JPH0421071B2 - - Google Patents

Info

Publication number
JPH0421071B2
JPH0421071B2 JP32553387A JP32553387A JPH0421071B2 JP H0421071 B2 JPH0421071 B2 JP H0421071B2 JP 32553387 A JP32553387 A JP 32553387A JP 32553387 A JP32553387 A JP 32553387A JP H0421071 B2 JPH0421071 B2 JP H0421071B2
Authority
JP
Japan
Prior art keywords
rotor
compressor
electric motor
pressure
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32553387A
Other languages
Japanese (ja)
Other versions
JPH01167474A (en
Inventor
Wahei Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP32553387A priority Critical patent/JPH01167474A/en
Publication of JPH01167474A publication Critical patent/JPH01167474A/en
Publication of JPH0421071B2 publication Critical patent/JPH0421071B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷凍圧縮機用密封型電動圧縮装置にお
ける電動機の回転子の冷却に関するものである。
密封型電動圧縮装置は密封型電動機と冷凍用圧縮
機とを一体化して完全密封化し、圧縮機の駆動軸
にある軸封装置から外気への冷媒の漏洩を除去
し、軸封装置で生ずる障害やそれで生ずる保守を
皆無にさせようとしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cooling of a rotor of a motor in a sealed electric compression device for a refrigeration compressor.
Sealed electric compression equipment integrates a sealed electric motor and a refrigeration compressor into a completely sealed system, eliminating refrigerant leakage from the shaft sealing device on the drive shaft of the compressor to the outside air, and preventing failures that occur in the shaft sealing device. The idea was to completely eliminate the maintenance that would result from this.

この場合に、圧縮機の筐体内部と、これを駆動
する電動機内部とは冷媒に対し、少なくとも軸部
で連通する構造となつているものである。冷媒の
中にある固定子線輪の冷却に対しては固定子鉄心
の外周より冷却されるので支障はないものである
が、回転子の冷却に対しては(イ)回転子の発熱量の
放出は共通軸を介しての熱伝導によるもの、(ロ)回
転子表面からの固定子側に対する輻射によるもの
(ハ)回転子を囲む熱媒体の対流によるものとなる
が、(ハ)の効果は大きな比率を占め、その運転状態
に大きな影響を与えるものである。即ち、回転子
は温度上昇して高温となり、更に希薄な冷媒ガス
をも分解を引き起こさせることになる。
In this case, the inside of the housing of the compressor and the inside of the electric motor that drives the compressor are configured to communicate with the refrigerant at least at the shaft portion. There is no problem with cooling the stator coils in the refrigerant because the cooling occurs from the outer periphery of the stator core, but with regard to cooling the rotor, (a) the amount of heat generated by the rotor is Emission is due to heat conduction through the common axis, and (b) radiation from the rotor surface to the stator side.
(c) This is due to the convection of the heat medium surrounding the rotor, and the effect of (c) occupies a large proportion and has a great influence on the operating state. That is, the temperature of the rotor increases and becomes high, which causes even the dilute refrigerant gas to decompose.

大容量装置になるに従い、この冷却は更に重要
な問題となる。これは冷却対象物の温度が低い場
合の運転では冷媒ガスの蒸発圧力が低くなり、更
にきわめて低い温度が要求されることになれば真
空状態に近付くことなにる。このような冷媒ガス
の雰囲気中での対流による回転子の冷却につい
て、前記ガス圧が大気圧以下の真空状態までの負
圧の範囲におけるガス圧と回転子の温度上昇との
関係はガス圧力の低下により回転子の温度上昇は
増大し、真空状態に近付くに従い回転子からの放
熱は加速的に困難となり、急速に温度上昇する。
As larger capacity devices become available, this cooling becomes an even more important issue. This is because during operation when the temperature of the object to be cooled is low, the evaporation pressure of the refrigerant gas will be low, and if an extremely low temperature is required, the system will approach a vacuum state. Regarding the cooling of the rotor by convection in such a refrigerant gas atmosphere, the relationship between the gas pressure and the temperature rise of the rotor in the negative pressure range where the gas pressure is below atmospheric pressure and the vacuum state is determined by the relationship between the gas pressure and the temperature rise of the rotor. As the temperature decreases, the temperature rise of the rotor increases, and as the vacuum state approaches, it becomes increasingly difficult to dissipate heat from the rotor, causing the temperature to rise rapidly.

