JPH04210878A - Resistance welding method for ferritic stainless steel plates - Google Patents

Resistance welding method for ferritic stainless steel plates

Info

Publication number
JPH04210878A
JPH04210878A JP2411145A JP41114590A JPH04210878A JP H04210878 A JPH04210878 A JP H04210878A JP 2411145 A JP2411145 A JP 2411145A JP 41114590 A JP41114590 A JP 41114590A JP H04210878 A JPH04210878 A JP H04210878A
Authority
JP
Japan
Prior art keywords
stainless steel
steel plate
sacrificial anode
anode material
resistance welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411145A
Other languages
Japanese (ja)
Inventor
Yutaka Takahashi
裕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2411145A priority Critical patent/JPH04210878A/en
Publication of JPH04210878A publication Critical patent/JPH04210878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PURPOSE:To improve reliability of strength of a resistance welded joint by putting sacrificial anode material between first and second ferritic stainless steels other than a stabilized steel kind. CONSTITUTION:The base sacrificial anode material 3 with lower ionization tendency than the first stainless steel plate 1 is put between the first stainless steel plate 1 of the ferritic stainless steel plate other than the stabilized steel kind and the stainless steel plate 2 of the same kind as or different from that and electrodes 6 and 7 are pressurized from both sides and energized. Consequently, grain boundary precipitation of chromium carbide at the time of welding can be almost prevented and riliable welding with high welding strength of the ferritic stainless steel plates other than the stabilized steel kind can be performed without causing intergranular corrosion cracking, etc., on a weld zone.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】本発明は、少なくとも一方が安定
化鋼種以外のフェライト系ステンレス鋼板であるステン
レス鋼板同志の抵抗溶接方法に関するものである。 [0002]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of resistance welding stainless steel plates, at least one of which is a ferritic stainless steel plate other than a stabilized steel. [0002]

【従来の技術】周知のように、安定化鋼種以外のフェラ
イト系ステンレス鋼板である例えば5US430同志を
溶接したり、あるいは5US430とそれ以外のステン
レス鋼板とを抵抗溶接すると、その溶接過程で、溶接部
分の結晶粒界にクロムカーバイドが析出し、この部分に
水が触れると、粒界腐食を起こして溶接部分に微小クラ
ック等が発生し、これが破壊の引き金となって、構造物
等の溶接寿命を著しく低下させるという不都合があり、
溶接の信頼性が得られないという問題があった。 [0003]このため、従来においては、安定化鋼種以
外のフェライト系ステンレス鋼板の溶接はほとんど行わ
れておらず、ステンレス鋼板の溶接を行う場合には、チ
タンやニオブを入れた安定化鋼種のフェライト系ステン
レス鋼板を用いるか、あるいは、ニッケルを含むオース
テナイト系ステンレス鋼板が用いられていた。 [0004]
[Prior Art] As is well known, when welding ferritic stainless steel plates other than stabilized steel, such as 5US430, or resistance welding 5US430 and other stainless steel plates, during the welding process, the welded portion Chromium carbide precipitates at the grain boundaries of the weld, and when this area comes into contact with water, intergranular corrosion occurs and microcracks occur in the welded area, which triggers fracture and shortens the welding life of structures, etc. This has the disadvantage of significantly reducing
There was a problem that welding reliability could not be obtained. [0003] For this reason, in the past, welding of ferritic stainless steel plates other than stabilized steel types has rarely been carried out, and when welding stainless steel plates, welding of ferritic stainless steel plates of stabilized steel types containing titanium or niobium is required. A type stainless steel plate was used, or an austenitic stainless steel plate containing nickel was used. [0004]

