JPH04212372A - Composite membrane for artificial lunge, production thereof and composite type artificial lunge formed by using this method - Google Patents

Composite membrane for artificial lunge, production thereof and composite type artificial lunge formed by using this method

Info

Publication number
JPH04212372A
JPH04212372A JP3060600A JP6060091A JPH04212372A JP H04212372 A JPH04212372 A JP H04212372A JP 3060600 A JP3060600 A JP 3060600A JP 6060091 A JP6060091 A JP 6060091A JP H04212372 A JPH04212372 A JP H04212372A
Authority
JP
Japan
Prior art keywords
water
membrane
composite membrane
polymer compound
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3060600A
Other languages
Japanese (ja)
Other versions
JP3090701B2 (en
Inventor
Kenji Yokoyama
研司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP03060600A priority Critical patent/JP3090701B2/en
Publication of JPH04212372A publication Critical patent/JPH04212372A/en
Application granted granted Critical
Publication of JP3090701B2 publication Critical patent/JP3090701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the above artificial lunge which obviates the leakage of blood plasma during long-term use, maintains a sufficient gas exchange capacity and has an excellent antithrombotic property by forming a film consisting of a specific water-swellable polymer compd. on the inside surfaces of the pores of a specific porous membrane. CONSTITUTION:The porous membrane is a hollow yarn-like porous membrane having 5 to 80mum thickness, 20 to 80% porosity, 0.01 to 5mum pore size and 100 to 1000mum inside diameter and the water-swellable high-polymer compd. has 30 to 80wt.% moisture content and >=2 swelling ratio. The water-swellable polymer compd. is at least one kind of the water-swellable polymer compds. selected from a group consisting of a (meth)acrylic acid system, polyvinyl alcohol system, etc. The porous membrane is formed by coating the inside surfaces of the pores of the porous membrane with the water-swellable polymer compd. The composite membrane which does not allow the leakage of the blood plasma during the long-term use, has the sufficient gas exchange capacity and has the excellent antithrombotic property is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、人工肺用複合膜、その
製造方法およびそれを用いた複合膜型人工肺に関するも
のである。詳しく述べると、長期間使用に際して血漿漏
出がなくかつ充分なガス交換能を保持しており、しかも
抗血栓性に優れた人工肺用複合膜、その製造法およびそ
れを用いて複合膜型人工肺に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite membrane for an oxygenator, a method for producing the same, and a composite membrane oxygenator using the same. In detail, a composite membrane for oxygenator lungs that does not cause plasma leakage during long-term use, maintains sufficient gas exchange ability, and has excellent antithrombotic properties, its manufacturing method, and a composite membrane oxygenator using the same. It is related to.

【0002】0002

【従来の技術】従来、開心術の補助手段等として、良好
なガス透過性を有するガス交換膜を介して、血液と酸素
含有ガスとを接触させてガス交換を行なう膜型人工肺が
用いられている。このガス交換膜には、良好なガス透過
性を有すること以外に、機械的強度が大きいこと、長期
間血液を循環しても血漿の漏洩が起こらないこと、さら
に血液に触れても血液に対する損傷、すなわち血液凝固
、微小血栓生成、血小板損失、血漿タンパクの変性、溶
血などを起こさないこと等の性能が要求される。現在膜
型人工肺に用いられるガス交換膜としては、均質膜と多
孔質膜の2種類があり、均質膜としては、主にシリコー
ン膜が用いられており、一方多孔質膜としては、ポリエ
チレン、ポリプロピレン、ポリテトラフルオロエチレン
、ポリスルホン、ポリアクリロニトリル、ポリウレタン
、ポリアミド等の種々の材質が用いられている。
[Prior Art] Conventionally, a membrane oxygenator has been used as an auxiliary means for open heart surgery, etc., which performs gas exchange by bringing blood into contact with oxygen-containing gas through a gas exchange membrane having good gas permeability. ing. In addition to having good gas permeability, this gas exchange membrane also has high mechanical strength, no leakage of plasma even when blood circulates for a long period of time, and no damage to the blood even if it comes into contact with blood. That is, performance such as not causing blood coagulation, microthrombus formation, platelet loss, plasma protein denaturation, hemolysis, etc. is required. There are currently two types of gas exchange membranes used in membrane oxygenators: homogeneous membranes and porous membranes. As homogeneous membranes, silicone membranes are mainly used, while as porous membranes, polyethylene, Various materials are used, such as polypropylene, polytetrafluoroethylene, polysulfone, polyacrylonitrile, polyurethane, and polyamide.

【0003】0003

【発明が解決しようとする課題】しかしながら、シリコ
ーン均質膜は、強度的に充分ではなく膜厚を100μm
以下にすることができずこのためガス透過に限界があり
、特に炭酸ガスの透過が悪いものであり、また所望のガ
ス交換能を達するために、例えば中空糸膜として数万本
束ねたときに装置が大型化しプライミング量の増大をき
たし、さらにコスト的にも高いものである。
[Problems to be Solved by the Invention] However, the silicone homogeneous film does not have sufficient strength, and the film thickness has been reduced to 100 μm.
For this reason, there is a limit to gas permeation, especially for carbon dioxide, and in order to achieve the desired gas exchange performance, for example, when tens of thousands of hollow fiber membranes are bundled together, The size of the device increases, the amount of priming increases, and the cost is also high.

【0004】一方、多孔質膜は膜厚方向に連通する多数
の微細孔を有するものであるが、前記膜が疎水性である
ことから、血漿が細孔を通過することなく、すなわち該
膜の血液流路側から他方のガス流路側への血漿洩れを生
ずることなく、ガス中の酸素を血液中に添加し、かつ血
液中の二酸化炭素をガス中に除去することを可能として
いる。しかしながら、多孔質膜は、水蒸気の透過性が高
いので結露水によって性能が低下するだけでなく長時間
血液を循環使用すると、実際には、血漿の漏出が生じる
ことがあった。このような現象は、人工肺の製造段階に
おいて水洩れ試験を行ない、異常のないことを確認した
ものについても認められるものであり、使用時に生じる
現象である。また多孔質膜は、用いられる材質において
血小板損失等の生体適合性の面から充分といえるものは
少なかった。また、必要な物性を付与するために多孔質
膜内面に機能性重合体を被覆することは行なわれている
が、該膜の支持面が多孔質でしかも疎水性であるために
被覆が均一に行なえず、かつ機能性重合体を被覆する際
に、多孔質膜の細孔内にも被覆され、親水化することか
ら血漿が漏出しやすくなるという問題れがあった。さら
に、膜面にヘパリンを固定化する際に、予め被覆される
重合体が剥離されやすいという問題があった。
On the other hand, porous membranes have a large number of fine pores that communicate in the membrane thickness direction, but because the membrane is hydrophobic, plasma does not pass through the pores, that is, the membrane This makes it possible to add oxygen in the gas to the blood and remove carbon dioxide in the blood into the gas without causing plasma leakage from the blood flow path side to the other gas flow path side. However, since porous membranes have high water vapor permeability, not only do they degrade in performance due to condensation, but when blood is circulated for long periods of time, plasma may actually leak out. Such a phenomenon is also observed in artificial lungs that have been tested for water leakage during the manufacturing stage and found to be free of abnormalities, and is a phenomenon that occurs during use. Furthermore, the materials used for porous membranes are rarely considered to be sufficient in terms of biocompatibility such as platelet loss. In addition, coating the inner surface of a porous membrane with a functional polymer has been practiced in order to impart necessary physical properties, but since the supporting surface of the membrane is porous and hydrophobic, the coating is not uniform. However, when the functional polymer is coated, the pores of the porous membrane are also coated, making the membrane hydrophilic and causing plasma to easily leak out. Furthermore, when immobilizing heparin on the membrane surface, there is a problem in that the polymer coated in advance tends to peel off.

