JPH04210406A - Hot isostatic press working method for cooling structure - Google Patents

Hot isostatic press working method for cooling structure

Info

Publication number
JPH04210406A
JPH04210406A JP40166090A JP40166090A JPH04210406A JP H04210406 A JPH04210406 A JP H04210406A JP 40166090 A JP40166090 A JP 40166090A JP 40166090 A JP40166090 A JP 40166090A JP H04210406 A JPH04210406 A JP H04210406A
Authority
JP
Japan
Prior art keywords
capsule
tube
copper
hot isostatic
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40166090A
Other languages
Japanese (ja)
Inventor
Akira Fukushima
明 福島
Tsutomu Fujiwara
力 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP40166090A priority Critical patent/JPH04210406A/en
Publication of JPH04210406A publication Critical patent/JPH04210406A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simply work a high strength cooling structure in low cost by setting a metallic tube filling water core and sealing both ends into a capsule, packing metal powder in the capsule and executing hot isostatic pressing treatment. CONSTITUTION:The water core 1 is filled into the copper tube 2 for forming coolant flow passage and both ends of the tube is sealed with welding. This copper tube 2 is set into a panel-shaped stainless steel-made capsule 4 and further, the copper powder 3 is packed so as not to remain any gap. Successively, after degassing inner part of the capsule 4 at high temp., the hot isostatic pressing treatment is executed to execute sintering of the copper powder 3. After that, the capsule 4 is removed and the water core 1 is removed by draining water. By this method, the optional shaped copper-made cooling panel 5 having coolant flow passage, is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、将来の航空宇宙用エン
ジンおよび機体のリーディングエッチ等に適用される冷
却構造物の熱間静水圧(以下HIPという;Hot l
5ostatie Pressing)加工方法に関す
る。 [0002] 【従来の技術】従来の冷却構造を有する部品において、
冷却構造部分の加工は電鋳(電気メツキ)を利用してい
た。。 [0003]上記電鋳プロセスは図6に示す通りであり
、以下に説明する。まず、ステップ1でブロック材01
、に機械加工により溝を堀り、これを冷却溝02とする
。ステップ2では冷却溝02をワックス03で埋める。 ステップ3では電気メツキ(電鋳)ができるようにワッ
クス03表面に銀粉等により導電コーティング04する
。ステップ4では電気メツキ(電鋳)により電鋳層05
を形成する。ステップ5ではワックス03を熱湯などに
より除去し、冷却構造孔06を得、最後に電鋳層05表
面を凸凹の無いように機械仕上加工するものであった。 [00041
[Industrial Application Field] The present invention is directed to hot isostatic pressure (hereinafter referred to as HIP) for cooling structures that will be applied to future aerospace engines and leading edges of airframes.
5ostatie pressing) processing method. [0002] [0002] In a component having a conventional cooling structure,
Electroforming (electroplating) was used to process the cooling structure. . [0003] The electroforming process described above is as shown in FIG. 6 and will be explained below. First, in step 1, block material 01
, a groove is dug by machining, and this is used as the cooling groove 02. In step 2, the cooling grooves 02 are filled with wax 03. In step 3, a conductive coating 04 is applied to the surface of the wax 03 using silver powder or the like so that electroplating (electroforming) can be performed. In step 4, electroformed layer 05 is formed by electroplating (electroforming).
form. In step 5, the wax 03 was removed using hot water or the like to obtain the cooling structure holes 06, and finally the surface of the electroformed layer 05 was mechanically finished so as to have no unevenness. [00041