大気圧以上の圧力と温度上昇への影響は極めて
少ない。前記負圧の範囲における以上の問題点は
電動機と圧縮機とが分離された従来の構造では当
然のことながら発生することはないが、両者が一
体化され、負圧の大きな場合にのみ生ずる問題点
である。これは云うまでもなく両者が一体化さ
れ、軸部が単に連通する構造になつているからで
ある。
The effect on pressure and temperature rise above atmospheric pressure is extremely small. The above-mentioned problems in the negative pressure range naturally do not occur in the conventional structure where the electric motor and compressor are separated, but the problem only occurs when the two are integrated and the negative pressure is large. It is a point. Needless to say, this is because the two are integrated and have a structure in which the shaft portions simply communicate.

従つて、圧縮機側の大きな負圧に対して電動機
側の内圧を対流の可能な冷媒ガス圧の範囲まで高
めることが必要で、このために前記電動機と圧縮
機の間に圧力差を与えねばならないことになる。
Therefore, it is necessary to increase the internal pressure on the motor side to the range of refrigerant gas pressure that allows convection in response to the large negative pressure on the compressor side, and for this purpose, it is necessary to create a pressure difference between the motor and the compressor. It will not happen.

本発明はこのような点に鑑み行われたもので、
これを図について説明する。
The present invention was made in view of these points,
This will be explained with reference to the diagram.

第1図は密封型電動圧縮装置の冷却系統の略図
で、1は密封型電動機、2は被駆動圧縮機で、両
者は一体となり密封化される。3は回転軸で11
は電動機の回転子、12は固定子、13は固定子
線輪、14は導線で開閉路を通して電源に接続さ
れ、電動機1に電力が供給される。15は負荷動
力センサーである。
FIG. 1 is a schematic diagram of a cooling system of a sealed electric compressor, in which 1 is a sealed electric motor, 2 is a driven compressor, and both are integrated and sealed. 3 is the rotation axis and 11
1 is a rotor of the electric motor, 12 is a stator, 13 is a stator coil, and 14 is a conducting wire connected to a power source through a switching circuit, so that electric power is supplied to the electric motor 1. 15 is a load power sensor.

21は冷媒凝縮器で圧縮機2で圧縮された冷媒
はここで冷却され、液化して受液器22に貯溜さ
れる。23は膨脹弁で冷却器24に冷媒を給液す
る。ここで冷却対象物と熱交換されてガス化し、
前記圧縮機2に吸入されて冷却系が形成される。
21 is a refrigerant condenser, and the refrigerant compressed by the compressor 2 is cooled here, liquefied, and stored in a liquid receiver 22. 23 is an expansion valve that supplies refrigerant to the cooler 24. Here, heat is exchanged with the object to be cooled and it becomes gas.
It is sucked into the compressor 2 to form a cooling system.

また、回転子11に取りつけられた回転子温度
センサー31は滑り環、刷子などからなる信号取
出し装置32で前記センサーからの信号を取り出
し、調整器33に入力させる。あるいは負荷動力
センサー15の出力を前記調整器33に入力させ
てもよく、電動機1内に圧力センサーを設けてこ
の信号を入力させてもよい。
Further, a rotor temperature sensor 31 attached to the rotor 11 extracts a signal from the sensor using a signal output device 32 consisting of a sliding ring, a brush, etc., and inputs the signal to a regulator 33. Alternatively, the output of the load power sensor 15 may be input to the regulator 33, or a pressure sensor may be provided in the electric motor 1 to input this signal.

