "Automotive Engineers of Japan Preprint Collection" 872, 1986-10 P.
651-654, "Nissin Steel Technical Report" No. 51, P.
102-113) or the so-called dip-and-dry test method in which a test piece is immersed in a similar test solution and then taken out and dried (for example, "Tetsu to Hagane" 1).
985 S670) are known.

【0003】ここで、これらの試験法について簡単に説
明すると、前者の半浸漬試験法は図2に示すように、8
0℃一定の温水2を入れた恒温水槽1内に載置したガラ
スビーカ3に、試験片4が半分だけ浸漬するように試験
溶液5を入れ、ガラスビーカ3の上部を時計皿6で覆う
ようにして腐食状況を試験するものである。また、後者
のディップアンドドライ試験法は、図3に示すように、
試験溶液5が充満された薬品槽7内はヒータ8で50℃
一定に調節され、その液中に試験片4が吊り装置9によ
って昇降可能とされ、3分間液中浸漬された後吊り上げ
られて熱風乾燥機10からの80℃の熱風で17分間乾
燥される。 このサイクルを繰り返して腐食状況が試験される。
[0003] Here, to briefly explain these test methods, the former half-immersion test method is as shown in FIG.
A test solution 5 is poured into a glass beaker 3 placed in a constant temperature water bath 1 containing hot water 2 kept at a constant 0°C so that the test piece 4 is only half immersed, and the top of the glass beaker 3 is covered with a watch glass 6. This is to test the corrosion status. In addition, the latter dip-and-dry test method, as shown in Figure 3,
The inside of the chemical tank 7 filled with the test solution 5 is kept at 50°C by the heater 8.
The test piece 4 is adjusted to a constant temperature and can be raised and lowered into the liquid by a hanging device 9, and after being immersed in the liquid for 3 minutes, it is lifted and dried with hot air at 80°C from a hot air dryer 10 for 17 minutes. This cycle is repeated to test for corrosion status.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記し
た半浸漬試験法やディップアンドドライ試験法ではたと
えばAlめっき鋼はよく腐食するものの、最近排気系材
料に採用されるようになったステンレス鋼、特に16〜
20wt%Crを含有する高耐食性ステンレス鋼では殆
ど腐食せず、耐食性を評価することができないと言う問
題を生じていた。
[Problems to be Solved by the Invention] However, although the semi-immersion test method and dip-and-dry test method described above often corrode, for example, aluminum-plated steel, stainless steel, which has recently been adopted as exhaust system material, 16~
Highly corrosion-resistant stainless steel containing 20 wt% Cr hardly corrodes, resulting in the problem that corrosion resistance cannot be evaluated.

【0005】本発明は、上記のような課題を解決すべく
なされたものであって、従来から排気系材料に用いられ
ていたAlめっき鋼のみならずステンレス鋼についても
、自動車排ガス凝縮水に対する耐食性を評価できる試験
方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to improve the corrosion resistance of automobile exhaust gas condensed water not only for aluminum-plated steel, which has conventionally been used as an exhaust system material, but also for stainless steel. The purpose is to provide a test method that can evaluate the

【0006】[0006]

【課題を解決するための手段】本発明は、自動車エンジ
ン排ガス凝縮水に対する自動車排気系材料の耐食性を評
価する試験を行う方法であって、上部にガスの排出口を
設け側部にガスの供給口を設けた密閉容器内に、重量割
合でCl− :10〜5000ppm ,  SO42
−: 100〜10000 ppm , SO32− 
: 100〜10000 ppm ,CO32−: 1
00〜10000 ppm , NH4 + :100
 〜10000 ppm を含みpH7〜10に調整さ
れた試験溶液を所定の量だけ充填し、前記容器の上部に
試験片を吊り下げるとともに前記ガス供給口を介して前
記容器の上部にエンジン排ガス雰囲気を充満した後、前
記容器を50〜100 ℃に保持して前記溶液を蒸発さ
せ、この溶液が完全に蒸発したのち新たな試験溶液を補
充して前記排ガス雰囲気中での保持を繰り返し、全試験
時間が 100〜3000時間になった時点で前記試験
片を取り出し、その錆方の程度で耐食性を評価すること
を特徴とする排ガス凝縮水腐食性評価試験方法である。
[Means for Solving the Problems] The present invention is a method for conducting a test for evaluating the corrosion resistance of automobile exhaust system materials against automobile engine exhaust gas condensed water. In a sealed container with a mouth, Cl-: 10 to 5000 ppm by weight, SO42
−: 100 to 10000 ppm, SO32−
: 100-10000 ppm, CO32-: 1
00-10000 ppm, NH4 + :100
A predetermined amount of a test solution containing ~10,000 ppm and adjusted to pH 7 to 10 is filled, a test piece is suspended from the top of the container, and the top of the container is filled with engine exhaust gas atmosphere through the gas supply port. After that, the container is held at 50 to 100 °C to evaporate the solution, and after this solution has completely evaporated, a new test solution is added and the holding in the exhaust gas atmosphere is repeated, and the total test time is This is a test method for evaluating corrosion resistance of exhaust gas condensed water, characterized in that the test piece is taken out after 100 to 3000 hours, and the corrosion resistance is evaluated based on the degree of rust.