【究明が解決しようとする課題]従来の方法においては
下記の課題があった。 [0005]  (1)工程が複雑であり、高コストで
ある。従来の方法によるプロセスは、図6に示すように
溝加工、ワックス埋込み、導電コーティング、電鋳、表
面仕上げ加工と多くの工程が必要である。また、溝加工
には特殊精密加工機械が必要であり、電鋳は長時間の処
理が必要である。このため高コストとなる。 [0006]  (2)電鋳の制御が困難である。高品
質の電鋳層を得るためには、メッキ液制御を厳密に行う
必要がある。 [0007N  (3)電鋳層の強度が低い。電鋳は基
本的に純金属でしかできないために、合金に比べ強度が
著しく低い。 [0008]  (4)冷却構造孔断面が矩形状に限定
され、熱効率が最も良い円形状の加工が不可能である。 [00091本発明は、従来の方法がもつ、以上のよう
な課題を解消させ、冷却構造の一体成形を可能とする加
工方法を提供することを目的とする。 [00101 【課題を解決するための手段]本発明の冷却構造物の熱
間静水圧加工方法は、金属チューブに水中子を充填して
両端を封止し、カプセル内に上記金属チューブをセラ1
へして金属粉末を充填し、熱間静水圧処理を行った後、
水中子を除去することを特徴としている。 [0011] 【作用】上記において、冷却構造物のクーラント通路を
金属チューブにより形成し、カプセル内に上記金属チュ
ーブをセットし金属粉末を充填してHIP処理を行うが
、金属チューブ内に水中子を封入しているため、HIP
処理によるクーラント通路がつぶれることがない。 [0012]また、本発明の方法は粉末冶金法によるた
め、カプセル形状を工夫することにより複雑形状のもの
も成形することができそのネッhシェイプも可能であり
、強度を要する場合には金属粉末の種類の選定により高
強度構造物とすることもできる。更に、HIP処理によ
るため制御が容易であり、1度に多数個の処理ができる
ため大量生産が容易となり、工程が単純となる。 [001,3]上記により、クーラント通路を確保し、
複雑な形状に成形することができ、高強度を保ち、工程
が単純で大量生産が可能な加工方法を実現する。 [0014)
[Problems to be solved by the investigation] The conventional methods had the following problems. [0005] (1) The process is complicated and the cost is high. As shown in FIG. 6, the conventional process requires many steps such as groove machining, wax embedding, conductive coating, electroforming, and surface finishing. Additionally, special precision processing machines are required for groove machining, and electroforming requires long processing times. This results in high costs. [0006] (2) Control of electroforming is difficult. In order to obtain a high quality electroformed layer, it is necessary to strictly control the plating solution. [0007N (3) The strength of the electroformed layer is low. Because electroforming can basically only be done with pure metals, its strength is significantly lower than that of alloys. [0008] (4) The cooling structure hole cross section is limited to a rectangular shape, making it impossible to process a circular shape with the best thermal efficiency. [00091] An object of the present invention is to provide a processing method that solves the above-mentioned problems of conventional methods and enables integral molding of a cooling structure. [00101] [Means for Solving the Problems] In the hot isostatic processing method for a cooling structure of the present invention, a metal tube is filled with water molecules and both ends are sealed, and the metal tube is placed in a capsule with a cellar 1.
After filling with metal powder and performing hot isostatic pressure treatment,
It is characterized by removing underwater spores. [0011] [Operation] In the above, the coolant passage of the cooling structure is formed by a metal tube, and the metal tube is set in a capsule and filled with metal powder to perform HIP processing. Because it is enclosed, HIP
Coolant passages will not be crushed due to treatment. [0012] Furthermore, since the method of the present invention is based on a powder metallurgy method, complex shapes can be formed by devising the capsule shape, and a net shape is also possible, and when strength is required, metal powder can be used. It is also possible to create a high-strength structure by selecting the type of structure. Furthermore, since HIP processing is used, control is easy, and since a large number of products can be processed at once, mass production becomes easy and the process becomes simple. [001,3] As described above, the coolant passage is secured,
A processing method that can be molded into complex shapes, maintains high strength, and has a simple process that enables mass production. [0014)