これらの入力に対応した制御出力で冷媒制御弁
34を制御して電動機1内部に冷媒が送り込まれ
ることになる。この図の場合は圧縮機2と電動機
1とは軸受部分25で連通される。圧縮機2の筐
体内部の冷媒ガス圧が冷却負荷に対応した蒸気圧
力になつて低下すれば、電動機1内の冷媒ガス圧
も低下することになり、回転子11の冷却に不都
合を来す圧力に到達すると、前記の冷媒制御負荷
動力センサー15、あるいは、回転子温度センサ
ー31の出力が調整器33に入力され、これによ
り制御弁34で冷媒は電動機1内部に送り込ま
れ、規定圧力に近い圧力に保持される。但し、こ
の場合は軸受部25を通しての連通現象が小さ
く、前記軸受部25を通して圧縮機2筐体内に回
転子11で発生した熱量が運び込まれることにな
るが、その大半は対流により電動機1の固定子枠
に運ばれ、これにより更に大気に放散される。従
つて、連通部となる軸受部を通して僅かな冷媒の
流入があつても差し支えない。
The refrigerant control valve 34 is controlled by control outputs corresponding to these inputs, and refrigerant is fed into the electric motor 1. In the case of this figure, the compressor 2 and the electric motor 1 are communicated through a bearing portion 25. If the refrigerant gas pressure inside the casing of the compressor 2 reaches the vapor pressure corresponding to the cooling load and decreases, the refrigerant gas pressure inside the motor 1 will also decrease, causing problems in cooling the rotor 11. When the pressure is reached, the output of the refrigerant control load power sensor 15 or the rotor temperature sensor 31 is input to the regulator 33, and the control valve 34 sends the refrigerant into the motor 1, so that the pressure is close to the specified pressure. held under pressure. However, in this case, the communication phenomenon through the bearing part 25 is small, and the amount of heat generated in the rotor 11 is carried into the compressor 2 housing through the bearing part 25, but most of it is caused by the fixation of the motor 1 due to convection. It is carried to the child frame, which further dissipates it into the atmosphere. Therefore, there is no problem even if a small amount of refrigerant flows in through the bearing section serving as the communication section.

この連通部26の詳細を第2図に示す。イ図は
接触型隔離機構の略図で35は軸3に取付けられ
て回転する摺動環、36は固定環で圧縮機2筐体
側に静止して取付けられ、前記摺動環35とにバ
ネ37で押圧される。それにより摺動環35と固
定環36の摺動面に両側の差圧に対して圧力を保
持させることができる。
The details of this communication portion 26 are shown in FIG. Figure A is a schematic diagram of a contact type isolation mechanism, where 35 is a sliding ring that is attached to the shaft 3 and rotates, 36 is a fixed ring that is stationary and attached to the housing of the compressor 2, and a spring 37 is attached to the sliding ring 35. Pressed by Thereby, pressure can be maintained on the sliding surfaces of the sliding ring 35 and the fixed ring 36 against the differential pressure on both sides.

従つて、回転子11を囲む冷媒ガスは回転子1
1で撹拌され、ガスの対流で固定子鉄心、固定子
枠を通して外部に放熱される。
Therefore, the refrigerant gas surrounding the rotor 11
1, and heat is radiated to the outside through the stator core and stator frame by gas convection.

この場合の隔離機構は冷媒を完全に密封させ遮
断を目的とした従来の開放型圧縮機の軸封装置と
はその趣を異にするものとなり、漏洩を許すと同
時に、運転中の故障の絶無、構造の単純化に重点
を置いた構造でなければならないものである。
The isolation mechanism in this case is different from the shaft sealing device of a conventional open compressor, which aims to completely seal and shut off the refrigerant, allowing leakage and at the same time ensuring that no failure occurs during operation. , the structure must focus on simplifying the structure.

従つて、運転中は電動機1内部の冷媒ガス圧力
は、前記センサー15,31及び調整器33、制
御弁34の制御系で制御されることになる。
Therefore, during operation, the refrigerant gas pressure inside the electric motor 1 is controlled by the control system including the sensors 15 and 31, the regulator 33, and the control valve 34.