【0007】なお、重量割合でCl− :10〜500
0ppm ,  SO42−: 100〜10000 
ppm , SO32− :100〜10000 pp
m ,CO32−: 100〜10000 ppm ,
 NH4 + :100 〜10000 ppm を含
み、さらにHCHO:1〜1000ppm , HCO
O− :1〜1000ppm , CH3COO− :
1〜1000ppm , NO3 − :1〜100 
ppm のうちの1種または2種以上を含むpH7〜1
0に調整された試験溶液を用いてもよい。
[0007] In addition, Cl-: 10 to 500 in weight proportion
0ppm, SO42-: 100-10000
ppm, SO32-: 100-10000 ppm
m, CO32-: 100-10000 ppm,
Contains NH4+: 100 to 10,000 ppm, and further contains HCHO: 1 to 1,000 ppm, HCO
O-: 1-1000ppm, CH3COO-:
1~1000ppm, NO3-: 1~100
pH 7 to 1 containing one or more of ppm
A test solution adjusted to 0 may also be used.

【0008】[0008]

【作  用】本発明者らは、前記した課題を解決するた
めに、自動車マフラーの腐食機構を詳細に調査した結果
、排気系材料の腐食は凝縮水が溜まるマフラー下部のみ
ならず、上部の気相部分でも結露した凝縮水により激し
く腐食することを知見した。また、ラボ実験においても
試験片の凝縮水中に浸漬した部分よりも、結露する気相
部分においてより腐食することを発見した。さらに、ス
テンレス鋼の腐食は SO32−がかなり濃縮した時に
促進されるが、このような SO32−の濃縮は排気ガ
ス中での溶液の蒸発濃縮を行った際に生じることを発見
した。なお、通常の大気中での溶液の蒸発では SO3
2−が酸化されて SO42−に変化するため、 SO
32−の濃縮は生じない。
[Function] In order to solve the above-mentioned problems, the present inventors conducted a detailed investigation into the corrosion mechanism of automobile mufflers, and found that corrosion of exhaust system materials occurs not only in the lower part of the muffler where condensed water accumulates, but also in the upper part of the muffler. It was discovered that even the phase part was severely corroded by condensed water. In addition, in laboratory experiments, it was discovered that the gas phase portion of the test piece where condensation was formed was more corroded than the portion immersed in the condensed water. Furthermore, it has been discovered that corrosion of stainless steel is accelerated when SO32- is significantly concentrated, and that such concentration of SO32- occurs when the solution is evaporated and concentrated in exhaust gas. In addition, in the evaporation of a solution in normal air, SO3
2- is oxidized and changes to SO42-, so SO
No enrichment of 32- occurs.

