JPH04210434A - Dezincification method for galvanized steel plate scrap - Google Patents

Dezincification method for galvanized steel plate scrap

Info

Publication number
JPH04210434A
JPH04210434A JP2401068A JP40106890A JPH04210434A JP H04210434 A JPH04210434 A JP H04210434A JP 2401068 A JP2401068 A JP 2401068A JP 40106890 A JP40106890 A JP 40106890A JP H04210434 A JPH04210434 A JP H04210434A
Authority
JP
Japan
Prior art keywords
zinc
steel sheet
galvanized steel
sulfuric acid
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2401068A
Other languages
Japanese (ja)
Inventor
Masaru Meguro
目黒勝
Norio Kawamura
河村典雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2401068A priority Critical patent/JPH04210434A/en
Publication of JPH04210434A publication Critical patent/JPH04210434A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover steel scrap free from zinc by crushing scraped galvanized steel plate into splinters having curved surface and after dissolving zinc with sulfuric acid, washing and cleaning them successively. CONSTITUTION:The scrap of galvanized steel plate is cut into small pieces having curved surface by the shredder 1. A part of zinc peeled off are separated from zinc adhered splinters by magnetic separator. The splinters adhered with zinc are charged into extraction tank 4, where add sulfuric acid to dissolve adhered zinc. The splinters are contacted with sulfuric acid as full as possible without overlaying by the presence of their curved surfaces and zinc is dissolved completely and sent to stopping tank 5 and after retained in a short time, charged into washing tank 6 and added with hot water to clean the outer surface of splinters completely and then separated from the hot water and dried naturally by the sensible heat, and recycled as high purity steel splinters free from zinc. Sulfuric acid solution incorporating extracted zinc is sent to the adding tank 8 where zinc dust is added and its pH is adjusted, then transferred into oxidation and neutralization tank 9 where hydrogen peroxide is added to oxidize ferrous ion into ferric ion then CaCO3 is added to precipitate Fe ion as ferric hydroxide. Finally, the surfuric acid containing zink is executes electrolyzed in the ZnSO4 electrolysis bath 11 and recovered on the cathod as electrolytic zinc.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、亜鉛鍍金鋼板屑から亜
鉛を取り除き、高品位の鋼屑とし鋳鉄等の鉄源とする、
鉄源回収方法に関するものである。 [0002] 【従来の技術】近年、自動車の外装板の防錆が強化され
、車体を構成する鋼板のほとんどに亜鉛鍍金を施した鋼
板が使用されるようになってきた。付随して、亜鉛鍍金
を施した鋼板屑の発生量も多く、そのリサイクルに当た
って鍍金亜鉛が大きな問題となっている。即ち、亜鉛鍍
金鋼板屑は原板の鋼板が非常に高純度であることから鋳
鉄用の鋼屑として使用されることが多い。 [0003]Lかし、その溶解にあたって低周波溶解炉
に於いては亜鉛華が多量に発生し、労働衛生上大きな問
題となる。さらには低周波炉壁に亜鉛が浸透、コイルに
析出、短絡させ、コイル損傷事故を発生させると共に炉
壁の寿命を著しく低下させる問題もある。 [0004]また、キュポラ溶解に於いては熱交換器に
付着し、その性能を著しく低下させるとともに極端な場
合その機能をまったく失わせることもある。また亜鉛を
含む多量のダストを発生し、集塵機の濾布の目詰まりト
ラブルの原因となるとともに集塵ダストの処理が大きな
問題となっている。 [00051Lかるに亜鉛鍍金銅版の卯版は、[1n述
のように深絞り性向上のため純鉄に近い高純度、高・^
4度の鋼であり、鋳鉄用の鋼屑としては最高級である。 ところが以上述へたような溶解時の亜鉛の問題が解決し
ないため、低級鋼屑の評価を受け、電気炉製鋼用鋼屑と
して用いられることが多くなっており、鉄資源的にも大
きな問題となっている。このような理由から、溶解に先
だっで亜鉛鍍金鋼板屑から亜鉛を取り除く技術か鋳鉄鋳
物業界はもちろんのこと亜鉛という有用金属回収の面か
らも望まれていた。 [00061亜鉛鍍金鋼板屑から亜鉛を取り除く方法と
しては、例えば特開昭6:3−96224号に述べられ
ているように、亜鉛鍍金鋼板屑を700℃から900℃
に加熱し、鍍金亜鉛を鉄との金属間化合物とし、ショツ
トブラストをかけることにより原板との物性の違いを利
用して剥離除去する方法が提案されているが、拡散した
亜鉛が一部原板に合金化して残留し、完全には除去でき
ないという欠点がある。また亜鉛と合金した鉄と一部酸
化した鉄が剥離することになるため鉄歩留まりも低くな
る。さらにはショク1−ブラストにより剥離回収された
亜鉛と鉄を主成分としたダスト処理の問題も依然として
残る。現状では金属酸化物を含むダスト処理には多大の
費用を必要とする。 [0007]また、特願昭55−160754号に述べ
られているように、溶解炉の上方に亜鉛鍍金鋼板屑を保
持し、炉の排熱を利用して亜鉛を蒸発回収するとともに
鋼屑の予熱に利用する方法が提案されている。しかしこ
の方法でも前述の方法と同じように、鍍金亜鉛を蒸留さ
せるためには温度を1100℃程度に保つ必要があり、
地鉄酸化による鉄歩留の低下を来し、回収した亜鉛ダス
トの処理にも問題かのこる。 [0008]さらには、アルカリ溶液中に於いて亜鉛鍍
金鋼板屑を電解し、亜鉛を回収する方法が提案されてい
る。この方法では有用な亜鉛を直接回収できるという利
点があるが、処理時間が著しく長く、大量の鋼屑を短時
間に処理出来ないという大きな欠点が存在する。 [0009]
[Industrial Application Field] The present invention removes zinc from galvanized steel sheet scrap to produce high-grade steel scrap as an iron source for cast iron and the like.
This relates to a method for recovering iron sources. [0002] In recent years, the rust prevention of automobile exterior panels has been strengthened, and galvanized steel plates have come to be used for most of the steel plates constituting the vehicle body. Concomitantly, a large amount of zinc-plated steel sheet scrap is generated, and zinc-plating has become a major problem in recycling. That is, galvanized steel sheet scrap is often used as steel scrap for cast iron because the original steel sheet has a very high purity. [0003] During the melting of L oak, a large amount of zinc white is generated in a low frequency melting furnace, which poses a major problem in terms of occupational health. Furthermore, there is the problem that zinc penetrates into the wall of the low-frequency furnace, deposits on the coil, causes a short circuit, causes damage to the coil, and significantly shortens the life of the furnace wall. [0004] Also, in cupola melting, it adheres to the heat exchanger, significantly reducing its performance and, in extreme cases, causing it to lose its function altogether. In addition, a large amount of dust containing zinc is generated, which causes clogging of the filter cloth of the dust collector, and the disposal of the collected dust has become a major problem. [00051L Karuni zinc-plated copper plate has a high purity and high purity close to pure iron to improve deep drawability as described in [1n]
It is a 4 degree steel and is the highest grade steel scrap for cast iron. However, since the problem of zinc during melting as mentioned above has not been resolved, it has been evaluated as low-grade steel scrap and is increasingly used as steel scrap for electric furnace steelmaking, which has become a major problem in terms of iron resources. It has become. For these reasons, a technology for removing zinc from galvanized steel sheet waste prior to melting has been desired not only from the iron casting industry but also from the perspective of recovering the useful metal called zinc. [00061 As a method for removing zinc from galvanized steel sheet scraps, for example, as described in JP-A-6:3-96224, zinc-coated steel sheet scraps are heated at 700 to 900°C.
A method has been proposed in which the plated zinc is heated to an intermetallic compound with iron and then shot blasted to take advantage of the difference in physical properties from the original plate to peel it off. It has the disadvantage that it remains alloyed and cannot be completely removed. Furthermore, iron alloyed with zinc and partially oxidized iron are separated, resulting in a lower iron yield. Furthermore, there still remains the problem of processing dust mainly composed of zinc and iron, which has been peeled off and recovered by blasting. At present, processing of dust containing metal oxides requires a large amount of cost. [0007] Furthermore, as described in Japanese Patent Application No. 55-160754, galvanized steel sheet scraps are held above the melting furnace, and the exhaust heat of the furnace is used to evaporate and recover the zinc, as well as to remove the steel scraps. A method of using it for preheating has been proposed. However, in this method as well as the above-mentioned method, it is necessary to maintain the temperature at around 1100°C in order to distill the plated zinc.
Iron yield decreases due to oxidation of the base metal, and there may be problems in processing the recovered zinc dust. [0008] Furthermore, a method has been proposed in which zinc-plated steel sheet scrap is electrolyzed in an alkaline solution to recover zinc. This method has the advantage that useful zinc can be recovered directly, but has the major disadvantage that the processing time is extremely long and a large amount of steel scrap cannot be processed in a short period of time. [0009]