【発明が解決しようとする課題】しかしながら、安定化
鋼種のフェライト系ステンレス鋼板やオーステナイト系
のステンレス鋼板はいずれも安定化鋼種以外のフェライ
ト系ステンレス鋼板に比べ、高価であり、ステンレス鋼
板を使用する船舶の構造物や給湯器のケース等のコスト
が高くついてしまうという問題があった。 [0005]本発明は上記従来の課題を解決するために
なされたものであり、その目的は、安定化鋼種以外のフ
ェライト系ステンレス鋼板を溶接する場合においても、
粒界腐食による破壊を生じることがない信頼性に優れた
抵抗溶接方法を提供することにある。 [0006]
[Problems to be Solved by the Invention] However, both ferritic stainless steel sheets and austenitic stainless steel sheets of stabilized steel types are more expensive than ferritic stainless steel sheets of other than stabilized steel types, and ships using stainless steel sheets are There was a problem in that the cost of the structure of the water heater, the case of the water heater, etc. was high. [0005] The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to weld ferritic stainless steel plates other than stabilized steel types.
An object of the present invention is to provide a highly reliable resistance welding method that does not cause destruction due to intergranular corrosion. [0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、安定化鋼種以外のフェライト系ステンレス鋼板
である第1のステンレス鋼板と、この第1のステンレス
鋼板と同種又は異種のステンレス鋼板である第2のステ
ンレス鋼板との抵抗溶接方法であって、第1のステンレ
ス鋼板と第2のステンレス鋼板との間に第1のステンレ
ス鋼板よりもイオン化傾向の小さい犠牲陽極材を挟んで
抵抗溶接を行うことを特徴として構成されている。 [0007]
[Means for Solving the Problems] In order to achieve the above object, the present invention is constructed as follows. That is, the present invention provides a resistance welding method for welding a first stainless steel plate that is a ferritic stainless steel plate other than the stabilized steel type and a second stainless steel plate that is the same type or a different type of stainless steel plate as the first stainless steel plate. The structure is characterized in that a sacrificial anode material having a smaller ionization tendency than the first stainless steel plate is sandwiched between the first stainless steel plate and the second stainless steel plate and resistance welding is performed. [0007]