【0009】ここで本発明の構成要素を説明すると、自
動車排ガス凝縮水にはCl− , SO42− , S
O32− , CO32− , NH4 + が数pp
m から数 100ppm の範囲で含まれていること
が報告されており、これらは凝縮水腐食には不可欠のイ
オンと考えられる。また、HCHO, HCOO− ,
 CH3COO− , NO3 − も検出される場合
があり、その場合をシミュレートする試験においてはこ
れらのイオンを添加する必要がある。そこで、これらの
イオンの濃度を凝縮水腐食の再現性と加速性から以下の
ように定めた。 ・Cl− :Cl− は10ppm 未満ではステンレ
ス鋼の孔食が発生し難く、5000ppm を超えると
ステンレス鋼の腐食がAlめっき鋼に比べて促進され過
ぎるため、適性範囲を10〜5000ppm とした。 ・SO42− :SO42− は凝縮水腐食を生じさせ
る主要因と考えられ、 100ppm 未満では凝縮水
腐食が生じ難く、10000 ppm を超えるとAl
めっき鋼の腐食がステンレス鋼に比べて促進され過ぎる
ため、適性範囲を 100〜10000 ppm とし
た。 ・SO32− :SO32− はステンレス鋼の不動態
皮膜を還元破壊する作用があり、高Cr系のステンレス
鋼に凝縮水腐食を生じさせるためには 100ppm 
以上が必要である。しかし、 10000ppm を超
えるとステンレス鋼の腐食がAlめっき鋼に比べて促進
され過ぎるため、適性範囲を 100〜10000 p
pm とした。 ・CO32− :CO32− は蒸発濃縮する過程でC
O2 ガスとして蒸発し、濃縮時の溶液のpHをコント
ロールする。 100ppm 未満では濃縮時の溶液の
pHが低くなり過ぎるために低Cr系のステンレスに孔
食が発生せず、全面溶解となり実際の凝縮水腐食を再現
しなくなる。また、 10000ppm を超えると濃
縮時の溶液のpHが高くなり過ぎるためステンレス鋼に
孔食が発生し難くなるため、適性範囲を 100〜10
000 ppm とした。なお、CO32− は水溶液
中ではpHに応じてHCO3− に変化するから、した
がって添加物ではCO32− であっても水溶液中では
CO32− とHCO3− の両方のイオンとして存在
することになる。 ・NH4 + :NH4 + は排ガス浄化対策として
3元触媒を採用するようになってから凝縮水中に増加し
たイオンであり、このイオンにより凝縮水がアルカリ性
となっている。
[0009] Here, to explain the constituent elements of the present invention, automobile exhaust gas condensed water contains Cl-, SO42-, S
Several pp of O32-, CO32-, NH4 +
It has been reported that the content ranges from 200 ppm to several 100 ppm, and these ions are considered essential for condensed water corrosion. Also, HCHO, HCOO-,
CH3COO- and NO3- may also be detected, and it is necessary to add these ions in a test simulating this case. Therefore, the concentrations of these ions were determined as follows from the viewpoint of reproducibility and acceleration of condensed water corrosion. -Cl-: If Cl- is less than 10 ppm, pitting corrosion of stainless steel is difficult to occur, and if it exceeds 5000 ppm, corrosion of stainless steel is accelerated more than Al-plated steel, so the appropriate range was set at 10 to 5000 ppm.・SO42-: SO42- is considered to be the main factor causing condensed water corrosion, and if it is less than 100 ppm, condensed water corrosion is difficult to occur, and if it exceeds 10,000 ppm, it will cause Al
Since corrosion of plated steel is accelerated more than that of stainless steel, the appropriate range is set to 100 to 10,000 ppm.・SO32-: SO32- has the effect of reducing and destroying the passive film of stainless steel, and in order to cause condensed water corrosion on high Cr stainless steel, 100 ppm is required.
The above is necessary. However, if it exceeds 10,000 ppm, the corrosion of stainless steel will be accelerated compared to Al-plated steel, so the appropriate range should be set at 100 to 10,000 ppm.
pm.・CO32-: CO32- is converted into C in the process of evaporation and concentration.
It evaporates as O2 gas and controls the pH of the solution during concentration. If it is less than 100 ppm, the pH of the solution during concentration will be too low, so pitting corrosion will not occur in low Cr stainless steel, and it will be completely dissolved, making it impossible to reproduce actual condensed water corrosion. In addition, if it exceeds 10,000 ppm, the pH of the solution during concentration becomes too high, making it difficult for pitting corrosion to occur in stainless steel, so the appropriate range is set to 100 to 10.
000 ppm. Note that in an aqueous solution, CO32- changes to HCO3- depending on the pH, so even if the additive is CO32-, it will exist as both CO32- and HCO3- ions in the aqueous solution.・NH4 + :NH4 + is an ion that has increased in condensed water since the adoption of three-way catalysts as a measure for exhaust gas purification, and this ion makes the condensed water alkaline.