ロ図は非接触型の隔離機構の一例でラビリンス
型の場合を示す。38は回転軸と静止部分との間
に僅かなすき間をおいたラビリンス型の軸封機構
で、軸受側にフインが設けられている。また回転
軸側にフインと膨張室とを交互に多数設けたラビ
リンス型としてもよい。このような機構とするこ
とにより摺動、摩擦面がないので、摩耗、損傷な
どの発生もなく、ラビリンス型特有の冷媒ガスの
漏洩があつても、圧縮機2筐体側への流れ込みと
なり、これが適量であれば却つて好ましい事にも
なる。この外に非接触型のねじ型軸封機構もあ
り、これを利用することもできる。何れの場合も
構造が簡単で、故障発生のないことが条件であ
る。
The figure below shows an example of a non-contact isolation mechanism, which is a labyrinth type. 38 is a labyrinth type shaft sealing mechanism with a slight gap between the rotating shaft and the stationary part, and fins are provided on the bearing side. It may also be a labyrinth type in which a large number of fins and expansion chambers are alternately provided on the rotating shaft side. With this mechanism, there are no sliding or friction surfaces, so there is no wear or damage, and even if there is a leak of refrigerant gas, which is unique to the labyrinth type, it will flow into the compressor 2 casing, and this will be prevented. In an appropriate amount, it can even be a good thing. In addition to this, there is also a non-contact type screw type shaft sealing mechanism, which can also be used. In either case, the structure must be simple and failure-free.

本発明は以上のように圧縮機と電動機とが一体
化された密封型電動圧縮機において、圧縮機と電
動機との境界に漏洩の許容される隔離機構を設
け、特に圧縮機側の負圧時に電動機の回転子の冷
却が行われにくくなつた場合に、回転子を囲む冷
媒ガスの圧力をこれに対応させるように制御する
もので、冷媒液がガスの強制循環により冷却を行
わせるものなく、回転子の異常温度上昇を防止
し、これで生ずる障害を除き、安定した運転を確
保することができるようにしたものである。
As described above, the present invention provides a sealed electric compressor in which a compressor and an electric motor are integrated, and is provided with an isolation mechanism that allows leakage at the boundary between the compressor and the electric motor, especially when negative pressure is applied on the compressor side. This system controls the pressure of the refrigerant gas that surrounds the rotor when it becomes difficult to cool the rotor of the motor, and the refrigerant liquid does not cool by forced gas circulation. This prevents abnormal temperature rises in the rotor, eliminates the troubles caused by this, and ensures stable operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は密封型電動圧縮装置の冷却系統の略
図、第2図はイは接触型隔離機構の略図、ロは非
接触型隔離機構の略図。 1:電動機、2:圧縮機、3:駆動軸、11:
回転子、15:負荷動力センサー、31:回転子
温度制御センサー、33:調整器、34:制御
弁、35:摺動環、36:固定環、38:ラビリ
ンス型軸封機構。
Fig. 1 is a schematic diagram of the cooling system of a sealed electric compressor, Fig. 2 is a schematic diagram of a contact type isolation mechanism, and b is a schematic diagram of a non-contact type isolation mechanism. 1: Electric motor, 2: Compressor, 3: Drive shaft, 11:
Rotor, 15: Load power sensor, 31: Rotor temperature control sensor, 33: Regulator, 34: Control valve, 35: Sliding ring, 36: Fixed ring, 38: Labyrinth type shaft sealing mechanism.