【0005】したがって、本発明の目的は、新規な人工
肺用複合膜、その製造方法およびそれを用いた複合膜型
人工肺を提供することにある。本発明の他の目的は、長
期間使用に際して血漿漏出がなくかつ充分なガス交換能
を保持しており、しかも抗血栓性の優れた人工肺用複合
膜、その製造方法およびそれを用いた複合膜型人工肺を
提供することにある。
[0005] Accordingly, an object of the present invention is to provide a novel composite membrane for an oxygenator, a method for manufacturing the same, and a composite membrane type oxygenator using the same. Another object of the present invention is to provide a composite membrane for an oxygenator that does not cause plasma leakage during long-term use, maintains sufficient gas exchange ability, and has excellent antithrombotic properties, a method for producing the same, and a composite membrane using the same. The purpose is to provide a membrane oxygenator.

【0006】[0006]

【課題を解決するための手段】これらの諸目的は、多孔
質膜の細孔内面を、水膨潤性高分子化合物により被覆し
てなる人工肺用複合膜により達成される。
[Means for Solving the Problems] These objects are achieved by a composite membrane for an artificial lung, which is formed by coating the inner surface of the pores of a porous membrane with a water-swellable polymer compound.

【0007】本発明はまた、多孔質膜が、肉厚5〜80
μm、空孔率20〜80%、細孔径0.01〜5μmお
よび内径100〜1,000μmを有する中空糸状多孔
質膜である人工肺用複合膜である。本発明はさらに、水
膨潤性高分子化合物が含水率30〜80重量%および膨
潤比2以上を有してなる人工肺用複合膜である。本発明
はまた、水膨潤性高分子化合物が(メタ)アクリル酸系
、ポリビニルアルコール系、(メタ)アクリルアミド系
、ポリアルキレンオキサイド系およびポリアルキレンイ
ミン系よりなる群から選ばれた少なくとも1種の水膨潤
性化合物である人工肺用複合膜である。本発明はさらに
、水膨潤性化合物が架橋された水溶性高分子化合物であ
る人工肺用複合膜である。本発明はまた、水溶性高分子
化合物がポリアルキレンイミンおよび(メタ)アクリル
酸塩よりなる群から選ばれた少なくとも1種のものであ
る人工肺用複合膜である。本発明はさらに、水膨潤性化
合物が0.01〜5μmの膜厚に被覆されてなる人工肺
用複合膜である。
[0007] The present invention also provides that the porous membrane has a wall thickness of 5 to 80 mm.
The composite membrane for an artificial lung is a hollow fiber-like porous membrane having a porosity of 20 to 80%, a pore diameter of 0.01 to 5 μm, and an inner diameter of 100 to 1,000 μm. The present invention further provides a composite membrane for an artificial lung, in which the water-swellable polymer compound has a water content of 30 to 80% by weight and a swelling ratio of 2 or more. The present invention also provides that the water-swellable polymer compound is at least one type of water selected from the group consisting of (meth)acrylic acid type, polyvinyl alcohol type, (meth)acrylamide type, polyalkylene oxide type, and polyalkylene imine type. This is a composite membrane for artificial lungs that is a swellable compound. The present invention further provides a composite membrane for an artificial lung, which is a water-soluble polymer compound crosslinked with a water-swellable compound. The present invention also provides a composite membrane for an artificial lung, in which the water-soluble polymer compound is at least one selected from the group consisting of polyalkylene imine and (meth)acrylate. The present invention further provides a composite membrane for an artificial lung, which is coated with a water-swellable compound to a thickness of 0.01 to 5 μm.

【0008】これらの諸目的は、多孔質膜の表面に、水
溶性高分子化合物の溶液を塗布し、ついで該水溶性高分
子化合物被覆の架橋処理を行なうことを特徴とする人工
肺用複合膜の製造方法によっても達成される。
[0008] These objects are to provide a composite membrane for an artificial lung, which is characterized in that a solution of a water-soluble polymer compound is applied to the surface of a porous membrane, and then the water-soluble polymer compound coating is cross-linked. This can also be achieved by the manufacturing method.

【0009】本発明はまた、多孔質膜の表面に、水溶性
高分子化合物の溶液を、0.2〜2.0Kg/cm 2
 の圧力で接触させかつ溶媒を細孔を通じて導出させる
ことにより塗布するものである人工肺用複合膜の製造方
法を示すものである。本発明はさらに、架橋処理は水溶
性高分子化合物被膜に架橋剤の液を接触させることによ
り行なわれる人工肺用複合膜の製造方法である。本発明
はまた、架橋処理は水溶性高分子化合物被膜に放射線を
照射することにより行なわれる人工肺用複合膜の製造方
法である。
The present invention also provides a solution of a water-soluble polymer compound on the surface of the porous membrane at a rate of 0.2 to 2.0 kg/cm 2 .
The present invention shows a method for producing a composite membrane for an oxygenator, which is applied by contacting the membrane at a pressure of . The present invention further provides a method for producing a composite membrane for an artificial lung, in which the crosslinking treatment is carried out by bringing a crosslinking agent liquid into contact with the water-soluble polymer compound coating. The present invention also provides a method for producing a composite membrane for an artificial lung, in which the crosslinking treatment is performed by irradiating the water-soluble polymer compound coating with radiation.

【0010】これらの諸目的は、多孔質膜の表面に、水
溶性高分子化合物および架橋剤を含有してなる溶液を塗
布することを特徴とする人工肺用複合膜の製造方法によ
っても達成される。
[0010] These objects can also be achieved by a method for producing a composite membrane for an oxygenator, which is characterized in that a solution containing a water-soluble polymer compound and a crosslinking agent is applied to the surface of a porous membrane. Ru.

【0011】これらの諸目的は、多孔質膜の細孔内面を
水膨潤性高分子化合物により被覆してなる複合膜をガス
交換膜として使用し、酸素流入口、酸素流出口、血液流
入口および血液流出口を備えたハウジング内に収納して
該複合膜を介して血液流路および酸素流路を形成してな
る複合膜型人工肺によっても達成される。
[0011] These objectives are achieved by using a composite membrane in which the inner surface of the pores of a porous membrane is coated with a water-swellable polymer compound as a gas exchange membrane, and providing oxygen inlet, oxygen outlet, blood inlet and This can also be achieved by a composite membrane oxygenator which is housed in a housing provided with a blood outflow port and forms a blood flow path and an oxygen flow path through the composite membrane.

【0012】本発明はまた、該多孔質膜の少なくとも血
液を接触する面に、水膨潤性高分子化合物の溶液を接触
させたのち、該溶媒を除去し、さらに架橋処理を施して
なる複合膜型人工肺である。
The present invention also provides a composite membrane obtained by contacting at least the surface of the porous membrane that comes into contact with blood with a solution of a water-swellable polymer compound, removing the solvent, and then subjecting it to crosslinking treatment. It is a type of artificial lung.