【0010】100ppm 未満では凝縮水がアルカリ
性とならずAlめっき層のアルカリ腐食が生じず、また
 10000ppm を超えると濃縮時のpHが酸性に
ならず、ステンレス鋼の孔食が発生し難くなるため、適
性範囲を 100〜10000 ppm とした。以上
が凝縮水腐食を再現するための基本イオンであるが、さ
らに腐食を促進させるために以下のイオンの1種以上を
添加する必要がある。 ・HCOO −,CH3COO −:HCOO− ,C
H3COO− はカルボン酸イオンであり、Alめっき
鋼の腐食を促進させる。1ppm 未満では腐食の促進
が不十分であり、 1000 ppm を超えると腐食
の再現性が損なわれるので適性範囲を1〜1000pp
m とした。・HCHO:ホルムアルデヒドは酸化され
てギ酸となり、Alめっき鋼の腐食を促進させる。1p
pm 未満では腐食の促進が不十分であり、1000p
pm を超えると腐食の再現性が損なわれるので適性範
囲を1〜1000ppm とした。 ・NO3 − :NO3 − は酸化剤として働き腐食
を促進させる。1ppm 未満では腐食の促進が不十分
であり、 100ppm を超えると逆にステンレス鋼
を不動態化させるため、適性範囲を1〜100 ppm
とした。 ・pH:凝縮水のpHは弱アルカリであることが報告さ
れており、pH7未満ではAlめっき層のアルカリ腐食
が生じず、pH10を超えるとAlめっき層が腐食し過
ぎること、ステンレス鋼が腐食し難くなるため適性範囲
をpH7〜10とした。 ・排気ガス:実車マフラー内に結露滞留する凝縮水およ
びマフラー内壁は、排気ガス流中にさらされている。排
気ガスの組成はN2, SO2, CO, CO2, 
NH3, NO, NO2,NOX さらには微量のO
2などと考えられ、実車マフラー内での凝縮水の蒸発濃
縮過程においてはこれらの成分が凝縮水中に溶解し、凝
縮水中イオン濃度の挙動を変化させる。 つまりSO2 により、凝縮水中SO32− は蒸発濃
縮過程において濃化し、NH3, CO2,COは凝縮
水中NH4 + , CO32− の挙動を変化させ、
pHの挙動に影響する。
[0010] If it is less than 100 ppm, the condensed water will not become alkaline and alkaline corrosion of the Al plating layer will not occur, and if it exceeds 10,000 ppm, the pH during concentration will not become acidic and pitting corrosion of stainless steel will not occur easily. The appropriate range was set to 100 to 10,000 ppm. The above are the basic ions for reproducing condensed water corrosion, but in order to further promote corrosion, it is necessary to add one or more of the following ions.・HCOO-, CH3COO-:HCOO-,C
H3COO- is a carboxylic acid ion and accelerates corrosion of Al-plated steel. If it is less than 1 ppm, corrosion promotion is insufficient, and if it exceeds 1000 ppm, the reproducibility of corrosion will be impaired, so the appropriate range is 1 to 1000 ppm.
m.・HCHO: Formaldehyde is oxidized to form formic acid, which accelerates corrosion of Al-plated steel. 1p
Below 1000p, corrosion promotion is insufficient.
If it exceeds pm, the reproducibility of corrosion will be impaired, so the appropriate range is set to 1 to 1000 ppm.・NO3 − :NO3 − acts as an oxidizing agent and promotes corrosion. If it is less than 1 ppm, corrosion promotion is insufficient, and if it exceeds 100 ppm, it will passivate the stainless steel, so the appropriate range is 1 to 100 ppm.
And so.・pH: It has been reported that the pH of condensed water is weakly alkaline, and if the pH is less than 7, alkaline corrosion of the Al plating layer will not occur, and if the pH exceeds 10, the Al plating layer will be too corroded and stainless steel will corrode. Therefore, the appropriate range was set to pH 7 to 10.・Exhaust gas: Condensed water that accumulates inside the muffler of an actual vehicle and the muffler inner wall are exposed to the exhaust gas flow. The composition of exhaust gas is N2, SO2, CO, CO2,
NH3, NO, NO2, NOX and even trace amounts of O
During the evaporation and concentration process of condensed water in the muffler of an actual vehicle, these components dissolve in the condensed water and change the behavior of the ion concentration in the condensed water. In other words, due to SO2, SO32- in condensed water is concentrated in the evaporation concentration process, and NH3, CO2, and CO change the behavior of NH4 + and CO32- in condensed water.
Affects pH behavior.