【作用】本発明では、第1のステンレス鋼板と第2のス
テンレス鋼板との間に犠牲陽極材を挟んで抵抗溶接を行
うので、溶接時(−クロムカーバイドの析出はほとんど
生じない。たとえ、クロムカーバイドが結晶粒界に多少
析出したとしても、この溶接部分が水分に触れたときに
、腐食はクロムカーバイドの析出部分に進行せず、犠牲
陽極材に優先的に進行する。したがって、この犠牲陽極
材が腐食により溶は去るまでクロムカーバイドに粒界腐
食が進行しないこととなり、溶接部分の粒界腐食による
破壊が長期に亘って生ぜず、抵抗溶接の信頼性が確保さ
れる。 [0008]
[Operation] In the present invention, since resistance welding is performed by sandwiching the sacrificial anode material between the first stainless steel plate and the second stainless steel plate, there is almost no precipitation of chromium carbide during welding. Even if some carbide precipitates at the grain boundaries, when this welded part comes into contact with moisture, corrosion will not progress to the chromium carbide precipitated part, but preferentially progress to the sacrificial anode material.Therefore, this sacrificial anode Intergranular corrosion will not progress to the chromium carbide until the material is corroded and melted away, and the welded part will not be destroyed by intergranular corrosion for a long period of time, ensuring the reliability of resistance welding. [0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1および図2には本発明に係る抵抗溶接方法の
一実施例が示されている。これらの図において、第1の
ステンレス鋼板1は安定化鋼種以外のフェライト系ステ
ンレス鋼板からなり、第2のステンレス鋼板2は第1の
ステンレス鋼板1と同種のステンレス鋼板か、又は異種
のステンレス鋼板からなる。この第1のステンレス鋼板
1と第2のステンレス鋼板2との溶接箇所には両鋼板1
.2の間に第1のステンレス鋼板1よりもイオン化傾向
が小さい(卑な)材料の犠牲陽極材3が挟まれている。 この犠牲陽極材3が挟み込まれた状態で、溶接部分の両
側に抵抗溶接用の@U6.7を押し当てて通電すること
により、図3に示すように、第1のステンレス鋼板1と
第2のステンレス鋼板2は犠牲陽極材3を介して溶着し
、両鋼板1,2の抵抗溶接が達成される。 [0009]この抵抗溶接に際し、図2に示すように、
犠牲陽極材3をステンレス鋼板1.2間に挟み込む場合
、一方側のステンレス鋼板、この図では第2のステンレ
ス鋼板2に犠牲陽極材3の厚みに相当する凹部4を形成
し、この凹部4に犠牲陽極材3を収容することで、第1
のステンレス鋼板1と第2のステンレス鋼板2との間の
隙間5をほとんどなくすことができ、図1のように凹部
4を設けない場合に比べ、抵抗溶接をより効果的に行う
ことができる。 [00101本実施例では、第1のステンレス鋼板1と
第2のステンレス鋼板2との間に犠牲陽極材3を介設す
ることで、溶接部分にクロムカーバイドが粒界析出する
ことをほとんど防止することができる。たとえ、わずか
にクロムカーバイドが析出したとしても、この溶接部分
が水分等に触れたときには、犠牲陽極材3がクロムカー
バイドよりも優先的に腐食を進行させ、この犠牲陽極材
3が完全に腐食されて溶は去るまでクロムカーバイド部
分に腐食が進行しない。この犠牲陽極材3を鋼板により
形成する場合には、犠牲陽極材3が水分に触れて表面に
錆が付くと、この錆が保護膜として機能し、内部への水
分の浸透を防止するので、犠牲陽極材3の内部に腐食が
進行せず、このため、犠牲陽極材3が腐食により溶は去
るということはなくなり、溶接部分のクロムカーバイド
に粒界腐食が半永久的に起こらない状態となる。これに
より、溶接部分に粒界腐食に起因する破壊等の不具合を
発生させることなく、長期に亘り信頼性の高い抵抗溶接
が可能となる。 [00111次に、本発明を適用した具体的な試験例に
ついて説明する。 [0012]  (a)試料の作成 [0013]試験用の試料を6種作成した。試料1と試
料2は図4の正面図(a)と側面図(b)に示すように
、幅20mm、厚み0.5mmの第1のステンレス鋼板
1と同サイズの第2のステンレス鋼板2とを犠牲陽極材
を用いないでスポット点8a、8bの2点て抵抗溶接し
たものである。試料3から試料6は、図5の正面図(a
)と側面図(b)に示すように、試料1および試料2と
同サイズの第1のステンレス鋼板1と第2のステンレス
鋼板2との間に厚みが0.5mmの犠牲陽極材3を挟み
、同様にスポット点8a、8bの2点でスポット抵抗溶
接したものである。第1のステンレス鋼板1と第2のス
テンレス鋼板2の材料の組合せは次の表1に示されてい
る。 [o 014]
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. 1 and 2 show an embodiment of the resistance welding method according to the present invention. In these figures, the first stainless steel plate 1 is made of a ferritic stainless steel plate other than the stabilizing steel type, and the second stainless steel plate 2 is made of the same type of stainless steel plate as the first stainless steel plate 1 or a different type of stainless steel plate. Become. At the welding point between the first stainless steel plate 1 and the second stainless steel plate 2, both steel plates 1