【発明が解決しようとする課題】本発明は、(1)亜鉛
鍍金鋼板屑を所定の曲面をもって細分化する第一工程と
、該曲面付細分化した亜鉛鍍金鋼板屑の亜鉛を硫酸を用
いて抽出する第二工程と、第二工程で亜鉛を除いた脱亜
鉛鋼板屑表面の硫酸の反応を清水で停止する第三工程と
、第三工程で反応を停止した脱亜鉛鋼板屑を水で洗浄す
る第四工程と、第四工程で洗浄した脱亜鉛鋼板屑を乾燥
する第五工程と、第二工程で亜鉛を抽出した硫酸溶液に
亜鉛末を添加して余剰遊離酸を中和する第六工程と、第
六工程で得た亜鉛抽出溶液に酸化剤を添加し、溶解鉄イ
オンを2価から3価とし、その後石灰水を添加し、溶解
している3価鉄イオンを沈殿、濾過する第七工程と、第
七工程で鉄分を取り除いた抽出液から亜鉛を′電解して
回収する第八工程とからなることを特徴とする亜鉛鍍金
鋼板屑の脱亜鉛方法であり、(2)上記第−工程におい
て、鋼板層を5cmX5cm以下、嵩密度1. 5 t
/m”以下にシュレッダすることを特徴とする前記(1
)項の亜鉛鍍金鋼板屑の脱亜鉛方法、 に3)上記第二工程において、亜鉛抽出終了時の硫酸溶
液にシュレッダ集塵亜鉛末を投入し、余剰の遊離酸を中
和することを特徴とする前記(1)項または(2)項の
亜鉛鍍金鋼板屑の脱亜鉛方法、 (4)上記第四工程において洗浄用の水の温度を60℃
〜100℃の熱湯とすることを特徴とする前記(1)項
、(2)頃または(3)項の亜鉛鍍金鋼板屑の脱亜鉛方
法。 である。 [00103以下、本発明を具体的に説明する。 [00111図1に本発明の脱亜鉛プロセス工程概要図
を示す。 [0012]以下本発明の各工程について説明生る。 [)013]第−工程は亜鉛鍍金鋼板屑から鍍金された
亜鉛を抽出容易なサイズに裁断する工程である。亜鉛鍍
金鋼板屑の寸法、形状は不同であり、著しく大きいもの
から小さいもの、曲がったもの平板のものまで種々にわ
たり、そのままでは抽出作業、効率を阻害する。 [00141したがって後述する鍍金された亜鉛の抽出
効率を高くかつ安定化させるためには、所定の寸法、形
状、嵩密度とすることが好ましいことを見出した。これ
を達成する手段は裁断することであり、これにはシュレ
ッダよるのがよい。即ち、シュレッダにより裁断すると
亜鉛鍍金鋼成層が適当な曲率をもって細分される。一般
的な裁断では亜鉛鍍金鋼板屑は平板で互いに密着しやす
く、重なり合った面の抽出は抽出液を撹拌あるいは鋼板
層を揺動させても抽出に長時間を必要とする。シュレッ
ダすることにより、鋼板層が細分されると同時に適度な
湾曲を持つので、密着し難くなり、次工程での抽出が著
しく効率化される。 [0015]ただし、あまりにシュレッダで丸め過ぎる
と抽出液が侵入し難く亜鉛の抽出困難になるとともに第
五上程で乾燥時に水分が残留し、溶解時に爆発する等の
問題が発生する恐れがある。したがって図2に示したよ
うに、その寸法が5cmX5cm以下、嵩密度1.5t
/m3 以下となるようにシュレッダすると、硫酸によ
り亜鉛を完全に抽出できることを確認した。すなわちこ
の範囲を越えた場合、例えば細分化寸法が大きい場合は
、面の重なり合う部分の割合が増し、その部分の抽出が
妨げられる。また、丸めすぎて嵩密度を上げすぎた場合
、袋状になった部分の亜鉛の抽出が困難になる。 [00161第二工程は曲面付細分化した亜鉛鍍金鋼板
屑の亜鉛を硫酸を用いて抽出する工程である。 [001,7]抽出した亜鉛を電解により回収する場合
、抽出液の亜鉛濃度が高いほど好ましい。したがってよ
り硫酸濃度の高い抽出液で抽出処理するのが好ましい。 当然、硫酸濃度が高いほど抽出速度は大きくなるが、硫
酸濃度と当量Znのバランスが取れないと、その分地鉄
の溶解量が増加するという問題が発生する。 [00181本発明の第一工程で処理した曲面付細分化
した亜鉛鍍金鋼成層はその量管理が可能な性状となって
いるので、所定量の亜鉛鍍金鋼板屑を分割投入すること
で、硫酸濃度と当量Znを含む鋼板屑量をバランスする
ことができ、地鉄の溶解を最小とすることができる。 [00191図3は、寸法的5X5Cm、嵩密度1.0
t/m3 に曲面付細分化した亜鉛鍍金鋼板屑を溶媒量
:2m3、液温:常温、撹拌:無しで抽出用鋼屑量:2
tの抽出条件のもとての遊離硫酸濃度と抽出終了時間の
関係である。これより、好ましい硫酸の濃度は遊離硫酸
濃度が浸漬した鋼板層の抽出亜鉛量に当量の遊離硫酸量
の5〜1.25倍であれば良い。これ以上の硫酸濃度で
は抽出速度の向上は期待できず、むしろ鋼板層の地鉄の
溶解の危険が大きくなる。また亜鉛と硫酸が当量関係に
近づくにつわ抽出速度は低下する。したがって実用的な
抽出速度を維持するためには抽出すべきZn量に当量の
硫酸量の1゜25倍以上とすることが好ましい。 [0020]したがってこの範囲の濃度硫酸溶液に溶媒
量に浸漬可能な最大量の亜鉛鍍金鋼板屑を分割投入し、
最終投入量のみ遊離硫酸量が亜鉛当量の1.25倍以上
になるように調整すれば地鉄の溶損が小さく、しかも抽
出速度を大きく維持できる。すなわち遊離酸濃度の高い
状態で新しい抽出液に交換することは抽出速度は大きく
なるが後述する第六工程において遊離酸の中和のための
亜鉛末添加量が多くなる。とはいえ、遊離酸の低い状態
で抽出を続けることは抽出時間が長くなり、生産能力を
維持するためには多くの抽出槽が必要となり設備費が大
きなものとなる。したがって最終抽出時には鋼板層中の
Znを完全に除去するために投入鋼板屑量はその抽出亜
鉛量に当量の硫酸のやや過剰の硫酸、好ましくは先に示
した1、25倍になるよう管理することが好ましい。 [00211Lかしこのような抽出法をとっても第六工
程で中和用の石灰が多量に必要になる。この問題を解決
するために、抽出終了時の硫酸溶液に金属亜鉛末を投入
し、遊離酸を中和することである。この亜鉛末としては
本発明の一つの態様は、第一工程での細分化処理時に剥
離した亜鉛ダストが使用する。これにより廃棄物である
集塵ダストが処分できるとともに中和用石灰の節約が可
能となったのである。この比較的高濃度の硫酸による抽
出と遊離酸の亜鉛末による中和により、この方法の処理
速度は飛躍的に高まったのである。また亜鉛の抽出率は
99.0%以上、鉄の溶出率は0.4%以下で極僅かで
あり、鉄歩留も高いのである。 [00221本工程では、曲面付細分化した亜鉛鍍金鋼
板屑といえども互いに接触している部分の亜鉛の硫酸抽
出は殆ど進行しない。したがって上記亜鉛鍍金鋼板屑を
撹拌してやる必要があるが、この撹拌は例えば圧空を吹
き込む程度の撹拌で抽出が完全に行なわれる。これは第
一工程で鋼板層を所定の寸法と適当な曲率を持った状態
にシュレッダする事により可能となるのである。また空
気をこの工程で使用することにより一部2#J鉄イオン
が酸化し3価鉄イオンになるという付随的な効果が認め
られる。 [0023N第三工程は亜鉛抽出の終えた脱亜鉛鋼板肩
上に付着している硫酸の反応を停止工程である。この停
止工程を入れることにより、地鉄の過剰な溶解を防止す
ると共に次工程の洗浄用の清水を著しく節約できる。即
ち、この工程で少量の硫酸は洗い流され次工程への持ち
込まれる硫酸は格段に減少するからである。本工程でも
圧空を吹き込むことにより停止の効果は促進されるので
ある。 [0024]第四工程は脱亜鉛鋼板層の水による洗浄の
工程である。本発明の他の態様は、脱亜鉛鋼板層を約6
0〜100℃の熱湯により洗浄することにより、硫酸亜
鉛等の洗浄はより完全になるとともに、次工程の乾燥工
程に有効に働くことを見いだした。即ち、脱亜鉛された
鋼板層の表面は非常に活性で錆易いが第五工程の乾燥工
程では、水切りを行なう程度の設備で乾燥し、表面が錆
びることは無いのである。これにより鋳鉄用鉄源として
スラグの増加、更にはSt、Mn等の有用成分の酸化に
よる消耗をきたす錆の発生を大幅に抑制可能となるので
ある。本工程では水の昇温には蒸気が好ましい。蒸気を
吹き込むことにより、昇温と撹拌が同時に行えるからで
ある。 [0025)第五工程は乾燥の工程である。本工程は第
四工程と密接に関係し、第四工程から第五工程に移る際
、水切りを十分しておけば付着した水分は自己の保有熱
と鋼板層の保有熱により直ちに蒸発するので、僅かな冷
風等による補助乾燥で十分である。この工程は置き場の
排水が完全であれば脱亜鉛鋼板層の製品置き場を兼ねる
ことも可能である。 [0026]第六工程から第八工程は抽出した亜鉛を金
属亜鉛として回収し、しかも抽出液である硫酸を再生、
再使用するための工程である。 [0027]第六工程では第二工程でもふれたように過
剰の遊離酸を中和する工程である。遊離酸が少ない抽出
液では亜鉛の溶解速度は著しく低下する。したがってこ
のような抽出液に亜鉛鋼板層を浸漬することは亜鉛の除
去が不十分になり、鋳鉄用鉄源としての価値が低下する
と共に抽出に時間を必要とし、本発明の経済性を損なう
。この問題を解決するため第二工程で述べたような抽出
法をとるが、そのためには中和用の石灰量が増加する。 [0028]この問題を解決するためシュレッダ時に剥
離、集塵された金属亜鉛末を添加中和することを前述し
た。推鉛末は微粉のため遊離酸が少ない状態でも溶解速
度が大きく、また反応槽を設けることにより過剰に添加
し−Cも後の工程に問題を発生し2ないのである。これ
により中和用石灰量の節約と抽出工程の処理時間の短縮
がはかれるとともに本来処理に困る集塵粉の有効利用を
はかることが可能となった7、 [0029]第七工程は、亜鉛の抽出時に溶は込んでき
た鉄分あるいは複合鍍金鋼板層等からまぎれこんでくる
Cr、Ni等が亜鉛の電解に有害であるため、これらを
除く工程である。このとき2価の鉄イオンはpH調整で
完全に沈殿、分離し難いので酸化剤で酸化してやる必要
がある。酸化剤としてはH202、KMnOn等を適宜
用いればよい。 [00301酸化の終了した溶液に石灰粉末等を投入p
H5程度に調整し、F’ e  (OH) 3およびC
r (○■1)3を沈殿分離する。 [00311第八工程は第七工程で得た飽和硫酸亜鉛溶
液から電解により、金属亜鉛を回収する工程である。p
H調整の後、電解され、陰極には金属亜鉛が回収され、
溶解後亜鉛地金として使用される。また亜鉛濃度の低下
した電解液は再度亜鉛抽出用溶媒として再使用される。 [0032]以上八工程により、予め亜鉛鍍金鋼板肩上
の亜鉛は回収、有効利用され、脱亜鉛鋼板層も鉄源とし
て溶解炉の種類を問わず問題なく使用できるのである。 勿論本発明では抽出工程以降の抽出溶液の処理について
は、条件によっては既成の電気亜鉛鍍金の廃液を処理す
る方法、即ちpHを調整しFe、Znを沈殿分離し廃棄
物として処分する方法をとっても実施可能である。 [0033]次に本発明を実施例に基づき説明する。 [0034]