【0011】大気中および実車排ガス中での凝縮水濃縮
実験を行いpHの変化を測定したところ、初期pHが約
9の凝縮水は濃縮するに従いpHの低下を生じるが、そ
の値には大気中と排ガス中とでは差を生じ、大気中が約
4、排ガス中では約7であった。このような中性域にお
いてはAlの孔食発生が促進されるため、実車腐食で観
察されるようなAlのピット状腐食が再現されると考え
られる。また、ステンレス鋼は低pH域で腐食が促進さ
れるため、腐食試験環境中pHは腐食状況を大きく変化
させる。
[0011] Condensed water concentration experiments were carried out in the atmosphere and in the exhaust gas of actual vehicles, and changes in pH were measured. It was found that condensed water with an initial pH of about 9 decreases in pH as it condenses; There was a difference between the amount and the amount in the exhaust gas, with the amount in the atmosphere being about 4 and the amount in the exhaust gas being about 7. Since pitting corrosion of Al is promoted in such a neutral region, it is thought that the pit-like corrosion of Al observed in actual vehicle corrosion is reproduced. Furthermore, since corrosion of stainless steel is accelerated in a low pH range, the pH in the corrosion test environment greatly changes the corrosion state.

【0012】本発明における試験方法では実車排ガスを
用いており、任意のエンジン側条件の設定およびその組
み合わせが容易であり、より実車に近似した腐食環境を
再現することが可能である。なお、排ガスの温度条件や
試験時間,試験方法については以下による。 ・温度: 排ガスの露点は50℃付近にあり、これ以上の温度で凝
縮水が蒸発、濃縮する時に腐食が激しくなる。50℃未
満では腐食が促進されず、 100℃以上では蒸発が速
くなり過ぎ腐食させる時間が無くなるため、適性範囲を
50〜100 ℃とした。 ・試験時間: 試験時間は 100時間未満では特にAlめっき鋼の腐
食が不十分であり、3000時間を超えると結果が出る
までに時間がかかり過ぎること、および材料間の耐食性
の相対評価としては一定となり無駄な時間となることな
どの理由から、適性範囲を100〜3000時間とした
。 ・試験方法: 試験片を溶液の直上に設置し、試験片表面に蒸発した凝
縮水を結露させることが本試験方法のポイントである。 このような結露した溶液が蒸発濃縮する過程で腐食が著
しく促進される。試験片の設置は水面に対して垂直でも
水平でも、斜め置きでもよい。液面からの距離は、試験
容器にもよるが50cm以下であることが望ましい。 <実施例> 以下の実施例に基づいて本発明を説明する。まず、試験
装置としては、図1に示すように、恒温水槽1に水2を
張り、その中に試験溶液5を 300ml入れたガラス
製の密閉容器11を載置し、その上部に取付けたガラス
フック12にナイロン糸13を介して試験片4を吊った
。また、密閉容器11の側部にはガス供給管14がその
供給口14aが液面の上部に臨むように設けられ、その
上部にはガス排出管15が取付けられている。そして、
ガス供給管14からは流量計16を介して実車排ガス1
7が密閉容器11内に送り込まれる。
The test method of the present invention uses exhaust gas from an actual vehicle, and it is easy to set and combine arbitrary engine conditions, making it possible to reproduce a corrosive environment more similar to that of an actual vehicle. The exhaust gas temperature conditions, test time, and test method are as follows.・Temperature: The dew point of exhaust gas is around 50°C, and corrosion becomes severe when condensed water evaporates and concentrates at temperatures above this temperature. If the temperature is lower than 50°C, corrosion will not be promoted, and if it is higher than 100°C, evaporation will be too rapid and there will be no time for corrosion, so the appropriate range is set at 50 to 100°C.・Test time: If the test time is less than 100 hours, the corrosion of Al-plated steel will be insufficient, and if it exceeds 3,000 hours, it will take too long to get a result, and the relative evaluation of corrosion resistance between materials will not be constant. Because of the reason that this would be a waste of time, the appropriate range was set to 100 to 3000 hours.・Test method: The key point of this test method is to place the test piece directly above the solution and allow the evaporated condensed water to condense on the test piece surface. Corrosion is significantly accelerated in the process of evaporation and concentration of such a dew-condensed solution. The test piece may be placed vertically, horizontally, or diagonally to the water surface. The distance from the liquid surface is preferably 50 cm or less, although it depends on the test container. <Examples> The present invention will be explained based on the following examples. First, as shown in Fig. 1, the test apparatus is a thermostatic water tank 1 filled with water 2, a glass airtight container 11 containing 300 ml of the test solution 5 placed therein, and a glass container attached to the top of the container 11. The test piece 4 was hung from the hook 12 via a nylon thread 13. Further, a gas supply pipe 14 is provided on the side of the closed container 11 so that its supply port 14a faces the upper part of the liquid level, and a gas discharge pipe 15 is attached to the upper part of the gas supply pipe 14. and,
Exhaust gas 1 from the actual vehicle is supplied from the gas supply pipe 14 via a flow meter 16.
7 is sent into the closed container 11.

【0013】そこで、供試材として80g/m2 目付
のAlめっき鋼と、11%Cr−0.2 %TiのSU
H409L と、17%CrのSUS430と、19%
Cr− 0.5%Nb− 0.5%CuのSUS430
LXの4種類の1mm厚の冷延焼鈍板を用いて、それぞ
れから試験片4として1mmt×50mmW× 100
mmLの板を切り出して密閉容器11内に吊り下げ、表
1,表2に示す試験条件で
Therefore, the test materials were Al-plated steel with a basis weight of 80 g/m2 and SU with 11% Cr-0.2% Ti.
H409L, 17% Cr SUS430, 19%
Cr- 0.5%Nb- 0.5%Cu SUS430
Using four types of 1mm thick cold rolled annealed plates of LX, test pieces 4 of 1mmt x 50mmW x 100
A plate of mmL was cut out and suspended in a sealed container 11, and tested under the test conditions shown in Tables 1 and 2.

【0014】[0014]

【表1】[Table 1]

【0015】[0015]

【表2】[Table 2]

【0016】試験片表面に凝縮水を結露, 蒸発, 濃
縮させた。なお、試験溶液5が24時間で蒸発して無く
なるようにガス流量をコントロールした。また、比較の
ために半浸漬試験法(前出図2)と、ディップアンドド
ライ試験法(前出図3)とを併せて行い比較例とした。 それらの試験結果を表3に示した。なお、耐食性の評価
は、材料寿命として最も問題となる最大浸食深さにより
行った。
[0016] Condensed water was condensed, evaporated, and concentrated on the surface of the test piece. Note that the gas flow rate was controlled so that the test solution 5 evaporated and disappeared within 24 hours. For comparison, a semi-immersion test method (see Figure 2 above) and a dip-and-dry test method (see Figure 3 above) were also conducted as a comparative example. The test results are shown in Table 3. The corrosion resistance was evaluated based on the maximum corrosion depth, which is the most important problem in terms of material life.

【0017】[0017]

【表3】[Table 3]

【0018】表3の結果からわかるように、比較例では
ステンレス鋼の腐食が微小あるいはAlめっき鋼に比べ
て過大となり、実車マフラーにおける凝縮水腐食を正確
に評価し得ていない結果となっているのに比べ、本発明
例に従えば各鋼種間の耐食性の差が明らかであり、かつ
適切な結果が得られることがわかる。特に、試験におい
て用いる排ガス組成を実車マフラー内の環境変化と同じ
形で連続的かつ簡便に変化させることが可能であり、上
記の効果と併せて適切な排気系材料の選定ができる。
[0018] As can be seen from the results in Table 3, in the comparative example, the corrosion of stainless steel was minute or excessive compared to aluminum-plated steel, making it impossible to accurately evaluate condensed water corrosion in the muffler of an actual vehicle. In comparison, it can be seen that according to the examples of the present invention, the difference in corrosion resistance between the steel types is clear and appropriate results can be obtained. In particular, it is possible to continuously and easily change the exhaust gas composition used in the test in the same manner as the environmental change in the muffler of an actual vehicle, and in addition to the above effects, it is possible to select an appropriate exhaust system material.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、鋼
種間の凝縮水腐食に対する耐食性の差を評価することが
可能となり、その結果適切な排気系材料の選定ができる
ようになるから、その寄与するところが大である。
[Effects of the Invention] As explained above, according to the present invention, it becomes possible to evaluate the difference in corrosion resistance against condensed water corrosion between steel types, and as a result, it becomes possible to select an appropriate exhaust system material. Its contribution is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に用いる試験装置の説明図である。FIG. 1 is an explanatory diagram of a test device used in the present invention.