【0013】[0013]

【作用】本発明で使用される多孔質膜は、中空糸膜およ
び平膜の形状を問わず種々の樹脂の多孔質膜であるが、
例えば中空糸膜について一例を挙げると、例えばポリプ
ロピレン、ポリエチレン等のポリオレフィン製膜であり
、その肉厚は5〜80μ、好ましくは10〜60μm、
空孔率は、20〜80%、好ましくは30〜60%およ
び平均細孔径は0.01〜5μm、好ましくは0.01
〜1.0μmであり、内径は100〜1,000μm、
好ましくは100〜300μmである。
[Operation] The porous membrane used in the present invention is a porous membrane made of various resins, regardless of the shape of the hollow fiber membrane or flat membrane.
For example, an example of a hollow fiber membrane is a membrane made of polyolefin such as polypropylene or polyethylene, and its wall thickness is 5 to 80 μm, preferably 10 to 60 μm,
The porosity is 20-80%, preferably 30-60% and the average pore size is 0.01-5 μm, preferably 0.01
~1.0 μm, the inner diameter is 100 ~ 1,000 μm,
Preferably it is 100 to 300 μm.

【0014】このような疎水性多孔質膜は、延伸法によ
り製造することもできるが、例えば特開昭61−90,
704号、特開昭61−90,705号、特開昭61−
90,707号、特開昭62−106,770号等に開
示されているように、ポリオレフィン、該ポリオレフィ
ンの溶融下で該ポリオレフィンに均一に分散しかつ使用
する抽出液に対して易溶性である有機充填剤および結晶
核形成剤を混練し、このようにして得られた混練物を溶
融状態でノズルより吐出させ、吐出させた溶融膜を冷却
用流体と接触させて冷却固化し、ついで冷却固化した平
膜を前記ポリオレフィンを溶融しない抽出液と接触させ
て前記有機充填剤を抽出除去することにより製造するこ
ともできる。
[0014] Such a hydrophobic porous membrane can also be produced by a stretching method;
704, JP-A-61-90, 705, JP-A-61-
As disclosed in No. 90,707, JP-A No. 62-106,770, etc., a polyolefin, which is uniformly dispersed in the polyolefin when the polyolefin is melted, and is easily soluble in the extract liquid used. An organic filler and a crystal nucleating agent are kneaded, the kneaded product thus obtained is discharged from a nozzle in a molten state, the discharged molten film is brought into contact with a cooling fluid to be cooled and solidified, and then cooled and solidified. It is also possible to produce a flat membrane by bringing the polyolefin into contact with an extractant that does not melt the polyolefin and extracting and removing the organic filler.

【0015】本発明による人工肺用複合膜その製造方法
および得られる人工肺を、中空糸膜を例にとって説明す
ると、つぎのとおりである。すなわち、図1は、本発明
の中空糸型の複合膜型人工肺の一実施態様である中空糸
膜型人工肺の組立状態を示すものである。すなわち該中
空糸膜型人工肺1は、ハウジング6を具備してなり、こ
のハウジング6は筒状本体7の両端部にそれぞれ環状の
雄ネジ付き取付カバー8,9が設けられ、ハウジング6
内には、全体が広がって多数の、例えば10,000〜
60,000本の上記したように細孔を有する中空糸状
の多孔質膜(ガス交換膜)2がハウジング6の長手方向
に沿って並列的な相互に離間配置されている。そして、
このガス交換膜2の両端部は、取付カバー8,9内にお
いてそれぞれの開口が閉塞されない状態で隔壁10,1
1により液密に支持されている。また、上記各隔室10
,11は、ガス交換膜2外周と上記ハウジング6の内面
とともに第1の物質移動室である酸素室12を構成し、
これを閉塞し、かつ上記ガス交換膜2の内部に形成され
る第2の物質移動流体用空間である血液流通用空間(図
示しない)と酸素室12を隔離するものである。
The method for producing the composite membrane for an oxygenator according to the present invention and the resulting oxygenator will be explained below by taking a hollow fiber membrane as an example. That is, FIG. 1 shows an assembled state of a hollow fiber membrane oxygenator, which is an embodiment of the hollow fiber composite membrane oxygenator of the present invention. That is, the hollow fiber membrane oxygenator 1 includes a housing 6, which is provided with annular male-threaded mounting covers 8 and 9 at both ends of a cylindrical body 7, respectively.
Within, there are many, for example 10,000 to 10,000.
60,000 hollow fiber-like porous membranes (gas exchange membranes) 2 having pores as described above are arranged in parallel and spaced apart from each other along the longitudinal direction of the housing 6. and,
Both ends of the gas exchange membrane 2 are connected to the partition walls 10 and 1 with their respective openings not closed within the mounting covers 8 and 9.
1 in a liquid-tight manner. In addition, each of the compartments 10
, 11 constitute an oxygen chamber 12 which is a first mass transfer chamber together with the outer periphery of the gas exchange membrane 2 and the inner surface of the housing 6,
It closes this and isolates the oxygen chamber 12 from a blood circulation space (not shown), which is a second mass transfer fluid space formed inside the gas exchange membrane 2.

【0016】一方の取付カバー8には、第1の物質移動
流体である酸素を供給する導入口13が設けられている
。他方の取付カバー9には酸素を排出する導出口14が
設けられている。
One of the mounting covers 8 is provided with an inlet 13 for supplying oxygen, which is the first mass transfer fluid. The other mounting cover 9 is provided with an outlet 14 for discharging oxygen.

【0017】上記ハウジング6の筒状本体7の内面には
、軸方向の中央に位置して突出する絞り用拘束部15を
設けることが好ましい。すなわち、拘束部15は上記筒
状本体7の内面に筒状本体と一体に形成されていて、筒
状本体7内に挿通される多数のガス交換膜2からなる中
空糸束16の外周を締め付けるようになっている。こう
して、上記中空糸束16は、図1で示すように軸方向の
中央において絞り込まれ、絞り部17を形成している。 したがって、ガス交換膜2の充填率は、軸方向に沿う各
部において異なり、中央部分において最も高くなってい
る。なお、後述する理由により望ましい各部の充填率は
次の通りである。まず、中央の絞り部17における充填
率は、約60〜80%、その他筒状本体7内では約30
〜60%であり、中空糸束16の両端、つまり隔壁10
,11の外面における充填率では、約20〜40%であ
る。
It is preferable that the inner surface of the cylindrical main body 7 of the housing 6 is provided with a constriction restricting portion 15 that protrudes from the center in the axial direction. That is, the restraint part 15 is formed integrally with the inner surface of the cylindrical body 7, and tightens the outer periphery of the hollow fiber bundle 16, which is made up of a large number of gas exchange membranes 2 and is inserted into the cylindrical body 7. It looks like this. In this way, the hollow fiber bundle 16 is narrowed at the center in the axial direction to form a narrowed portion 17, as shown in FIG. Therefore, the filling rate of the gas exchange membrane 2 differs in each part along the axial direction, and is highest in the central part. Note that, for reasons to be described later, the desirable filling rate of each part is as follows. First, the filling rate in the central constricted portion 17 is about 60 to 80%, and the filling rate in the other cylindrical body 7 is about 30%.
~60%, and both ends of the hollow fiber bundle 16, that is, the partition wall 10
, 11 is about 20-40%.