.. A sacrificial anode material 3 made of a material having a lower (base) ionization tendency than the first stainless steel plate 1 is sandwiched between the two. With this sacrificial anode material 3 sandwiched between them, by pressing @U6.7 for resistance welding on both sides of the welding part and applying electricity, the first stainless steel plate 1 and the second stainless steel plate 1 are The stainless steel plates 2 are welded together via the sacrificial anode material 3, and resistance welding of both steel plates 1 and 2 is achieved. [0009] During this resistance welding, as shown in FIG.
When the sacrificial anode material 3 is sandwiched between the stainless steel plates 1 and 2, a recess 4 corresponding to the thickness of the sacrificial anode material 3 is formed in the stainless steel plate on one side, which is the second stainless steel plate 2 in this figure. By accommodating the sacrificial anode material 3, the first
The gap 5 between the stainless steel plate 1 and the second stainless steel plate 2 can be almost eliminated, and resistance welding can be performed more effectively than in the case where the recess 4 is not provided as shown in FIG. [00101 In this example, by interposing the sacrificial anode material 3 between the first stainless steel plate 1 and the second stainless steel plate 2, grain boundary precipitation of chromium carbide in the welded area is almost prevented. be able to. Even if a small amount of chromium carbide precipitates, when this welded part comes into contact with moisture etc., the sacrificial anode material 3 will corrode more preferentially than the chromium carbide, and the sacrificial anode material 3 will be completely corroded. Corrosion will not progress to the chromium carbide part until the melt is removed. When this sacrificial anode material 3 is formed of a steel plate, if the sacrificial anode material 3 comes into contact with moisture and rusts on the surface, this rust functions as a protective film and prevents moisture from penetrating into the interior. Corrosion does not progress inside the sacrificial anode material 3, and therefore the sacrificial anode material 3 will not be molten due to corrosion, and intergranular corrosion will not occur semi-permanently in the chromium carbide of the welded portion. This makes it possible to perform highly reliable resistance welding over a long period of time without causing defects such as destruction due to intergranular corrosion in the welded portion. [00111 Next, specific test examples to which the present invention is applied will be described. [0012] (a) Preparation of samples [0013] Six types of samples for testing were prepared. As shown in the front view (a) and side view (b) of FIG. 4, samples 1 and 2 are made of a first stainless steel plate 1 with a width of 20 mm and a thickness of 0.5 mm, and a second stainless steel plate 2 with the same size. This is resistance welded at two spots, 8a and 8b, without using a sacrificial anode material. Samples 3 to 6 are shown in the front view (a
) and side view (b), a sacrificial anode material 3 with a thickness of 0.5 mm is sandwiched between a first stainless steel plate 1 and a second stainless steel plate 2, which are the same size as Samples 1 and 2. Similarly, spot resistance welding was performed at two spots 8a and 8b. The material combinations of the first stainless steel plate 1 and the second stainless steel plate 2 are shown in Table 1 below. [o 014]