【実施例】本発明の第1実施例を図1により説明する。 図1に示す本実施例は、図2に示す銅製冷却パネルの制
作に係るものであり、ステップlで鋼チューブ2に水中
子1を充填して両端を溶接にて封止し、−列に並べ溶接
にて仮組みする。次のステップ2ではパネル形状のステ
ンレス製カプセル4の中に上記仮組みしたチューブ2を
セットし、さらに銅粉末3を隙間がないように充填する
。ステップ3ではカプセル4内部を高温で脱気した後真
空封止し、HIP処理により粉末を焼結させる。最後の
ステップ4でカプセル4内から供試体5を取り出し、水
中子1を水を用いて除去する。 [0015]上記において、冷却パネルのクーラント通
路を銅チューブ2により形成し、カプセル内に上記鋼チ
ューブ2をセットし銅粉末3を充填してHIP処理を行
うが、銅チューブ2内に水中子1を封入しているため、
HIP処理によるクーラント通路のつぶれを防止するこ
とができ、チューブ形状が保持される。 [0016]また、本実施例の方法は粉末冶金法による
ため、カプセル形状を工夫することにより複雑形状のも
のも成形することができ、そのネットシエイプも可能で
あり、強度を要する場合には高強度合金粉末を用いるこ
とにより高強度構造物とすることもできる。上記粉末に
は機械的合金を利用することにより更に高強度な合金と
することができ、粒子又はウィスカ分散型金属も適用で
きる。 [001,7]また、本実施例の方法はHIP処理によ
るため制御が容易であり、1度に多数個の処理ができる
ため大量生産が容易となり、工程が単純になる。 [0018]上記により、金属チューブを用いてクーラ
ント通路を形成し、粉末冶金法を用いHIP処理を行う
ため、クーラン1〜通路を確保し、複雑な形状に成形す
ることができ、高強度を保ち、工程が単純で大量生産が
可能な加工方法を実現する。 [0019]本発明の第2実施例を図3により説明する
。図3に示す本実施例は、液体ロケットエンジン燃焼室
への適用例であり、加工プロセスについては上記第1実
施例と同様であり、ステップ1て銅チューブを燃焼室形
状に合わせて加工し、それを燃焼室形状に合せて配列し
溶接により仮組みし、チューフ沖に水中子をつめ込んで
その両端を封止する。ステップ2で燃焼室形状のステン
レス製カプセル中に仮組みしたチューブをセットし、さ
らに銅粉末を隙間のないように充填する。ステップ3で
カプセル内部を高温で脱気した後真空封止して、HIP
処理により粉末を焼結させる。最後のステップ4でカプ
セルから供試体を取り出し水中子を除去する。 [o o 201本実施例はクーラント通路の形状が複
雑な場合であるが、この場合も上記第1実施例と同様の
作用及び効果が得られる。 [00211本発明の第3実施例を図4及び図5により
説明する。図4及び図5に示す本実施例は、スペースプ
レーン用す−ディングエッチ部アクティブクーリング構
造物への適用例である。 [0022]本構造物については、特に熱伝導率と強度
が要求されるため、カーボン繊維強化鋼合金複合材によ
って製作されるものであるが、加工プロセスは上記第1
実施例と同様であり、ステップ1で三つ又の鋼チューブ
6をリーディングエッチ部の形状に合せて加工し、それ
をエッチ部形状に合せて配列して溶接により仮組みし、
チューブ中に水中子をつめ込んで端部を封止する。ステ
ップ2ではリーディングエッチ形状のステンレス製カプ
セル中に仮組みしたチューブとカーボン繊維強化鋼合金
複合材のパネル7をセットし、さらにカーボンウィスカ
ーと銅粉末をボールミルした混合物を隙間のないように
充填する。ステップ3でカプセル内部を高温で脱気した
後真空封止して、HIP処理により粉末を焼結させる。 最後のステップ4でカプセルから供試体を取り出し水中
子を除去する。 [0023]本実施例においても上記第1実施例と同様
の作用及び効果があり、高強度の構造物を実現している
。 [0024]
[Embodiment] A first embodiment of the present invention will be explained with reference to FIG. The present embodiment shown in FIG. 1 is related to the production of the copper cooling panel shown in FIG. Temporarily assemble by side-by-side welding. In the next step 2, the temporarily assembled tube 2 is set in a panel-shaped stainless steel capsule 4, and the copper powder 3 is further filled so that there is no gap. In step 3, the inside of the capsule 4 is degassed at high temperature and then vacuum sealed, and the powder is sintered by HIP processing. In the final step 4, the specimen 5 is taken out from inside the capsule 4, and the underwater child 1 is removed using water. [0015] In the above, the coolant passage of the cooling panel is formed by the copper tube 2, the steel tube 2 is set in the capsule, and the copper powder 3 is filled to perform the HIP treatment. Because it includes
It is possible to prevent the coolant passage from collapsing due to HIP treatment, and the tube shape is maintained. [0016] Furthermore, since the method of this example uses a powder metallurgy method, complex shapes can be formed by devising the capsule shape, and net shaping is also possible. A high-strength structure can also be obtained by using a strength alloy powder. The above powder can be made into an alloy with even higher strength by using a mechanical alloy, and particle or whisker dispersed metals can also be applied. [001,7] Furthermore, since the method of this embodiment uses HIP processing, it is easy to control, and since a large number of products can be processed at once, mass production becomes easy and the process becomes simple. [0018] As described above, since the coolant passage is formed using a metal tube and the HIP treatment is performed using the powder metallurgy method, the coolant passage can be secured, the coolant passage can be formed into a complicated shape, and high strength can be maintained. , to realize a processing method that has a simple process and can be mass-produced. [0019] A second embodiment of the present invention will be described with reference to FIG. The present embodiment shown in FIG. 3 is an example of application to a liquid rocket engine combustion chamber, and the processing process is the same as the first embodiment described above. Step 1 is to process a copper tube to match the shape of the combustion chamber. They are arranged to match the shape of the combustion chamber, temporarily assembled by welding, and a water child is stuffed into the tube offshore to seal both ends. In step 2, the temporarily assembled tube is set in a stainless steel capsule in the shape of a combustion chamber, and copper powder is then filled so that there are no gaps. In step 3, the inside of the capsule is degassed at high temperature, then vacuum sealed and HIP
The treatment causes the powder to sinter. In the final step 4, the specimen is taken out from the capsule and the water particles are removed. [o o 201 This embodiment is a case where the coolant passage has a complicated shape, but the same operation and effect as in the first embodiment can be obtained in this case as well. [00211 A third embodiment of the present invention will be described with reference to FIGS. 4 and 5. The present embodiment shown in FIGS. 4 and 5 is an example of application to an active cooling structure for a space plane. [0022] Since this structure requires particularly high thermal conductivity and strength, it will be manufactured from carbon fiber reinforced steel alloy composite material, but the processing process will be the same as the above-mentioned No. 1.
This is the same as in the example, and in step 1, the three-pronged steel tube 6 is processed to match the shape of the leading etched part, arranged to match the shape of the etched part, and temporarily assembled by welding.
Fill the tube with water molecules and seal the end. In step 2, the temporarily assembled tube and carbon fiber-reinforced steel alloy composite panel 7 are set in a leading etch-shaped stainless steel capsule, and then a ball-milled mixture of carbon whiskers and copper powder is filled without any gaps. In step 3, the inside of the capsule is degassed at high temperature and then vacuum sealed, and the powder is sintered by HIP processing. In the final step 4, the specimen is taken out from the capsule and the water particles are removed. [0023] This embodiment also has the same functions and effects as the first embodiment, and a high-strength structure is realized. [0024]

【発明の効果】本発明の冷却構造物の熱間静水圧加工方
法は、水中子が充填されクーラント通路を形成する金属
チューブをカプセル内にセットし、同カプセル内に金属
粉末を充填してHIP処理を行うことによって、クーラ
ント通路を確保し、複雑な形状の成形ができ、高強度を
保ち、工程が単純で大量生産が可能な加工方法を実現す
る。
Effects of the Invention In the hot isostatic processing method of a cooling structure of the present invention, a metal tube filled with water molecules and forming a coolant passage is set in a capsule, and metal powder is filled in the capsule and HIP is performed. By performing this treatment, we have realized a processing method that secures coolant passages, allows molding into complex shapes, maintains high strength, and allows for simple processes and mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例に係る加工プロセスの説明
図である。
FIG. 1 is an explanatory diagram of a processing process according to a first embodiment of the present invention.

【図2】上記第1実施例に係る冷却パネルの説明図であ
る。
FIG. 2 is an explanatory diagram of the cooling panel according to the first embodiment.

【図3】本発明の第2実施例に係る液体ロケットエンジ
ン燃焼室の説明図である。
FIG. 3 is an explanatory diagram of a liquid rocket engine combustion chamber according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係るアクティブリーディ
ング構造物の説明図である。
FIG. 4 is an explanatory diagram of an active reading structure according to a third embodiment of the present invention.

【図5】上記第3実施例に係る加工方法の説明図である
FIG. 5 is an explanatory diagram of a processing method according to the third embodiment.

【図6】従来の方法の説明図である。FIG. 6 is an explanatory diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1 水中子 2 銅チューブ 3 銅粉末 4 カプセル 5 供試体 6 三つ又鋼管 7 パネル 1 Water child 2 Copper tube 3 Copper powder 4 Capsule 5 Specimen 6 Trifurcated steel pipe 7 Panel

【図1】[Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属チューブに水中子を充填して両端を封
止し、カプセル内に上記金属チューブをセットして金属
粉末を充填し、熱間静水圧処理を行った後、水中子を除
去することを特徴とする冷却構造物の熱間静水圧加工方
法。
Claim 1: Filling a metal tube with water molecules and sealing both ends, setting the metal tube in a capsule, filling it with metal powder, performing hot isostatic pressure treatment, and then removing the water molecules. A hot isostatic processing method for a cooling structure, characterized by:
JP40166090A 1990-12-12 1990-12-12 Hot isostatic press working method for cooling structure Withdrawn JPH04210406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40166090A JPH04210406A (en) 1990-12-12 1990-12-12 Hot isostatic press working method for cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40166090A JPH04210406A (en) 1990-12-12 1990-12-12 Hot isostatic press working method for cooling structure

Publications (1)

Publication Number Publication Date
JPH04210406A true JPH04210406A (en) 1992-07-31

Family

ID=18511497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40166090A Withdrawn JPH04210406A (en) 1990-12-12 1990-12-12 Hot isostatic press working method for cooling structure

Country Status (1)

Country Link
JP (1) JPH04210406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034707A (en) * 2012-08-09 2014-02-24 Castem Co Ltd Method for producing metal powder sintered compact having hollow part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034707A (en) * 2012-08-09 2014-02-24 Castem Co Ltd Method for producing metal powder sintered compact having hollow part

Similar Documents

Publication Publication Date Title
US3773506A (en) Method of manufacturing a blade having a plurality of internal cooling channels
US3996019A (en) Fabrication method and fabricated article
CN105170978B (en) Linkage interface has the homogeneity jacket high temperature insostatic pressing (HIP) manufacturing process of gradient structure
JPS6324042B2 (en)
US4526747A (en) Process for fabricating parts such as gas turbine compressors
US4584171A (en) Method of producing rocket combustors
US20170333995A1 (en) Method for connecting workpieces which are produced from a raw material using an additive manufacturing process`
EP3085472B1 (en) Method of manufacturing a turbine blisk through hot isostatic pressing using a metal core
Samarov et al. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing
TW400260B (en) Net shaped dies and molds and method for producing the same
JPS5842703A (en) Manufacture of preform of one body powder alloy part from more than two kinds of powder alloy
US4972898A (en) Method of forming a piston containing a cavity
US4508680A (en) Method of manufacturing a rocket combustion chamber
JPH04210406A (en) Hot isostatic press working method for cooling structure
CN109351918B (en) Multi-physical-field composite action micro-component liquid forming method
CN111985059A (en) Part forming method and system based on additive manufacturing and hot isostatic pressing
CN108555305B (en) Ti2Method for preparing annular piece from AlNb alloy and TiAl powder
US5016348A (en) Process for the manufacture of a tubular crankshaft
US9346119B2 (en) Object forming assembly
CN105109040A (en) Three dimensional structure shaping method
CN105251997B (en) A kind of high temperature insostatic pressing (HIP) manufacturing process based on shunting plasticising
SE451550B (en) PROCEDURE FOR PREPARING A COMPOSITE METAL BODY WITH INTERNAL
CN109773428A (en) A method of the iron-base superalloy annular element with internal feature connects Kufil
US20020011550A1 (en) Method for making a thermally stressed forming tool with cooling ducts and associated forming tool
EP0163718A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312