【0018】次に、上記隔壁10,11の形成について
述べる。前述したように隔壁10,11は、ガス交換膜
2の内部と外部を隔離するという重要な機能を果たすも
のである。通常、この隔壁10,11は、極性の高い高
分子ポッティング材、たとえばポリウレタン、シリコー
ン、エポキシ樹脂等をハウシング6の両端内壁面に遠心
注入法を利用して流し込み、硬化させることにより作ら
れる。さらに詳述すれば、まず、ハウジング6の長さよ
り長い多数の中空糸膜2を用意し、この両開口端を粘度
の高い樹脂によって目止めをした後、ハウジング6の筒
状本体7内に並べて位置せしめる。この後、取付けカバ
ー8,9の径以上の大きさの型カバーで、ガス交換膜2
の各両端を完全に覆って、ハウシング6の中心軸を中心
にそのハウジング6を回転させながら両端部側から高分
子ポッティング材を流入する。流し終って樹脂が硬化す
れば、上記型カバーを外して樹脂の外側面部を鋭利な刃
物で切断してガス交換膜2の両開口端を表面に露出させ
る。かくして隔壁10,11は形成されることになる。
Next, the formation of the partition walls 10 and 11 will be described. As described above, the partition walls 10 and 11 perform the important function of isolating the inside and outside of the gas exchange membrane 2. Normally, the partition walls 10 and 11 are made by pouring a highly polar polymer potting material such as polyurethane, silicone, epoxy resin, etc. onto the inner wall surfaces at both ends of the housing 6 using a centrifugal injection method and hardening the material. More specifically, first, a large number of hollow fiber membranes 2 longer than the length of the housing 6 are prepared, both open ends of which are sealed with a highly viscous resin, and then lined up inside the cylindrical body 7 of the housing 6. position. After this, install the gas exchange membrane 2 with a mold cover larger than the diameter of the mounting covers 8 and 9.
The polymer potting material is introduced from both end sides while rotating the housing 6 about its central axis. When the resin has hardened after pouring, the mold cover is removed and the outer surface of the resin is cut with a sharp knife to expose both open ends of the gas exchange membrane 2 to the surface. The partition walls 10 and 11 are thus formed.

【0019】上記隔壁10,11の外面は、環状凸部を
有する流路形成部材18,19でそれぞれ覆われている
。この流路形成部材18,19はそれぞれ液分配部材2
0,21およびネジリング22,23よりなり、この液
分配部材20,21の周縁部付近に設けられた環状凸部
として突条24,25の端面を前記隔壁10,11にそ
れぞれ当接させ、ネジリング22,23を取付けカバー
8,9にそれぞれ螺合することにより固定することによ
り第2の物質移動流体である血液の流入室26および流
出室27がそれぞれ形成されている。この流路形成部材
18,19にはそれぞれ第2の物質移動流体である血液
入口28および出口29が形成されている。
The outer surfaces of the partition walls 10 and 11 are respectively covered with flow path forming members 18 and 19 having annular convex portions. The flow path forming members 18 and 19 are respectively connected to the liquid distribution member 2.
0, 21 and screw rings 22, 23, the end surfaces of protrusions 24, 25 as annular convex portions provided near the peripheral edges of the liquid distribution members 20, 21 are brought into contact with the partition walls 10, 11, respectively, and the screw rings By screwing and fixing 22 and 23 to the mounting covers 8 and 9, respectively, an inflow chamber 26 and an outflow chamber 27 for blood, which is the second mass transfer fluid, are respectively formed. A blood inlet 28 and an outlet 29, which are a second mass transfer fluid, are formed in the flow path forming members 18 and 19, respectively.

【0020】この隔壁10,11と、流路形成部材18
,19とにより形成される隔壁10,11の周縁部の空
隙部には、該空隙部に連通する少なくとも2個の孔32
,33の一方より充填剤34,35を充填することによ
り前記隔壁10,11と接触するようにシールされる。 あるいはまた、Oリング(図示せず)を介してシールさ
れる。
The partition walls 10 and 11 and the flow path forming member 18
, 19 at the peripheral edges of the partition walls 10, 11, there are at least two holes 32 communicating with the gaps.
, 33 is filled with fillers 34, 35, thereby sealing the partition walls 10, 11 so as to contact them. Alternatively, it is sealed via an O-ring (not shown).

【0021】このようにして形成された人工肺のモジュ
ールの第1の物質移動流体の導入口13または導出口1
4または第2の物質移動流体の入口28または出口29
より、水溶性高分子化合物の溶液を流入させることによ
り、ガス交換膜である多孔質膜の細孔内に充填する。
The first mass transfer fluid inlet 13 or outlet 1 of the artificial lung module thus formed
4 or second mass transfer fluid inlet 28 or outlet 29
By flowing a solution of a water-soluble polymer compound, the pores of the porous membrane, which is a gas exchange membrane, are filled.

【0022】なお、この際、水溶性高分子化合物の溶液
の出口を絞る等して、当該溶液の多孔質膜への接触圧を
0.2〜2Kg/cm 2 に調整することにより、溶
液中の溶媒の一部を細孔内を通過させて導出することに
より水溶性高分子化合物の濃度が高まるので、効率良く
充填、被覆が行える。なお、予め高濃度の調整した溶液
を使用することも考えられるが、溶液の粘度が高まって
、細孔内に流入し難い。これに対し、接触圧を調整する
方法によれば、流入させる溶液には比較的低濃度で粘度
が低い溶液を使用し、細孔内への流入を円滑に行い、さ
らに細孔内に流入した後に、接触圧を調整して溶媒のみ
を通して流出させて水溶性高分子化合物の濃度を高める
ことができる。すなわち、このような方法によれば、充
填作業を繰り返し行う必要がなく、最少回数の充填操作
にて、効率良く被覆が行えるものである。本発明におい
て使用される水膨潤性高分子化合物としては、架橋され
た水溶性高分子化合物等がある。このような高分子化合
物は、通常、水溶性高分子化合物の溶液として前記とし
て使用され、ついで架橋処理されて水不溶性の水膨潤性
被膜が形成される。架橋処理は、通常、水溶性高分子化
合物溶液を被覆したのちに行なわれる。このような架橋
処理は、例えば該水溶性高分子化合物に対して架橋反応
を生じ得る架橋剤の液(例えば溶液)と前記水溶性高分
子化合物の被覆とを接触させることにより行なわれる。 また、前記水溶性高分子化合物の被膜に、ガンマ線、β
線等の放射線、特にガンマ線を照射することによって架
橋処理を施すこともできる。
[0022] At this time, the contact pressure of the solution to the porous membrane is adjusted to 0.2 to 2 Kg/cm 2 by narrowing the outlet of the solution of the water-soluble polymer compound, etc. By passing a portion of the solvent through the pores and drawing it out, the concentration of the water-soluble polymer compound increases, allowing efficient filling and coating. Although it is possible to use a solution that has been adjusted to a high concentration in advance, the viscosity of the solution increases and it is difficult for the solution to flow into the pores. On the other hand, according to the method of adjusting the contact pressure, a solution with a relatively low concentration and low viscosity is used as the solution to flow into the pore, and the flow into the pore is smooth. Later, the concentration of the water-soluble polymer compound can be increased by adjusting the contact pressure to allow only the solvent to flow out. That is, according to such a method, there is no need to repeat the filling operation, and the coating can be efficiently performed with a minimum number of filling operations. Examples of the water-swellable polymer compound used in the present invention include crosslinked water-soluble polymer compounds. Such a polymer compound is usually used as a solution of a water-soluble polymer compound as described above, and then crosslinked to form a water-insoluble water-swellable coating. Crosslinking treatment is usually performed after coating with a water-soluble polymer compound solution. Such a crosslinking treatment is carried out, for example, by bringing the coating of the water-soluble polymer compound into contact with a liquid (for example, a solution) of a crosslinking agent that can cause a crosslinking reaction with the water-soluble polymer compound. In addition, gamma rays, β
Crosslinking treatment can also be performed by irradiating with radiation such as rays, particularly gamma rays.