【図2】従来の半浸漬試験法に用いられる試験装置の説
明図である。
FIG. 2 is an explanatory diagram of a test device used in a conventional semi-immersion test method.

【図3】従来のディップアンドドライ試験法に用いられ
る試験装置の説明図である。
FIG. 3 is an explanatory diagram of a test device used in a conventional dip-and-dry test method.

【符号の説明】[Explanation of symbols]

1  恒温水槽 2  水 4  試験片 5  試験溶液 11  密閉容器 14  ガス供給管 15  ガス排出管 17  実車排ガス 1 Constant temperature water tank 2. Water 4 Test piece 5 Test solution 11 Airtight container 14 Gas supply pipe 15 Gas exhaust pipe 17 Actual vehicle exhaust gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  自動車エンジン排ガス凝縮水に対する
自動車排気系材料の耐食性を評価する試験を行う方法で
あって、上部にガスの排出口を設け側部にガスの供給口
を設けた密閉容器内に、重量割合でCl− :10〜5
000ppm ,  SO42−: 100〜1000
0 ppm , SO32− : 100〜10000
 ppm ,CO32−: 100〜10000 pp
m, NH4 + :100 〜10000 ppm 
を含みpH7〜10に調整された試験溶液を所定の量だ
け充填し、前記容器の上部に試験片を吊り下げるととも
に前記ガス供給口を介して前記容器の上部にエンジン排
ガス雰囲気を充満した後、前記容器を50〜100 ℃
に保持して前記溶液を蒸発させ、この溶液が完全に蒸発
したのち新たな試験溶液を補充して前記排ガス雰囲気中
での保持を繰り返し、全試験時間が 100〜3000
時間になった時点で前記試験片を取り出し、その錆方の
程度で耐食性を評価することを特徴とする排ガス凝縮水
腐食性評価試験方法。
[Claim 1] A method for conducting a test to evaluate the corrosion resistance of automobile exhaust system materials against automobile engine exhaust gas condensed water, the method comprising: testing the corrosion resistance of automobile exhaust system materials against automobile engine exhaust gas condensed water; , Cl- in weight proportion: 10-5
000ppm, SO42-: 100-1000
0 ppm, SO32-: 100-10000
ppm, CO32-: 100-10000 ppm
m, NH4+: 100 to 10000 ppm
After filling a predetermined amount of a test solution with a pH of 7 to 10, suspending the test piece from the top of the container, and filling the top of the container with an engine exhaust gas atmosphere through the gas supply port, The container is heated to 50-100℃
After this solution has completely evaporated, a new test solution is replenished and the holding in the exhaust gas atmosphere is repeated for a total test time of 100 to 3,000 hours.
A test method for evaluating corrosion resistance of exhaust gas condensed water, characterized in that the test piece is taken out at a certain time, and corrosion resistance is evaluated based on the degree of rust.
【請求項2】  重量割合でCl− :10〜5000
ppm ,  SO42−: 100〜10000 p
pm, SO32− : 100〜10000 ppm
 ,CO32−: 100〜10000 ppm , 
NH4 + :100 〜10000 ppm を含み
、さらにHCHO:1〜1000ppm , HCOO
−:1〜1000ppm , CH3COO− :1〜
1000ppm , NO3 − :1〜100 pp
m のうちの1種または2種以上を含むpH7〜10に
調整された試験溶液を用いることを特徴とする請求項1
記載の試験方法。
[Claim 2] Cl-: 10 to 5000 in weight proportion
ppm, SO42-: 100-10000 p
pm, SO32-: 100-10000 ppm
, CO32-: 100-10000 ppm,
Contains NH4+: 100 to 10,000 ppm, and further contains HCHO: 1 to 1,000 ppm, HCOO
-: 1~1000ppm, CH3COO-: 1~
1000ppm, NO3 −: 1 to 100ppm
Claim 1, characterized in that a test solution containing one or more of m and whose pH is adjusted to 7 to 10 is used.
Test method described.
JP40059390A 1990-12-06 1990-12-06 Method for evaluating and testing corrosiveness of exhaust-gas condensed water Pending JPH04213042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40059390A JPH04213042A (en) 1990-12-06 1990-12-06 Method for evaluating and testing corrosiveness of exhaust-gas condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40059390A JPH04213042A (en) 1990-12-06 1990-12-06 Method for evaluating and testing corrosiveness of exhaust-gas condensed water