[Problems to be Solved by the Invention] The present invention comprises (1) a first step of dividing galvanized steel sheet scrap into pieces with predetermined curved surfaces; The second step is extraction, the third step is to stop the reaction of sulfuric acid on the surface of the dezincified steel sheet scraps from which zinc has been removed in the second step, and the dezincified steel sheet scraps that have stopped the reaction in the third step are washed with water. A fourth step is to dry the dezincified steel sheet scraps washed in the fourth step, and a sixth step is to neutralize excess free acid by adding zinc powder to the sulfuric acid solution from which zinc was extracted in the second step. An oxidizing agent is added to the zinc extraction solution obtained in the sixth step to change the dissolved iron ions from divalent to trivalent, and then lime water is added to precipitate and filter the dissolved trivalent iron ions. A method for dezincing galvanized steel sheet scrap, characterized in that it consists of a seventh step and an eighth step of electrolytically recovering zinc from the extract from which iron has been removed in the seventh step, and (2) the method described above. In the -th step, the steel plate layer is 5cm x 5cm or less and has a bulk density of 1. 5t
The above-mentioned (1
) The method for dezincing galvanized steel sheet scrap as described in item 3), characterized in that in the second step, shredder dust collected zinc powder is added to the sulfuric acid solution at the end of zinc extraction to neutralize excess free acid. (4) In the fourth step, the temperature of the washing water is set to 60°C.
The method for dezincing galvanized steel sheet scrap according to the above item (1), (2) or (3), characterized in that hot water is used at ~100°C. It is. [00103 Hereinafter, the present invention will be specifically explained. [00111 FIG. 1 shows a schematic diagram of the dezincing process steps of the present invention. [0012] Each step of the present invention will be explained below. [)013] The -th step is a step of cutting galvanized zinc from galvanized steel sheet scrap into a size that can be easily extracted. The size and shape of galvanized steel sheet waste vary, ranging from extremely large to small, curved and flat plates, and if left as is, it will impede extraction work and efficiency. [00141] Therefore, it has been found that in order to increase and stabilize the extraction efficiency of plated zinc, which will be described later, it is preferable to have a predetermined size, shape, and bulk density. The means to accomplish this is to shred it, preferably with a shredder. That is, when cut with a shredder, the galvanized steel layer is subdivided with an appropriate curvature. In general cutting, galvanized steel sheet scraps are flat plates that tend to stick together, and extraction of overlapping surfaces requires a long time even if the extraction solution is stirred or the steel sheet layers are shaken. By shredding, the steel sheet layer is subdivided and at the same time has an appropriate curvature, which makes it difficult for them to stick together, making the extraction in the next process much more efficient. [0015] However, if the shredder is used to roll it too much, it will be difficult for the extract liquid to penetrate, making it difficult to extract zinc, and there is a risk that moisture will remain during drying in the fifth stage, causing problems such as explosion during dissolution. Therefore, as shown in Figure 2, its dimensions are 5 cm x 5 cm or less, and the bulk density is 1.5 tons.
It was confirmed that zinc can be completely extracted with sulfuric acid when shredded to a value of /m3 or less. That is, when this range is exceeded, for example when the subdivision size is large, the proportion of the overlapping parts of the surfaces increases and extraction of that part is hindered. Furthermore, if the bulk density is increased too much by rounding the material too much, it becomes difficult to extract zinc from the bag-shaped portion. [00161 The second step is a step of extracting zinc from the curved finely divided galvanized steel sheet scrap using sulfuric acid. [001,7] When recovering extracted zinc by electrolysis, it is preferable that the zinc concentration of the extract is higher. Therefore, it is preferable to perform the extraction treatment with an extract having a higher sulfuric acid concentration. Naturally, the higher the sulfuric acid concentration, the higher the extraction rate, but if the sulfuric acid concentration and equivalent Zn cannot be balanced, a problem arises in that the amount of dissolved iron base increases accordingly. [00181 Since the curved and finely divided galvanized steel stratification treated in the first step of the present invention has a property that allows its quantity to be controlled, the sulfuric acid concentration can be controlled by dividing and feeding a predetermined amount of galvanized steel sheet scrap. It is possible to balance the amount of steel plate scrap containing the equivalent amount of Zn, and the melting of the base metal can be minimized. [00191 Figure 3 shows dimensions of 5 x 5 cm, bulk density of 1.0