【0023】さらに、前記水溶性高分子化合物と架橋剤
とを含有する溶液を多孔質膜と接触させたのちに、余剰
の溶液を排出させ、加熱、その他の手段により架橋させ
てもよい。
Furthermore, after the solution containing the water-soluble polymer compound and the crosslinking agent is brought into contact with the porous membrane, excess solution may be discharged and crosslinking may be carried out by heating or other means.

【0024】水溶性高分子化合物としては、例えば、(
メタ)アクリル酸系、ポリビニルアルコール系、(メタ
)アクリルアミド系、ポリアルキレンオキサイド系、ポ
リアルキレンイミン系等がある。(メタ)アクリル酸系
高分子化合物としては、アクリル酸、メタクリル酸、そ
の塩、メチルアクリレート、エチルアクリレート、イソ
プロピルアクリレート、ブチルアクリレート、メチルメ
タクリレート、エチルメタクリレート、イソプロピルメ
タクリレート、ブチルメタクリレート、等の(メタ)ア
クリル酸エステル等の単独ないしは共重合体等がある。 ポリビニルアルコール系高分子化合物としては、例えば
重合度500以上、好ましくは1,700〜3,000
で、ケン化度80モル%以上、好ましくは95モル%以
上のものがある。(メタ)アクリルアミド系高分子化合
物としては、重量平均分子量10万〜100万、好まし
くは20万〜30万の(メタ)アクリルアミド重合体が
ある。ポリアルキレンオキサイド系高分子化合物として
は、重量平均分子量400〜10,000、好ましくは
600〜5,000のポリエチレンオキサイド、ポリプ
ロピレンオキサイド等がある。ポリアルキレンイミン系
高分子化合物としては、重量平均分子量4万〜10万、
好ましくは6万〜7万のポリエチレンイミン、ポリプロ
ピレンイミン等がある。なお、これらの高分子化合物は
、前述のごとき加圧、被覆操作によって細孔を通じて導
出されないような大きさを有するようなものが好ましい
Examples of water-soluble polymer compounds include (
Examples include meth)acrylic acid, polyvinyl alcohol, (meth)acrylamide, polyalkylene oxide, and polyalkylene imine. (Meth)acrylic acid-based polymer compounds include (meth)acrylic acid, methacrylic acid, its salts, methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, etc. Examples include single or copolymers of acrylic esters and the like. As the polyvinyl alcohol-based polymer compound, for example, the degree of polymerization is 500 or more, preferably 1,700 to 3,000.
The degree of saponification is 80 mol% or more, preferably 95 mol% or more. As the (meth)acrylamide-based polymer compound, there is a (meth)acrylamide polymer having a weight average molecular weight of 100,000 to 1,000,000, preferably 200,000 to 300,000. Examples of polyalkylene oxide-based polymer compounds include polyethylene oxide and polypropylene oxide having a weight average molecular weight of 400 to 10,000, preferably 600 to 5,000. As a polyalkylene imine-based polymer compound, weight average molecular weight is 40,000 to 100,000,
Preferably, polyethyleneimine, polypropyleneimine, etc. having a weight of 60,000 to 70,000 are used. It is preferable that these polymeric compounds have a size that prevents them from being drawn out through the pores by the above-mentioned pressurization and coating operations.

【0025】前記(メタ)アクリル酸系高分子化合物に
対する架橋剤としては、メラミン系化合物、グアナミン
系化合物、イソシアネート系化合物、ポリアミン系化合
物等がある。ポリビニルアルコール系高分子化合物に対
する架橋剤としては、メラミン系化合物、イソシアネー
ト系化合物、ポリアミン系化合物等がある。(メタ)ア
クリルアミド系高分子化合物に対する架橋剤としては、
N,N′−メチレンビスアクリルアミド等がある。ポリ
アルキレンオキサイド系高分子化合物に対する架橋剤と
しては、イソシアネート系化合物、ポリアミン系化合物
等がある。さらに、ポリアルキレンイミン系高分子化合
物に対する架橋剤としては、グルタルアルデヒド、ホル
ムアルデヒド等がある。
Examples of crosslinking agents for the (meth)acrylic acid-based polymer compound include melamine-based compounds, guanamine-based compounds, isocyanate-based compounds, and polyamine-based compounds. Examples of crosslinking agents for polyvinyl alcohol-based polymer compounds include melamine-based compounds, isocyanate-based compounds, and polyamine-based compounds. As a crosslinking agent for (meth)acrylamide-based polymer compounds,
Examples include N,N'-methylenebisacrylamide. Examples of crosslinking agents for polyalkylene oxide-based polymer compounds include isocyanate-based compounds and polyamine-based compounds. Furthermore, examples of crosslinking agents for polyalkyleneimine polymer compounds include glutaraldehyde and formaldehyde.

【0026】これら架橋剤の量は、多孔質膜の細孔内面
に形成される水不溶性の水膨潤性高分子化合物被膜に要
求される含水率および膨潤比に応じて変えられる。
The amount of these crosslinking agents is varied depending on the water content and swelling ratio required for the water-insoluble, water-swellable polymer compound coating formed on the inner surface of the pores of the porous membrane.

【0027】このようにして得られる水不溶性の水膨潤
性高分子化合物の被膜は、含水率が30〜80重量%、
好ましくは40〜60重量%であり、また膨潤比が2以
上である。さらに、該被膜の膜厚は、0.01〜5μm
、好ましくは0.01〜0.5μmである。
The film of the water-insoluble water-swellable polymer compound thus obtained has a water content of 30 to 80% by weight;
Preferably it is 40 to 60% by weight, and the swelling ratio is 2 or more. Furthermore, the film thickness of the film is 0.01 to 5 μm.
, preferably 0.01 to 0.5 μm.

【0028】以上は、中空糸膜型人工肺の場合について
説明したが、積層式、1枚の膜をコイル状に巻いたもの
、ジグザグ状に折込んだもの等の平膜型人工肺について
も、用いられるガス交換膜の細孔が該細孔系よりも小さ
な微粒子により閉塞され、また少なくとも血液接触面が
生体適合性疎水性樹脂によりコーティングされたもので
あれば、生体適合性が高く接触する血液の血小板等の損
傷が極めて少なく、またガス交換能に優れ、さらに長期
間使用しても血漿漏出の虞れない膜型人工肺が得られる
[0028] The above explanation has been about the hollow fiber membrane type oxygenator, but flat membrane type oxygenators such as the laminated type, one membrane wound into a coil shape, and the one folded in a zigzag shape are also applicable. If the pores of the gas exchange membrane used are blocked by fine particles smaller than the pore system, and at least the blood contact surface is coated with a biocompatible hydrophobic resin, the contact is highly biocompatible. A membrane oxygenator can be obtained in which damage to blood platelets, etc. is extremely small, the gas exchange ability is excellent, and there is no risk of plasma leakage even when used for a long period of time.

【0029】[0029]

【実施例】以下、実施例を上げて本発明をさらに詳細に
説明する。
[Examples] The present invention will be explained in more detail below with reference to Examples.

【0030】実施例1 内径200μm、肉厚25μm、空孔率38%、平均孔
径700オングストロームのポリプロピレン製中空糸膜
を用いて、膜面積0.8m2 の図1に示すような中空
糸膜型人工肺1を組立てた。ポリ(2−ヒドロキシエチ
ルメタクリレート)をエタノールで1.25w/v%溶
液に希釈し、この中へポリエチレンイミン(Polym
in SN,BASF社製)を1.0w/v%となるよ
うに添加して被覆液を調製した。調製された被覆液を上
記膜型人工肺に充填したのち、この溶液を排出して溶媒
を除去し、ついで乾燥を行ない、この浸漬、乾燥という
操作を4〜6回繰返したのち、さらに濃度1.0w/v
%のグルタルアルデヒドの水溶液を通過させたのち該溶
液を除去し、37℃に16〜20時間加熱して架橋なら
びに乾燥を行なった。
Example 1 Using a polypropylene hollow fiber membrane with an inner diameter of 200 μm, a wall thickness of 25 μm, a porosity of 38%, and an average pore diameter of 700 angstroms, a hollow fiber membrane type artificial membrane as shown in FIG. 1 with a membrane area of 0.8 m2 was prepared. Assembled lung 1. Poly(2-hydroxyethyl methacrylate) was diluted with ethanol to a 1.25 w/v% solution, and polyethyleneimine (Polyethyleneimine) was diluted with ethanol.
In SN, manufactured by BASF Corporation) was added to the coating solution to give a coating solution of 1.0 w/v%. After filling the membrane oxygenator with the prepared coating solution, this solution is discharged to remove the solvent, and then dried. After repeating this immersion and drying operation 4 to 6 times, the concentration of 1 .0w/v
% of glutaraldehyde, the solution was removed, and the mixture was heated to 37° C. for 16 to 20 hours to effect crosslinking and drying.

【0031】比較例1 内径200μm、肉厚25μm、空孔率38%、平均孔
径700オングストロームのポリプロピレン製中空糸膜
を用いて膜面積0.8m2 の図1に示すような中空糸
膜型人工肺を組立てた。
Comparative Example 1 A hollow fiber membrane oxygenator as shown in FIG. 1 with a membrane area of 0.8 m2 was made using a polypropylene hollow fiber membrane with an inner diameter of 200 μm, a wall thickness of 25 μm, a porosity of 38%, and an average pore diameter of 700 angstroms. Assembled.

【0032】実施例2 実施例1および比較例1で得られる人工肺の含水率およ
び膨潤比を調べるために、つぎの実験を行なった。
Example 2 The following experiment was conducted to examine the water content and swelling ratio of the oxygenators obtained in Example 1 and Comparative Example 1.

【0033】ポリプロピレンのマイクロポーラス膜(ジ
ュラガード、ポリプラスチックス株式会社製)の平膜を
基材として用い、それぞれ実施例1および比較例1(未
処理)と同様な操作を行なった。得られた平膜を37℃
の水に2日間浸漬したのち、1昼夜風乾し、ついで室温
で真乾燥を1昼夜行ない、再び37℃の水中にて1日間
浸漬後に測定し、次式により含水率および膨潤比を測定
したところ、表1の結果が得られた。
A flat membrane of a microporous polypropylene membrane (Duraguard, manufactured by Polyplastics Co., Ltd.) was used as a base material, and the same operations as in Example 1 and Comparative Example 1 (untreated) were carried out. The obtained flat membrane was heated to 37°C.
After being immersed in water at 37°C for 2 days, air-dried for 1 day and night, then truly dried at room temperature for 1 day and night, and again immersed in water at 37°C for 1 day and then measured, and the water content and swelling ratio were measured using the following formula. , the results shown in Table 1 were obtained.

【0034】[0034]

【数1】[Math 1]

【0035】[0035]

【表1】[Table 1]

【0036】実施例1で得られた膜型人工肺の空気透過
流量を測定したところ、850ml/min ・m2 
・mmHgであり、また比較例1で得られた膜型人工肺
の空気透過流量は1,000ml/min ・m2 ・
mmHgであった。一方、充填処理前の膜型人工肺(比
較例2とする)の空気透過流量が1,100ml/mi
n ・m2 ・mmHgであることを比較してそれぞれ
低下していた。
When the air permeation flow rate of the membrane oxygenator obtained in Example 1 was measured, it was found to be 850 ml/min·m2.
・mmHg, and the air permeation flow rate of the membrane oxygenator obtained in Comparative Example 1 was 1,000 ml/min ・m2 ・
It was mmHg. On the other hand, the air permeation flow rate of the membrane oxygenator (referred to as Comparative Example 2) before filling was 1,100 ml/mi.
When compared with n ・m 2 ・mmHg, each decreased.

【0037】さらに、これらの膜型人工肺のガス交換能
評価および血漿の漏出量をみるために、生体外(in 
vitro) 試験および動物試験を行なった。
Furthermore, in order to evaluate the gas exchange capacity of these membrane oxygenators and to examine the amount of plasma leakage, in vitro (in vitro)
In vitro) and animal studies were conducted.

【0038】(1)生体外(in vitro)試験新
鮮なヘパリン加牛血を用い、酸素ガス分圧35mmHg
、炭酸ガス分圧45mmHgとなる静脈血を作成し、こ
れを人工肺の血液流路を流通させて性能評価を行なった
。 なお、用いられる牛血のヘモグロビン含量は11.5g
/dlで、温度は37℃であった。酸素流量と血液流量
との比が1で、血液流量600ml/min のときの
酸素ガス添加能および炭酸ガス除去能との関係は、表2
に示すとおりであった。
(1) In vitro test Using fresh heparinized bovine blood, oxygen gas partial pressure was 35 mmHg.
Venous blood having a partial pressure of carbon dioxide gas of 45 mmHg was prepared, and its performance was evaluated by passing it through the blood flow path of the artificial lung. The hemoglobin content of the cow blood used is 11.5g.
/dl and the temperature was 37°C. The relationship between oxygen gas addition ability and carbon dioxide removal ability when the ratio of oxygen flow rate to blood flow rate is 1 and the blood flow rate is 600 ml/min is shown in Table 2.
It was as shown in

【0039】[0039]

【表2】[Table 2]

【0040】(2)動物試験 雑犬を用いて実施例1および比較例1の膜型人工肺につ
いて、24時間のV−Aの部分体外循環試験を行なった
。循環時間と血漿漏出量との関係は、表3に示すとおり
であった。
(2) Animal Test A 24-hour VA partial extracorporeal circulation test was conducted on the membrane oxygenators of Example 1 and Comparative Example 1 using mongrel dogs. The relationship between circulation time and plasma leakage amount was as shown in Table 3.

【0041】[0041]

【表3】[Table 3]

【0042】 (3)ガスフラックス試験 温度37℃の蒸留水を用い、実施例1および比較例1の
人工肺の回路にプライミングを行ない、循環後、空気を
200リットル/minで30秒間吹送し、ついで空気
による乾燥(10リットル/min)を行なったところ
、乾燥時間とガラスフラックスとの関係は、表4に示す
とおりであった。以上により循環時には、被覆された高
分子化合物が細孔を閉塞しているものと推察された。
(3) Gas flux test Using distilled water at a temperature of 37° C., the circuits of the artificial lungs of Example 1 and Comparative Example 1 were primed, and after circulation, air was blown at 200 liters/min for 30 seconds. Then, air drying (10 liters/min) was performed, and the relationship between drying time and glass flux was as shown in Table 4. From the above, it was inferred that the coated polymer compound clogged the pores during circulation.

【0043】[0043]

【表4】[Table 4]

【0044】実施例3 内径200μm、肉厚25μm、空孔率38%、平均孔
径700オングストロームのポリプロピレン製中空糸膜
を用いて、膜面積0.8m2 の図1に示すような中空
糸膜型人工肺1を組立てた。血液入口よりポリ(2−ヒ
ドロキシエチルメタクリレート)をエタノールで1.2
5w/v%溶液に希釈し、この中へポリエチレンイミン
(Polymin SN,BASF社製)を1.0w/
v%となるように添加して被覆液を調製した。調製した
被覆液を上記膜型人工肺に流入させ流出口を絞り中空糸
膜の内圧が1Kg/cm 2 程度となるように調節し
てエタノール1リットルを細孔を通して排出させた。つ
いで乾燥を行ない、さらに濃度1.0%のグルタルアル
デヒドの水溶液を充填させ37℃で16〜20時間架橋
させたのち該溶液を除去し、乾燥を行った。このように
して作製された人工肺の含水率と膨潤比を調べたところ
実施例1の人工肺とほぼ同様の結果を示した。また、こ
の人工肺のガス交換能および血漿の漏出量についても実
施例1の人工肺とほぼ同様の結果を示した。
Example 3 Using a polypropylene hollow fiber membrane with an inner diameter of 200 μm, a wall thickness of 25 μm, a porosity of 38%, and an average pore diameter of 700 angstroms, a hollow fiber membrane type artificial membrane as shown in FIG. 1 with a membrane area of 0.8 m2 was prepared. Assembled lung 1. Poly(2-hydroxyethyl methacrylate) from the blood inlet with ethanol for 1.2
It was diluted to a 5 w/v% solution, and 1.0 w/v of polyethyleneimine (Polymin SN, manufactured by BASF) was added thereto.
A coating solution was prepared by adding the solution in an amount of v%. The prepared coating liquid was flowed into the membrane oxygenator, the outlet was constricted, the internal pressure of the hollow fiber membrane was adjusted to about 1 Kg/cm 2 , and 1 liter of ethanol was discharged through the pores. Next, it was dried, filled with an aqueous solution of glutaraldehyde at a concentration of 1.0%, crosslinked at 37°C for 16 to 20 hours, and then the solution was removed and dried. When the water content and swelling ratio of the artificial lung thus prepared were examined, the results were almost the same as those of the artificial lung of Example 1. Furthermore, this oxygenator showed almost the same results as the oxygenator of Example 1 regarding the gas exchange ability and the amount of plasma leakage.

【0045】[0045]

【発明の効果】以上の述べたように、本発明は、多孔質
膜の細孔内面を、水膨潤性高分子化合物により被覆して
なる人工肺用複合膜ならびに該複合膜を用いてなる複合
型人工肺であるから、体外血液循環時に該水膨潤性高分
子化合物が血液と接触して膨潤し、細孔を閉塞させるた
めに、膨潤膜を介して血液と酸素含有ガスとを接触させ
ずにガス交換を行なうため、血漿の漏出が全くない。ま
た、プライミングの際に、泡抜けは均質膜に比較して容
易であり、疎水性多孔質膜と同等である。このことは、
プライミング時には多孔質膜の循環時には、均質膜の利
点が発揮できることを意味している。
Effects of the Invention As described above, the present invention provides a composite membrane for an oxygenator in which the inner surface of the pores of a porous membrane is coated with a water-swellable polymer compound, and a composite membrane using the composite membrane. Since it is a type of oxygenator, the water-swellable polymer compound comes into contact with blood during extracorporeal blood circulation, swells, and closes the pores, so blood does not come into contact with oxygen-containing gas through the swelling membrane. There is no leakage of plasma due to gas exchange. Furthermore, during priming, bubbles escape more easily than with a homogeneous membrane, and are equivalent to a hydrophobic porous membrane. This means that
This means that during priming, the advantages of a homogeneous membrane can be exhibited during circulation of a porous membrane.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】は本発明による人工肺の一実施例を示す部分断
面図である。
FIG. 1 is a partial cross-sectional view showing an embodiment of an artificial lung according to the present invention.

【符号の説明】[Explanation of symbols]

1…膜型人工肺、          2…ガス交換膜
、      3…細孔、4…微粒子、  5…被膜、
            6…ハウジング、7…筒状本
体、    10,11…隔壁、12…第1の物質移動
室、  13,14…第1の物質移動流体導入出口、1
6…中空糸束、          28、29…第2
の物質移動流体導入出口。
DESCRIPTION OF SYMBOLS 1... Membrane oxygenator, 2... Gas exchange membrane, 3... Pore, 4... Particulate, 5... Film,
6... Housing, 7... Cylindrical main body, 10, 11... Partition wall, 12... First mass transfer chamber, 13, 14... First mass transfer fluid introduction outlet, 1
6...Hollow fiber bundle, 28, 29...Second
mass transfer fluid inlet outlet.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】  多孔質膜の細孔内面を、水膨潤高分子
化合物により被覆してなる人工肺用複合膜。
1. A composite membrane for an artificial lung, comprising a porous membrane whose pore inner surfaces are coated with a water-swellable polymer compound.
【請求項2】  多孔質膜が肉厚5〜80μm、空孔率
20〜80%、細孔径0.01〜5μmおよび内径10
0〜1,000μmを有する中空糸状多孔質膜である請
求項1に記載の人工肺用複合膜。
2. The porous membrane has a wall thickness of 5 to 80 μm, a porosity of 20 to 80%, a pore diameter of 0.01 to 5 μm, and an inner diameter of 10 μm.
The composite membrane for an artificial lung according to claim 1, which is a hollow fiber-like porous membrane having a diameter of 0 to 1,000 μm.
【請求項3】  水膨潤性高分子化合物が含水率30〜
80重量%および膨潤比2以上を有してなる請求項1ま
たは2に記載の人工肺用複合膜。
Claim 3: The water-swellable polymer compound has a water content of 30 to 30.
The composite membrane for an artificial lung according to claim 1 or 2, having a swelling ratio of 80% by weight and a swelling ratio of 2 or more.
【請求項4】  水膨潤性高分子化合物が(メタ)アク
リル酸系、ポリビニルアルコール系、(メタ)アクリル
アミド系、ポリアルキレンオキサイド系およびポリアル
キレンイミン系よりなる群から選ばれた少なくとも1種
の水膨潤性化合物である請求項3に記載の人工肺用複合
膜。
4. The water-swellable polymer compound is at least one type of water selected from the group consisting of (meth)acrylic acid type, polyvinyl alcohol type, (meth)acrylamide type, polyalkylene oxide type, and polyalkylene imine type. The composite membrane for an artificial lung according to claim 3, which is a swellable compound.
【請求項5】  水膨潤性化合物が架橋された水溶性高
分子化合物である請求項3に記載の人工肺用複合膜。
5. The composite membrane for an artificial lung according to claim 3, wherein the water-swellable compound is a crosslinked water-soluble polymer compound.
【請求項6】  水溶性高分子化合物がポリアルキレン
イミンおよび(メタ)アクリル酸塩よりなる群から選ば
れた少なくとも1種のものである請求項5に記載の人工
肺用複合膜。
6. The composite membrane for an artificial lung according to claim 5, wherein the water-soluble polymer compound is at least one selected from the group consisting of polyalkyleneimine and (meth)acrylate.
【請求項7】  水膨潤性化合物が0.01〜5μmの
膜厚に被覆されてなる請求項1〜6のいずれか一つに記
載の人工肺用複合膜。
7. The composite membrane for an artificial lung according to claim 1, wherein the composite membrane is coated with a water-swellable compound to a thickness of 0.01 to 5 μm.
【請求項8】  多孔質膜の表面に、水溶性高分子化合
物の溶液を塗布し、ついで該水溶性高分子化合物被覆の
架橋処理を行なうことを特徴とする人工肺用複合膜の製
造方法。
8. A method for producing a composite membrane for an artificial lung, comprising applying a solution of a water-soluble polymer compound to the surface of a porous membrane, and then subjecting the water-soluble polymer compound coating to a crosslinking treatment.
【請求項9】  多孔質膜の表面に、水溶性高分子化合
物の溶液を、0.2〜2.0Kg/cm 2 の圧力で
接触させかつ溶媒を細孔を通じて導出させることにより
塗布するものである請求項8に記載の人工肺用複合膜の
製造方法。
9. A solution of a water-soluble polymer compound is applied to the surface of a porous membrane by contacting the solution at a pressure of 0.2 to 2.0 Kg/cm 2 and allowing the solvent to be drawn out through the pores. A method for producing a composite membrane for an oxygenator according to claim 8.
【請求項10】  架橋処理は水溶性高分子化合物被膜
に架橋剤の液を接触させることにより行なわれる請求項
8または9に記載の人工肺用複合膜の製造方法。
10. The method for producing a composite membrane for an artificial lung according to claim 8, wherein the crosslinking treatment is carried out by bringing a crosslinking agent liquid into contact with the water-soluble polymer compound coating.
【請求項11】  架橋処理は水溶性高分子化合物被膜
に放射線を照射することにより行なわれる請求項8また
は9に記載の人工肺用複合膜の製造方法。
11. The method for producing a composite membrane for an artificial lung according to claim 8, wherein the crosslinking treatment is carried out by irradiating the water-soluble polymer compound coating with radiation.
【請求項12】  多孔質膜の表面に、水溶性高分子化
合物および架橋剤を含有してなる溶液を塗布することを
特徴とする人工肺用複合膜の製造方法。
12. A method for producing a composite membrane for an artificial lung, comprising applying a solution containing a water-soluble polymer compound and a crosslinking agent to the surface of a porous membrane.
【請求項13】  多孔質膜の細孔内面を水膨潤性高分
子化合物により被覆してなる複合膜をガス交換膜として
使用し、酸素流入口、酸素流出口、血液流入口および血
液流出口を備えたハウジング内に収納して該複合膜を介
して血液流路および酸素流路を形成してなる複合膜型人
工肺。
13. A composite membrane in which the inner surface of the pores of a porous membrane is coated with a water-swellable polymer compound is used as a gas exchange membrane, and an oxygen inlet, an oxygen outlet, a blood inlet, and a blood outlet are provided. A composite membrane oxygenator is housed in a housing provided with a composite membrane, and a blood flow path and an oxygen flow path are formed through the composite membrane.
【請求項14】  該多孔質膜の少なくとも血液を接触
する面に、水膨潤性高分子化合物の溶液を接触させたの
ち、該溶媒を除去し、さらに架橋処理を施してなる請求
項13に記載の複合膜型人工肺。
14. The porous membrane according to claim 13, wherein at least the surface of the porous membrane that comes into contact with blood is brought into contact with a solution of a water-swellable polymer compound, the solvent is removed, and a crosslinking treatment is further performed. composite membrane oxygenator.
JP03060600A 1990-03-29 1991-03-25 Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same Expired - Lifetime JP3090701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03060600A JP3090701B2 (en) 1990-03-29 1991-03-25 Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-82085 1990-03-29
JP8208590 1990-03-29
JP03060600A JP3090701B2 (en) 1990-03-29 1991-03-25 Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same

Publications (2)

Publication Number Publication Date
JPH04212372A true JPH04212372A (en) 1992-08-03
JP3090701B2 JP3090701B2 (en) 2000-09-25

Family

ID=26401679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03060600A Expired - Lifetime JP3090701B2 (en) 1990-03-29 1991-03-25 Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same

Country Status (1)

Country Link
JP (1) JP3090701B2 (en)

Also Published As

Publication number Publication date
JP3090701B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US5028332A (en) Hydrophilic material and method of manufacturing
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
EP0100552B2 (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
JP6036882B2 (en) Separation membrane, separation membrane module, method for producing separation membrane, and method for producing separation membrane module
JP4534486B2 (en) Hydrophilic material and method for producing the same
EP0223626B1 (en) Membrane type artificial lung and method for manufacture thereof
JP2006288866A (en) Method for coating hollow-fiber hemocatharsis membrane with surface modifier, surface modifier coated hollow-fiber hemocatharsis membrane and surface modifier coated hollow-fiber hemocatharsis appliance
CA2535850C (en) Surface treatment of the membrane and associated product
JP4876431B2 (en) Method for coating surface modification agent on hollow fiber blood purification membrane, surface modification agent coated hollow fiber blood purification membrane, and surface modification agent coated hollow fiber blood purification device
US8118176B2 (en) Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same
JP3171896B2 (en) Permeable membrane with excellent biocompatibility
JP2000135421A (en) Polysulfone-base blood purifying membrane
JPH04212372A (en) Composite membrane for artificial lunge, production thereof and composite type artificial lunge formed by using this method
JP2888607B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JPH0548135B2 (en)
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP3048652B2 (en) Manufacturing method of membrane oxygenator
JPH0116504B2 (en)
JPS60249968A (en) Hollow fiber membrane type artificial lung
JPH0796030B2 (en) Membrane oxygenator
JPS641149B2 (en)
JPH0440026B2 (en)
JPH0433660A (en) Composite membrane for artificial lung and production thereof and composite membrane type artificial lung formed by using this membrane
JPS60249967A (en) Hollow fiber membrane type artificial lung and its production
JP2000135422A (en) Polysulfone-base medical separation membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10