【表1】 [0015]試料1から試料6の第1のステンレス鋼板
1は安定化鋼種以外のフェライト系ステンレス鋼板であ
る5US430を使用しており、第2のステンレス鋼板
2は、試料1と試料3と試料5は同じ<5US430を
使用しており、試料2と試料4と試料6はニッケルを含
むオーステナイト系のステンレス鋼板である5US30
4を使用している。そして、試料3と試料4では犠牲陽
極材3として鋼板を使用し、試料5と試料6では犠牲陽
極材3として溶融アルミニウムメツキ鋼板を使用してい
る。 [0016]  (b)腐食試験 [0017]前記試料1から試料6をキャス試験(塩水
噴霧試験の10倍加速試験)により塩化カルシウムを含
む溶液を49±2℃の雰囲気中で噴霧し、1サイクル(
16時間)、5サイクル(80時間)、10サイクル(
100時間)の各サイクルで試料を取り出し、次の剥離
試験を行った。なお、キャス拭験の試験条件を表2に示
す。 [0018]
[Table 1] [0015] The first stainless steel plate 1 of Samples 1 to 6 is made of 5US430, which is a ferritic stainless steel plate other than the stabilizing steel type, and the second stainless steel plate 2 is made of 5US430, which is a ferritic stainless steel plate other than the stabilizing steel type. Samples 3 and 5 use the same <5US430, and samples 2, 4, and 6 use 5US30, which is an austenitic stainless steel plate containing nickel.
4 is used. In Samples 3 and 4, a steel plate is used as the sacrificial anode material 3, and in Samples 5 and 6, a molten aluminum plated steel plate is used as the sacrificial anode material 3. [0016] (b) Corrosion test [0017] Samples 1 to 6 were subjected to a CASS test (10 times accelerated test of salt spray test) by spraying a solution containing calcium chloride in an atmosphere of 49±2°C for one cycle. (
16 hours), 5 cycles (80 hours), 10 cycles (
Samples were removed after each cycle (100 hours) and subjected to the following peel test. The test conditions for the cast wiping test are shown in Table 2. [0018]

【表2】 [0019]  (c)剥離試験 [0020]前記1サイクル、 クルのキャス試験を行った後、 5サイクルおよび10サイ 試料」から試料6の剥離 試験を行った。その結果を表3に示す。 [00211[Table 2] [0019] (c) Peeling test [0020] The 1 cycle, After taking Kuru's cast test, 5 cycles and 10 cycles Peeling sample 6 from sample The test was conducted. The results are shown in Table 3. [00211