Amount of steel scraps for extraction: 2 m3 of galvanized steel sheet scraps with a curved surface of t/m3, solvent volume: 2 m3, liquid temperature: room temperature, stirring: none.
This is the relationship between the free sulfuric acid concentration under the extraction conditions of t and the extraction completion time. From this, the preferable concentration of sulfuric acid is such that the concentration of free sulfuric acid is 5 to 1.25 times the amount of free sulfuric acid equivalent to the amount of extracted zinc in the immersed steel sheet layer. If the sulfuric acid concentration is higher than this, no improvement in the extraction rate can be expected, and the risk of dissolution of the base iron in the steel sheet layer increases. Furthermore, as zinc and sulfuric acid approach an equivalence relationship, the extraction rate decreases. Therefore, in order to maintain a practical extraction rate, it is preferred that the amount of sulfuric acid be 1.25 times or more the amount of sulfuric acid equivalent to the amount of Zn to be extracted. [0020] Therefore, the maximum amount of galvanized steel sheet scrap that can be immersed in the solvent amount is divided into a sulfuric acid solution with a concentration in this range,
If only the final input amount is adjusted so that the amount of free sulfuric acid is 1.25 times or more the zinc equivalent, the erosion loss of the steel base is small and the extraction rate can be maintained at a high level. In other words, replacing the extract with a fresh one while the free acid concentration is high increases the extraction rate, but increases the amount of zinc powder added to neutralize the free acid in the sixth step described below. However, continuing extraction in a state where the free acid content is low increases the extraction time, and in order to maintain production capacity, many extraction tanks are required, which increases equipment costs. Therefore, during the final extraction, in order to completely remove Zn from the steel sheet layer, the amount of steel sheet scraps input should be controlled so that the amount of sulfuric acid slightly exceeds the amount of sulfuric acid equivalent to the amount of extracted zinc, preferably 1.25 times the amount shown above. It is preferable. [00211L However, even if such an extraction method is used, a large amount of lime for neutralization is required in the sixth step. In order to solve this problem, metal zinc powder is added to the sulfuric acid solution at the end of the extraction to neutralize the free acid. In one embodiment of the present invention, zinc dust exfoliated during the fragmentation treatment in the first step is used as the zinc dust. This made it possible to dispose of the waste collected dust and save on lime for neutralization. Extraction with relatively high concentrations of sulfuric acid and neutralization of the free acid with zinc dust dramatically increased the processing speed of this method. Furthermore, the extraction rate of zinc is 99.0% or more, the elution rate of iron is very small at 0.4% or less, and the iron yield is high. [00221 In this process, even if the curved surfaced finely divided galvanized steel sheet scraps are in contact with each other, extraction of zinc with sulfuric acid hardly progresses. Therefore, it is necessary to stir the above-mentioned zinc-plated steel sheet scraps, but this stirring can be carried out to the extent that, for example, compressed air is blown into the scraps to completely extract the scraps. This is made possible by shredding the steel plate layer to a predetermined size and appropriate curvature in the first step. Further, by using air in this step, an incidental effect is observed in which some 2#J iron ions are oxidized to become trivalent iron ions. [0023N The third step is a step to stop the reaction of sulfuric acid adhering to the shoulder of the dezincified steel sheet after zinc extraction. By including this stopping step, it is possible to prevent excessive melting of the base metal and to significantly save clean water for washing in the next step. That is, a small amount of sulfuric acid is washed away in this step, and the amount of sulfuric acid carried into the next step is significantly reduced. In this step as well, the effect of stopping is promoted by blowing in compressed air. [0024] The fourth step is a step of washing the dezincified steel sheet layer with water. Another aspect of the invention provides a layer of dezincified steel of about 6
It has been found that by washing with hot water at 0 to 100°C, zinc sulfate, etc. can be washed more completely, and it works effectively in the next drying process. That is, the surface of the dezinced steel sheet layer is very active and easily rusts, but in the fifth drying step, it is dried using equipment that only drains water, and the surface does not rust. This makes it possible to significantly suppress the increase in slag as an iron source for cast iron, as well as the occurrence of rust, which causes depletion of useful components such as St and Mn due to oxidation. In this step, steam is preferably used to raise the temperature of the water. This is because by blowing in steam, heating and stirring can be performed simultaneously. [0025] The fifth step is a drying step. This step is closely related to the fourth step, and when moving from the fourth step to the fifth step, if the water is drained sufficiently, the attached moisture will immediately evaporate due to its own heat and the heat held by the steel plate layer. Auxiliary drying using a small amount of cold air is sufficient. In this process, if the storage area is completely drained, it can also be used as a product storage area for the dezincified steel sheet layer. [0026] The sixth to eighth steps recover the extracted zinc as metallic zinc, and regenerate the sulfuric acid that is the extract liquid.
This is a process for reuse. [0027] The sixth step is a step of neutralizing excess free acid, as mentioned in the second step. In extracts with low free acid content, the dissolution rate of zinc is significantly reduced. Therefore, immersing a galvanized steel sheet layer in such an extraction solution will result in insufficient removal of zinc, reducing its value as an iron source for cast iron, and requiring time for extraction, impairing the economic efficiency of the present invention. To solve this problem, the extraction method described in the second step is used, but this requires an increase in the amount of lime for neutralization. [0028] In order to solve this problem, as described above, the metal zinc powder exfoliated and collected during shredding is added to neutralize it. Since the lead powder is a fine powder, its dissolution rate is high even in a state where there is little free acid, and by providing a reaction tank, excessive addition of -C does not cause problems in subsequent steps. As a result, it is possible to save the amount of lime for neutralization and shorten the processing time of the extraction process, as well as to make effective use of collected dust, which is otherwise difficult to dispose of.7 [0029] The seventh step is This is a step to remove iron that has entered the melt during extraction or Cr, Ni, etc. that have entered the composite plated steel sheet layer, etc., as these are harmful to zinc electrolysis. At this time, divalent iron ions are difficult to completely precipitate and separate by adjusting the pH, so it is necessary to oxidize them with an oxidizing agent. As the oxidizing agent, H202, KMnOn, etc. may be used as appropriate. [00301 Add lime powder etc. to the solution after oxidation p
Adjust to about H5, F' e (OH) 3 and C
r (○■1) 3 is precipitated and separated. [00311 The eighth step is a step of recovering metallic zinc from the saturated zinc sulfate solution obtained in the seventh step by electrolysis. p
After H adjustment, it is electrolyzed and metal zinc is recovered at the cathode.
After melting, it is used as zinc ingot. In addition, the electrolytic solution with a reduced zinc concentration is reused as a zinc extraction solvent. [0032] Through the above eight steps, the zinc on the shoulder of the galvanized steel sheet is recovered and effectively used, and the dezincified steel sheet layer can also be used as an iron source without any problem regardless of the type of melting furnace. Of course, in the present invention, as for the treatment of the extraction solution after the extraction step, depending on the conditions, a method of treating the waste liquid of existing electrolytic galvanizing, that is, a method of adjusting the pH, precipitating and separating Fe and Zn, and disposing it as waste may be used. It is possible to implement. [0033] Next, the present invention will be explained based on examples. [0034]

【実施例】実施例〜1 図4は本発明の一実施態様を示した工程概要図である。 [0035]1はシュレッダ、2はシュレッダした亜鉛
鍍金鋼板層置場、3は亜鉛ダスト置場、4は抽出槽、5
は停止槽、6は洗浄槽、7は乾燥場、8は亜鉛末添加槽
、9は酸化及び中和槽、]0は沈殿槽、]1は電解槽で
ある。 [0036]本発明で100tの亜鉛鍍金鋼板屑を処理
する場合について説明する。亜鉛鍍金鋼板屑は0.9m
m厚で平均目付は量45g/rn2 (片面)の亜鉛が
鍍金されている。先ず亜鉛鍍金鋼板のプレス屑をシュレ
ッダにかける。これにより鋼板層は嵩比重0. 8 t
/rn3から]、 、  Ot 7m3 の好ましい曲
率を持った鋼屑に裁断される。ここで鍍金亜鉛の一部は
剥落するが、これは磁選機あるいは風選機により分離さ
れ亜鉛ダストとして後はど金属亜鉛末添加槽で抽出液中
に添加、中和に利用される。ついで鋼屑はマグネットク
レーンで抽出槽に投入される。2t/パケツトである。 抽出槽では200g/lの硫酸および35g/Iの亜鉛
を含む溶液2m’で液温36℃から39℃で亜鉛が抽出
される。約5分から10分で抽出は終了するが、この間
抽出槽下部に設けられたノズルより空気が吹き込まれ抽
出液の撹拌が行なわれる。抽出の終了した鋼屑はパケッ
トの反転により停止槽に投入さtする。停止槽では極短
時間滞留した後直ちに洗浄槽に投入される。この間数分
である。洗浄槽ではi 00℃の熱湯で約1,0分洗浄
する。二の場合に洗浄槽に蒸気を吹き込み昇温する。そ
の後へケ・ソ1への反転により乾燥場に移動する。乾燥
場は床が水切り用のすのことなっており、余剰の水は落
下する。また付着水は自己の保有熱と鋼屑の保有熱によ
り蒸発、乾燥し鋼屑は錆びない。 脱亜鉛された鋼屑は鋳鉄用高級鉄源として使用される。 [0037]−・方、抽出液は亜鉛の抽出速度が順次低
下するので、処理時間が20分位必要になったところで
Zn添加槽に導かれ亜鉛ダス1へを添加し、pH4程度
に調整し、中和槽に送らねる。この工程は抽出液の遊離
酌量を測定し、その凰で管理する方が好ましい。その後
抽出槽には電解尾液である新しい硫酸溶液が注入される
。中和槽の亜鉛抽出液にはまず35%H202が添加さ
れ、鉄イオンを21′ifI′iから3価に酸化する。 ト■202は完全無害で効果も大きいので使用された。 ついでCa、 C03粉を投入、pH5に調整され、鉄
イオンはF e (OH) 3として沈殿層で分離する
。鉄スラツジは乾燥後製鉄原料として使用される。 [0038]この処理で得た飽和ZnSO4溶液は貯留
槽に一時貯留される。この槽で設備の抽出能力と電解能
力の調整を行なう。電解槽において浴電圧3.5〜3゜
6V、陰極板AI、陽極板Pbを用い、両極間隔50m
m、電流密度1000 A/m”で電解される。電解液
の亜鉛量が35g/l以下になった電解液は電解槽から
抜かれ、貯留槽に貯留され、再度抽出液として使用され
る。 [0039]以上のように、100tの亜鉛鍍金鋼板質
を処理した結果は表1の通りである。処理時間、鉄歩留
、脱亜鉛率、亜鉛回収率とも従来法に比較して非常に優
れていることが分かる。 [00401
EXAMPLES Example 1 FIG. 4 is a process outline diagram showing one embodiment of the present invention. [0035] 1 is a shredder, 2 is a shredded galvanized steel plate layer storage area, 3 is a zinc dust storage area, 4 is an extraction tank, 5
is a stop tank, 6 is a cleaning tank, 7 is a drying field, 8 is a zinc dust addition tank, 9 is an oxidation and neutralization tank, ] 0 is a precipitation tank, ] 1 is an electrolytic tank. [0036] A case will be described in which 100 tons of galvanized steel sheet scraps are processed according to the present invention. Galvanized steel sheet scrap is 0.9m
It is plated with zinc with a thickness of m and an average basis weight of 45 g/rn2 (one side). First, press waste from galvanized steel sheets is shredded. As a result, the steel plate layer has a bulk specific gravity of 0. 8t
/rn3], , is cut into steel scraps with a preferred curvature of Ot 7m3. At this point, some of the plated zinc flakes off, but this is separated by a magnetic separator or air separator and is turned into zinc dust, which is then added to the extract in a metal zinc dust addition tank and used for neutralization. The steel scraps are then loaded into the extraction tank using a magnetic crane. 2t/packet. In the extraction tank, zinc is extracted with 2 m' of a solution containing 200 g/l sulfuric acid and 35 g/I zinc at a liquid temperature of 36°C to 39°C. The extraction is completed in about 5 to 10 minutes, during which time air is blown through a nozzle provided at the bottom of the extraction tank to stir the extract. The extracted steel scraps are thrown into a stop tank by reversing the packet. After staying in the stop tank for a very short time, it is immediately put into the cleaning tank. This lasts for several minutes. In the cleaning tank, wash with boiling water at 00°C for about 1.0 minutes. In the second case, steam is blown into the cleaning tank to raise the temperature. After that, it is moved to the drying area by reversing to Heke So 1. The floor of the drying area is a drainer, allowing excess water to fall. In addition, the adhering water evaporates and dries due to its own heat and the heat held by the steel scraps, and the steel scraps do not rust. Dezinced steel scrap is used as a source of high-grade iron for cast iron. [0037] - On the other hand, since the extraction rate of zinc in the extract gradually decreases, when the processing time is about 20 minutes, it is led to the Zn addition tank and added to the zinc dust 1 to adjust the pH to about 4. , cannot be sent to the neutralization tank. In this step, it is preferable to measure the free amount of the extract and manage it accordingly. Thereafter, a new sulfuric acid solution, which is the electrolytic tailing liquid, is injected into the extraction tank. First, 35% H202 is added to the zinc extract in the neutralization tank to oxidize iron ions from 21'ifI'i to trivalent iron. G-202 was used because it is completely harmless and highly effective. Next, Ca and CO3 powders are added to adjust the pH to 5, and iron ions are separated as Fe(OH)3 in the precipitation layer. After drying, the iron sludge is used as raw material for iron manufacturing. [0038] The saturated ZnSO4 solution obtained through this treatment is temporarily stored in a storage tank. This tank is used to adjust the extraction capacity and electrolysis capacity of the equipment. In the electrolytic cell, the bath voltage was 3.5 to 3°6V, the cathode plate AI and the anode plate Pb were used, and the distance between the two poles was 50 m.
The electrolyte is electrolyzed at a current density of 1000 A/m". The electrolytic solution whose zinc content is less than 35 g/l is removed from the electrolytic cell, stored in a storage tank, and used again as an extraction solution. [ [0039] As described above, the results of treating 100 tons of galvanized steel sheet are shown in Table 1.The treatment time, iron yield, dezincing rate, and zinc recovery rate were all very superior compared to the conventional method. I can see that there is. [00401

【表1] 【00□4]−】[Table 1] 00□4]-]

【発明の効果】本発明により初めて亜鉛鍍金鋼板屑を溶
解前に予め完全にかつ大量脱亜鉛処理することが可能と
なり、亜鉛鍍金鋼板質を溶解することによ−)で発生し
ていたところの、キュポラにおいては、熱交換器の+ヘ
ラプル、集塵機の目詰まり、亜鉛華のキュポラ炉壁付着
による操業1ヘラプル、また低周波炉においては、労働
環境の悪化、炉壁寿命の低下と亜鉛蒸気の浸透と析出に
よる短絡、鋳鉄材質の悪化等の問題がなくなる。それに
より亜鉛鍍金鋼板質を高純度鋼屑として鋳鉄鋳物用原料
として使用可能となる。さらには有用金属である亜鉛の
回収が可能となり、省資源にも貢献する。
[Effect of the invention] The present invention has made it possible for the first time to completely and massively dezincinate galvanized steel sheet waste before melting it, and by melting the galvanized steel sheet material, In cupolas, there are problems such as heat exchanger clogging, dust collector clogging, and zinc white deposits on the cupola furnace walls, resulting in poor working conditions, shortened furnace wall life, and zinc vapor leakage in low-frequency furnaces. Problems such as short circuits and deterioration of cast iron material due to penetration and precipitation are eliminated. As a result, galvanized steel sheets can be used as high-purity steel scraps as raw materials for cast iron castings. Furthermore, it becomes possible to recover zinc, which is a useful metal, contributing to resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の脱亜鉛プロセス工程概要図である。FIG. 1 is a schematic diagram of the dezincing process of the present invention.