Publications (1)

Publication Number Publication Date
JPH04213042A true JPH04213042A (en) 1992-08-04

Family

ID=18510489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40059390A Pending JPH04213042A (en) 1990-12-06 1990-12-06 Method for evaluating and testing corrosiveness of exhaust-gas condensed water

Country Status (1)

Country Link
JP (1) JPH04213042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279150A (en) * 2011-06-23 2011-12-14 长安大学 Road material corrosion testing machine
CN102519864A (en) * 2011-12-28 2012-06-27 昆明理工大学 Building material liquid washing simulation test method and device thereof
CN107843482A (en) * 2017-11-27 2018-03-27 中国石油天然气集团公司 A kind of middle large scale test specimen cryogenic box
JP2020060420A (en) * 2018-10-09 2020-04-16 株式会社Ihi Deposit test device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279150A (en) * 2011-06-23 2011-12-14 长安大学 Road material corrosion testing machine
CN102519864A (en) * 2011-12-28 2012-06-27 昆明理工大学 Building material liquid washing simulation test method and device thereof
CN107843482A (en) * 2017-11-27 2018-03-27 中国石油天然气集团公司 A kind of middle large scale test specimen cryogenic box
CN107843482B (en) * 2017-11-27 2024-04-02 中国石油天然气集团公司 Low-temperature box for medium-and-large-size test piece
JP2020060420A (en) * 2018-10-09 2020-04-16 株式会社Ihi Deposit test device

Similar Documents

Publication Publication Date Title
Xiang et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process
Baroux Further insights on the pitting corrosion of stainless steels
EP0012478B1 (en) Method for removing sulfide-containing scale from metal surfaces
JP5274047B2 (en) Ferritic stainless steel material, manufacturing method thereof, and automobile muffler
Elsener et al. Migrating corrosion inhibitor blend for reinforced concrete: part 2—inhibitor as repair strategy
Qian et al. The influence of chromium content on the electrochemical behavior of weathering steels
Covino et al. Dissolution behavior of 304 stainless steel in HNO 3/HF mixtures
JPH04213042A (en) Method for evaluating and testing corrosiveness of exhaust-gas condensed water
Nishimura The effect of chloride ions on stress corrosion cracking of type 304 and type 316 austenitic stainless steels in sulfuric acid solution
Maahn et al. The influence of microstructure on the corrosion properties of hot-dip galvanized reinforcement in concrete
JPWO2019102817A1 (en) Corrosion-resistant steel for crude oil tanker upper deck and bottom plate, and crude oil tanker
CN111208056A (en) Corrosion inhibition performance evaluation method of vapor phase corrosion inhibitor
US3652225A (en) Color method for detecting cracks in metal bodies
US5342578A (en) Corrosion inhibition of ammonia-water absorption chillers
JPH04177144A (en) Testing method for evaluating corrosiveness of exhaust gas condensate
RU2542230C2 (en) Improved redox solution for gas desulphurisation
Clark et al. Effect of Thiourea and Some of its Derivatives on the Corrosion Behaviour of Nickel in 50% v/v (5· 6M) Hydrochloric Acid
Wu et al. Corrosion behavior of carbon steel in H2S-CO2-H2O-methyldiethanolamine (MDEA) solution under the presence of chloride ions
JP3014500B2 (en) Test method for evaluating condensate corrosion resistance to exhaust gas
Tromans et al. Electrochemical studies of crevice corrosion rates on stainless steels
JPS61205846A (en) Method for corrosion evaluation test of member for car muffler
JPH0572114A (en) Evaluation test for corrosionproofness to condensed water in exhaust gas
Yagi et al. Gas absorption into a slurry accompanied by chemical reaction with solute from sparingly soluble particles
JPH06337241A (en) Evaluating and testing method for corrosiveness of combustion exhaust gas condensate of lng-fired boiler
Feser et al. The influence of long term use of inhibitors in hydrochloric acid pickling baths on hydrogen induced stress corrosion cracking