【表3] [0022]この剥離試験では、まず、試料1から試料
6にかけて、第1のステンレス鋼板1と第2のステンレ
ス鋼板2とを両手に持って引っ張り、剥離するか否かを
調べた。この結果、犠牲陽極材3を設けない試料1と試
料2では1サイクルのキャス試験後に剥離を生じた。こ
れに対し、試料3から試料6では10サイクルのキャス
試験の後、手で引っ張っても剥離しなかった。この手の
引っ張り力で剥離しなかった試料3から試料6について
は、その試料をシャルピー引張り試験機にかけて引っ張
り、引っ張り剪断強さを調べた。この結果、いずれも5
00kg程度の引っ張り力に耐え、剪断破壊を起こさな
かった。このことは、10サイクルの苛酷なキャス試験
後においても、抵抗溶接部分に粒界腐食が生じなかった
ことによるもので、従来においては到底考えられなかっ
た安定化鋼種以外のフェライト系ステンレス鋼板の抵抗
溶接が安定化鋼種のフェライト系ステンレス鋼板やオー
ステナイト系のステンレス鋼板と同等の性能で行うこと
ができることを示している。本発明者はこの効果をさら
に確認するため、一般に抵抗溶接に適しているとされて
いる銅板同志の抵抗溶接結果と比較して見た。そのため
、銅板同志を1点でスポット抵抗溶接をしてシャルピー
引張り試験機にかけて見たところ、270kgの引っ張
り力で剪断した。2点のスポット抵抗溶接では、その2
倍の540kg程度で剪断するものと考えられるから、
この力は試料3から試料6の引っ張り剪断力とほぼ同程
度であり、このことからも、銅板の抵抗溶接と何ら遜色
ない溶接性能が得られることが分かる。 [0023]この試験では、さらに、キャス試験後に溶
接部の顕微鏡による断面組織観察を行ったが、粒界腐食
の傾向は見られなかった。 [0024]なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、犠牲陽極材3を鋼板や溶融アルミニウムメ
ツキ鋼板で構成したが、この犠牲陽極材3は安定化鋼種
以外のフェライト系ステンレス鋼板よりもイオン化傾向
の小さい卑な材料であればよく、例えば溶融亜鉛メツキ
鋼板や電気亜鉛メツキ鋼板等の材料によって構成したも
のでも同様な効果を得ることができる。また、上記実施
例ではスポット抵抗溶接の場合で説明したが、もちろん
シーム抵抗溶接の場合も本発明が適用されるものである
。 [0025] 【発明の効果】本発明は安定化鋼種以外のフェライト系
ステンレス鋼板である第1のステンレス鋼板と、この第
1のステンレス鋼板と同種又は異種のステンレス鋼板と
を間に犠牲陽極材を挟んで抵抗溶接するように構成した
ものであるから、この抵抗溶接時に、クロムカーバイド
が結晶粒界に析出することがほとんどなくなり、たとえ
クロムカーバイドが多少析出しても、溶接部分が水分に
触れたとき、クロムカーバイド部分よりも犠牲陽極材が
優先的に腐食を受け、クロムカーバイド部分に粒界腐食
が進行しないので、溶接部分に粒界腐食の割れ等が発生
することがなく、これにより、溶接強度の高い信頼性の
ある安定化鋼種以外のフェライト系ステンレス鋼板の溶
接が可能となる。 [0026]したがって、ステンレス鋼板の抵抗溶接を
行う場合、従来のような高価な安定化鋼種のステンレス
鋼板やオーステナイト系のステンレス鋼板を使用するこ
となく、安価な安定化鋼種以外のフェライト系ステンレ
ス鋼板を給湯器のケースや船舶の構造物に使用すること
ができ、これにより、ステンレス鋼板を使用する各種装
置の大幅なコストダウンを達成することが可能となる。
[Table 3] [0022] In this peel test, first, the first stainless steel plate 1 and the second stainless steel plate 2 of Samples 1 to 6 were held in both hands and pulled to see if they would peel. . As a result, in Samples 1 and 2 in which the sacrificial anode material 3 was not provided, peeling occurred after one cycle of the Cath test. On the other hand, Samples 3 to 6 did not peel off even when pulled by hand after 10 cycles of the Cath test. For samples 3 to 6 that did not peel off under this kind of tensile force, the samples were pulled using a Charpy tensile tester to examine their tensile shear strength. As a result, both 5
It withstood a tensile force of about 0.00 kg and did not cause shear failure. This is because intergranular corrosion did not occur in the resistance welded part even after 10 cycles of severe CASS testing, and the resistance of ferritic stainless steel sheets other than stabilized steel, which was previously unthinkable. This shows that welding can be performed with the same performance as stabilized steel types such as ferritic stainless steel sheets and austenitic stainless steel sheets. In order to further confirm this effect, the present inventor compared the result with resistance welding results of copper plates, which are generally considered suitable for resistance welding. Therefore, when the copper plates were spot resistance welded together at one point and tested using a Charpy tensile tester, they were sheared with a tensile force of 270 kg. In two-point spot resistance welding, Part 2
It is thought that it will shear at about 540 kg, which is twice as much.
This force is approximately the same as the tensile shearing force of Samples 3 to 6, and this also shows that welding performance comparable to resistance welding of copper plates can be obtained. [0023] In this test, the cross-sectional structure of the welded part was further observed using a microscope after the CASS test, but no tendency for intergranular corrosion was observed. [0024] Note that the present invention is not limited to the above embodiments, and may take various embodiments. For example, in the above embodiment, the sacrificial anode material 3 is made of a steel plate or a molten aluminized steel plate, but the sacrificial anode material 3 may be made of a base material that has a smaller ionization tendency than a ferritic stainless steel plate other than the stabilizing steel type. Similar effects can also be obtained by using materials such as hot-dip galvanized steel sheets and electrolytic galvanized steel sheets. Furthermore, although the above embodiments have been explained in the case of spot resistance welding, the present invention is of course also applicable to seam resistance welding. [0025] [Effects of the Invention] The present invention provides a sacrificial anode material between a first stainless steel plate which is a ferritic stainless steel plate other than a stabilized steel type and a stainless steel plate of the same type or different type as this first stainless steel plate. Since it is configured to be resistance welded by sandwiching it, chromium carbide hardly precipitates at the grain boundaries during resistance welding, and even if some chromium carbide precipitates, the welded part will not come into contact with moisture. At this time, the sacrificial anode material is preferentially corroded than the chromium carbide part, and intergranular corrosion does not progress to the chromium carbide part, so cracks due to intergranular corrosion do not occur in the welding part, and as a result, the welding It becomes possible to weld ferritic stainless steel plates other than stabilized steel types that have high strength and reliability. [0026] Therefore, when performing resistance welding of stainless steel plates, instead of using the conventional expensive stabilized stainless steel plates or austenitic stainless steel plates, it is possible to use inexpensive ferritic stainless steel plates other than the stabilized steel plates. It can be used for water heater cases and ship structures, making it possible to significantly reduce the cost of various devices that use stainless steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る安定化鋼種以外のフェライト系ス
テンレス鋼板と他の同種又は異種のステンレス鋼板との
抵抗溶接の方法を示す説明図である。
FIG. 1 is an explanatory diagram showing a method of resistance welding a ferritic stainless steel sheet other than the stabilized steel type and another same or different type of stainless steel sheet according to the present invention.

【図2】本発明の安定化鋼種以外のフェライト系ステン
レス鋼板の抵抗溶接に際し、犠牲陽極材の好適な挟み込
み態様を示す説明図である。
FIG. 2 is an explanatory diagram showing a preferred mode of sandwiching a sacrificial anode material during resistance welding of a ferritic stainless steel sheet other than the stabilized steel type of the present invention.

【図3】本発明の実施例による抵抗溶接の溶着部分の断
面図である。
FIG. 3 is a cross-sectional view of a welded portion of resistance welding according to an embodiment of the present invention.

【図4】本発明の効果を調べる試験試料のうち犠牲陽極
材を用いない試料形態の説明図である。
FIG. 4 is an explanatory diagram of a sample form that does not use a sacrificial anode material among test samples for examining the effects of the present invention.

【図5】本発明の方法の効果を調べる試験の試料のうち
犠牲陽極材を用いた試料形態の説明図である。
FIG. 5 is an explanatory diagram of a sample form using a sacrificial anode material among test samples to examine the effects of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 第1のステンレス鋼板 2 第2のステンレス鋼板 6 電極 7 電極 1 First stainless steel plate 2 Second stainless steel plate 6 Electrode 7 Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】安定化鋼種以外のフェライト系ステンレス
鋼板である第1のステンレス鋼板と、この第1のステン
レス鋼板と同種又は異種のステンレス鋼板である第2の
ステンレス鋼板との抵抗溶接方法であって、第1のステ
ンレス鋼板と第2のステンレス鋼板との間に第1のステ
ンレス鋼板よりもイオン化傾向の小さい犠牲陽極材を挟
んで抵抗溶接を行うフェライト系ステンレス鋼板の抵抗
溶接方法。
[Claim 1] A method for resistance welding a first stainless steel plate that is a ferritic stainless steel plate other than a stabilized steel type, and a second stainless steel plate that is a stainless steel plate of the same type or a different type from the first stainless steel plate. A method of resistance welding ferritic stainless steel plates, wherein resistance welding is performed by sandwiching a sacrificial anode material having a smaller ionization tendency than the first stainless steel plate between a first stainless steel plate and a second stainless steel plate.
JP2411145A 1990-12-17 1990-12-17 Resistance welding method for ferritic stainless steel plates Pending JPH04210878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411145A JPH04210878A (en) 1990-12-17 1990-12-17 Resistance welding method for ferritic stainless steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411145A JPH04210878A (en) 1990-12-17 1990-12-17 Resistance welding method for ferritic stainless steel plates

Publications (1)

Publication Number Publication Date
JPH04210878A true JPH04210878A (en) 1992-07-31

Family

ID=18520191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411145A Pending JPH04210878A (en) 1990-12-17 1990-12-17 Resistance welding method for ferritic stainless steel plates

Country Status (1)

Country Link
JP (1) JPH04210878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107595A (en) * 1995-07-19 2000-08-22 Inland Steel Company Method for resistance welding with dilution metal and product thereof
JP2020151756A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Method for manufacturing resistance spot welded joint and resistance spot welded joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107595A (en) * 1995-07-19 2000-08-22 Inland Steel Company Method for resistance welding with dilution metal and product thereof
JP2020151756A (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Method for manufacturing resistance spot welded joint and resistance spot welded joint

Similar Documents

Publication Publication Date Title
JPH04210878A (en) Resistance welding method for ferritic stainless steel plates
Banker et al. Aluminum-steel electric transition joints, effects of temperature and time upon mechanical properties
KR20020081695A (en) Method for manufacturing an electrode and an electrode
JPH09314337A (en) Method for welding al or al-si alloy coated stainless steel sheet without welded crack
Wu et al. Formation of crack-susceptible structures of weld overlay of corrosion resistant alloys
Niknamian Investigation of microstructure and corrosion resistance of dissimilar welded joint between 304 stainless steel and pure copper
GB2179876A (en) Coating a hollow body
Mitrovic-Scepanovic et al. Weld-Zone Corrosion of Arctic Icebreakers.(Retroactive Coverage)
Ellis et al. Significance of liquation cracks in thick section welds in Al-Mg-Si alloy plate
Herbsleb et al. Corrosion of joints for stainless steel tubes in water
JPH06320280A (en) Butt welding method for both-side clad plural layer steels
Padovani et al. Electrochemical analysis on friction stir welded and laser welded 6XXX aluminium alloys T-joints
Czechowski Stress corrosion cracking of explosion welded steel‐aluminum joints
Bahan et al. The influence of welding parameters and corrosive environment on the joint strength of resistance spot-welded mild steel sheets
JPS61219484A (en) Method for one side welding
JPS5970481A (en) Spot welding method
Shamsul et al. The influence of welding parameters and corrosive environment on the joint strength of resistance spot-welded mild steel sheets
Dhooge et al. Weldability and Fracture Toughness of 5% Nickel Steel. II.-- Wide Plate Testing
Baker et al. Practical Corrosion Problems in Relation to Welded Joints. I. Special Characteristics of the Welding Process Which can Cause Corrosion Problems
JPH0363512B2 (en)
JP3670793B2 (en) Method for repairing thin metal sheet coated on the surface of metal substrate
Wilken Discussion and Evaluation of Some Extraordinary Cases of Hot Cracking
Rami´ rez et al. Hydrogen induced cracking of welds in steel pipelines
Badogiannis et al. Corrosion and its effects on the mechanical properties of AH36 steel welds
JPS63123577A (en) Welding procedure