【図2】完全に抽出可能な鋼板層サイズと嵩密度の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between completely extractable steel plate layer size and bulk density.

【図3】抽出液の硫酸濃度と抽出速度の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the sulfuric acid concentration of the extract and the extraction rate.

【図4】本発明の一実施態様の工程概要図である。FIG. 4 is a process outline diagram of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・シュレッダ           2・・・亜
鉛鍍金鋼板層置場 3・・・亜鉛ダスト置場         4・・・抽
出槽5・・・停止槽             6・・
・洗浄槽7・・・乾燥場              
8・・・亜鉛末添加槽 9・・・酸化及び中和槽        10・・・沈
殿槽11・・・電解槽
1... Shredder 2... Galvanized steel plate layer storage area 3... Zinc dust storage area 4... Extraction tank 5... Stop tank 6...
・Cleaning tank 7...Drying place
8... Zinc dust addition tank 9... Oxidation and neutralization tank 10... Sedimentation tank 11... Electrolytic tank

【図1】[Figure 1]

【図4】[Figure 4]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】亜鉛鍍金鋼板屑を所定の曲面をもって細分
化する第一工程と、該曲面付細分化した亜鉛鍍金鋼板屑
の亜鉛を硫酸を用いて抽出する第二工程と、第二工程で
亜鉛を除いた脱亜鉛鋼板屑表面の硫酸の反応を清水で停
止する第三工程と、第三工程で反応を停止した脱亜鉛鋼
板屑を水で洗浄する第四工程と、第四工程で洗浄した脱
亜鉛鋼板屑を乾燥する第五工程と、第二工程で亜鉛を抽
出した硫酸溶液に亜鉛末を添加して余剰遊離酸を中和す
る第六工程と、第六工程で得た亜鉛抽出溶液に酸化剤を
添加し、溶解鉄イオンを2価から3価とし、その後石灰
水を添加し、溶解している3価鉄イオンを沈殿、濾過す
る第七工程と、第七工程で鉄分を取り除いた抽出液から
亜鉛を電解して回収する第八工程とからなることを特徴
とする亜鉛鍍金鋼板屑の脱亜鉛方法。
Claim 1: A first step of dividing galvanized steel sheet scrap into pieces with a predetermined curved surface, a second step of extracting zinc from the finely divided galvanized steel sheet scrap with the curved surface using sulfuric acid; The third step is to stop the reaction of sulfuric acid on the surface of the dezincified steel sheet scrap, which has removed zinc, with fresh water, and the fourth step is to wash the dezincified steel sheet scrap that has stopped the reaction in the third step with water. A fifth step of drying the dezincified steel sheet scrap, a sixth step of neutralizing excess free acid by adding zinc powder to the sulfuric acid solution from which zinc was extracted in the second step, and extraction of the zinc obtained in the sixth step. The seventh step involves adding an oxidizing agent to the solution to change the dissolved iron ions from divalent to trivalent, and then adding lime water to precipitate and filter the dissolved trivalent iron ions. A method for dezincing galvanized steel sheet scrap, comprising an eighth step of electrolytically recovering zinc from the removed extract.
【請求項2】第一工程において、鋼板屑を5cm×5c
m以下、嵩密度1.5t/m^3以下にシュレッダする
ことを特徴とする請求項1の亜鉛鍍金鋼板屑の脱亜鉛方
法。
Claim 2: In the first step, steel plate scraps are
2. The method for dezincing galvanized steel sheet scrap according to claim 1, wherein the galvanized steel sheet scrap is shredded to a bulk density of 1.5 t/m^3 or less.
【請求項3】第二工程において、亜鉛抽出終了時の硫酸
溶液にシュレッダ集塵亜鉛末を投入し、余剰の遊離酸を
中和することを特徴とする請求項1または2の亜鉛鍍金
鋼板屑の脱亜鉛方法。
3. The galvanized steel sheet scrap according to claim 1 or 2, wherein in the second step, the zinc powder collected by the shredder is added to the sulfuric acid solution at the end of the zinc extraction to neutralize excess free acid. dezincing method.
【請求項4】第四工程において洗浄用の水の温度を60
℃〜100℃の熱湯とすることを特徴とする請求項1、
2または3の亜鉛鍍金鋼板屑の脱亜鉛方法。
Claim 4: In the fourth step, the temperature of the washing water is set at 60°C.
Claim 1, characterized in that the hot water is from 100°C to 100°C.
2 or 3. Method for dezincing galvanized steel sheet scrap.
JP2401068A 1990-12-10 1990-12-10 Dezincification method for galvanized steel plate scrap Withdrawn JPH04210434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401068A JPH04210434A (en) 1990-12-10 1990-12-10 Dezincification method for galvanized steel plate scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401068A JPH04210434A (en) 1990-12-10 1990-12-10 Dezincification method for galvanized steel plate scrap

Publications (1)

Publication Number Publication Date
JPH04210434A true JPH04210434A (en) 1992-07-31

Family

ID=18510928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401068A Withdrawn JPH04210434A (en) 1990-12-10 1990-12-10 Dezincification method for galvanized steel plate scrap

Country Status (1)

Country Link
JP (1) JPH04210434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390191B1 (en) * 1998-08-12 2003-10-10 (주) 상원이엔씨 Leaching Method of Steelmaking Dust Using Acid and Hydrogen Peroxide
JP2014506959A (en) * 2011-02-17 2014-03-20 プロアソート ゲーエムベーハー How to remove coating from scrap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390191B1 (en) * 1998-08-12 2003-10-10 (주) 상원이엔씨 Leaching Method of Steelmaking Dust Using Acid and Hydrogen Peroxide
JP2014506959A (en) * 2011-02-17 2014-03-20 プロアソート ゲーエムベーハー How to remove coating from scrap

Similar Documents

Publication Publication Date Title
Kaya et al. Critical review on secondary zinc resources and their recycling technologies
CN106048217B (en) The comprehensive reutilization method of oxide powder and zinc
CN109554550A (en) A kind of method of steel-making dust comprehensive utilization recycling zinc
JP6648674B2 (en) Method for producing metallic manganese
CN109266837A (en) A method of recycling copper, cobalt from wet type copper smelting waste liquid containing cobalt
TW201315817A (en) A method for extracting metal from manganese residue
CN101748280A (en) Process for reclaiming zinc in steel-making dust of waste galvanized plate
WO2020107670A1 (en) Method for concentrating iron by comprehensively utilizing steelmaking dust
AU710302B2 (en) Method for recovering metal and chemical values
CN110965079B (en) Method for efficiently and comprehensively recycling iron-rich metallurgical tailings
US5942198A (en) Beneficiation of furnace dust for the recovery of chemical and metal values
SK280330B6 (en) Process for decontamination of metal-polluted earth
CN104876357B (en) Steel pickling waste liquor prepares the method for nanoscale ferroso-ferric oxide
CN103131867A (en) Method for extracting vanadium from vanadium containing slag
CN108330276A (en) Method for preparing high-purity iron powder using iron vitriol slag and products thereof and application
JPH04210434A (en) Dezincification method for galvanized steel plate scrap
GB1568362A (en) Heavy metal recovery in ferrous metal production processes
CN111876602A (en) Full-wet process for extracting high-purity zinc from waste galvanized sheet
EP0783593A1 (en) Method for recovering metal and chemical values
CN212505008U (en) Electroplating sludge treatment device
EP0040659B1 (en) Heavy metal recovery in ferrous metal production processes
WO1981003500A1 (en) Heavy metal recovery in ferrous metal production processes
CN113149310A (en) Method for treating and recycling smelting wastewater
CN116798760B (en) Method and flux for preparing soft magnetic manganese zinc ferrite composite material by utilizing manganese anode slime and zinc slime
KR20190063710A (en) Method for manufacturing additives and method for refining molten steel using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312