Claims (1)

【特許請求の範囲】 1 冷凍用圧縮機と電動機とが一体化して密封さ
れた電動圧縮装置において、前記圧縮機と電動機
との間に必要な差圧を保持させる機能と、前記電
動機の回転子を囲む冷媒ガス圧力を回転子の温度
上昇に対応するように制御させることを特徴とす
る密封型電動圧縮装置の冷却方法。 2 電動機の負荷で生ずる回転子の最大温度上昇
の許容値に回転子を囲む冷媒ガス圧力を設定でき
るようにしておくことを特徴とする特許請求範囲
第1項記載の密封型電動圧縮装置の冷却方法。 3 冷凍用圧縮機と電動機とが軸で結合される軸
受部分を境界とし、その両側において冷媒ガスの
差圧の保持を可能とする隔離機構を設けることを
特徴とする特許請求範囲第1項記載の密封型電動
圧縮装置の冷却方法。
[Scope of Claims] 1. An electric compression device in which a refrigeration compressor and an electric motor are integrated and sealed, including a function of maintaining a necessary differential pressure between the compressor and the electric motor, and a rotor of the electric motor. A method for cooling a sealed electric compressor, the method comprising: controlling the pressure of a refrigerant gas surrounding the rotor in response to a rise in temperature of the rotor. 2. Cooling of a sealed electric compression device according to claim 1, characterized in that the refrigerant gas pressure surrounding the rotor can be set to a permissible value for the maximum temperature rise of the rotor caused by the load of the electric motor. Method. 3. Claim 1, characterized in that the boundary is a bearing part where the refrigeration compressor and the electric motor are connected by a shaft, and an isolation mechanism is provided on both sides of the bearing part to maintain a differential pressure of the refrigerant gas. Cooling method for sealed electric compressor.
JP32553387A 1987-12-24 1987-12-24 Cooling method for enclosed motor compressor Granted JPH01167474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32553387A JPH01167474A (en) 1987-12-24 1987-12-24 Cooling method for enclosed motor compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32553387A JPH01167474A (en) 1987-12-24 1987-12-24 Cooling method for enclosed motor compressor

Publications (2)

Publication Number Publication Date
JPH01167474A JPH01167474A (en) 1989-07-03
JPH0421071B2 true JPH0421071B2 (en) 1992-04-08

Family

ID=18177939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32553387A Granted JPH01167474A (en) 1987-12-24 1987-12-24 Cooling method for enclosed motor compressor

Country Status (1)

Country Link
JP (1) JPH01167474A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193639A (en) * 2000-01-11 2001-07-17 Toyota Autom Loom Works Ltd Motor-driven swash plate compressor

Also Published As

Publication number Publication date
JPH01167474A (en) 1989-07-03

Similar Documents

Publication Publication Date Title
TWI638123B (en) Motor housing temperature control system
US5110264A (en) Variable speed turbo vacuum pump
US6415613B1 (en) Cryogenic cooling system with cooldown and normal modes of operation
KR20100058659A (en) Compressor assembly having electronics cooling system
US20100146990A1 (en) Thermoelectric cooler for compressor motor
JP2008190376A (en) Turbine unit for air cycle refrigerating machine
JPH02231218A (en) Cooling device for controller
US3838947A (en) Rotating electrical machine with evaporation cooling
US3643120A (en) Combined flexible and magnetic drive coupling
US5653125A (en) Compressor with isolated motor windings
WO2008015777A1 (en) Air cycle refrigerating machine turbine unit
WO2016121382A1 (en) Electric compressor and electronic component
KR101831113B1 (en) Inverter inside circulation type cooling apparatuse establish Turbo blower
JPH0421071B2 (en)
US3680984A (en) Compressor combined flexible and magnetic drive coupling
US2177827A (en) Refrigerating apparatus of the compression type
CA1292364C (en) Structure for motor-compressor units used with refrigerant fluids
US20020108389A1 (en) Generator with an axial air gap design for electrically powered trailer refrigeration unit
JPH06280771A (en) Cooling method for crow pole type electric motor
JP2003314705A (en) Sealing device utilizing magnetic fluid
JP4830848B2 (en) Electric compressor
KR890006992Y1 (en) System for cooling
US2454976A (en) Compressor load protector
JPS61160671A (en) Magnetic fluid sealing device
JPH0441154A (en) Cooling device for built-in motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees