JPH04209901A - Moving blade and manufacture thereof - Google Patents

Moving blade and manufacture thereof

Info

Publication number
JPH04209901A
JPH04209901A JP40975690A JP40975690A JPH04209901A JP H04209901 A JPH04209901 A JP H04209901A JP 40975690 A JP40975690 A JP 40975690A JP 40975690 A JP40975690 A JP 40975690A JP H04209901 A JPH04209901 A JP H04209901A
Authority
JP
Japan
Prior art keywords
rotor blade
blade body
moving blade
partition plate
same direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40975690A
Other languages
Japanese (ja)
Inventor
Shinya Yokoi
横井 信哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP40975690A priority Critical patent/JPH04209901A/en
Publication of JPH04209901A publication Critical patent/JPH04209901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain an inexpensive moving blade light in weight having a high specific strength and specific stiffness by laminating plate shaped-prepreg members having resin fiber arranged in the same direction so as to form a moving main body and a blade root part, and inserting a partition plate into the center part thereof. CONSTITUTION:A moving blade (including a variable moving blade) is provided with a moving blade main body 1, a blade root part 2 communicating therewith, and a partition plate 3 inserted as a core extending from the blade root part 2 into the moving blade main body 1. In this case, plate shaped-prepreg members 4 to 6 are used, in which the respective directions of resin fibers 4a to 6a serving as reinforced members are arranged in the same direction. This moving blade main body 1 is formed by laminating the respective prepreg members 4, 5, and the blade root part 2 is formed by laminating the respective prepreg members 4, 6. Hence, melted resin generated at the time of compressed-forming flows along the partition plate 3, and flows in the same direction as the resin fibers 4a to 6a. As a result, one way direction property of the resin fiber is maintained so as to prevent generation of unconformity phenomenon of the resin fiber and improve strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、航空用、産業用ガスタ
ービン等のファンや圧縮機に使用する動翼(取付は角を
変えることができる可変動翼も含む)及び該動翼の製造
方法に関するものである。 [0002] 【従来の技術】航空用、産業用ガスタービン等のファン
や圧縮機に使用されている動翼(可変動翼を含む)の製
造方法としては、下記の如き方法が採用されていた。 [0003]即ちチタン、ステンレス、アルミニウム等
の金属を素材として、鍛造加工、機械加工、仕上加工、
コーティング加工の手順で製造する動翼製造方法がある
。 [0004]上記方法以外に、流体に面する動翼本体部
分と取付は部である翼根部分とを、板状のプリプレグ材
(強化プラスチック材)を積層して圧縮成形することに
より動翼を製造する方法もある。 [0005]
[Industrial Application Field] The present invention relates to rotor blades (including variable blades whose angles can be changed) used in fans and compressors of aviation and industrial gas turbines, and the manufacture of the rotor blades. It is about the method. [0002] [Prior Art] The following method has been adopted as a method for manufacturing moving blades (including variable blades) used in fans and compressors of aircraft and industrial gas turbines, etc. . [0003] That is, forging, machining, finishing, etc. using metals such as titanium, stainless steel, and aluminum as raw materials.
There is a method for manufacturing rotor blades using a coating process. [0004] In addition to the above method, the rotor blade can be formed by laminating and compression molding plate-shaped prepreg material (reinforced plastic material) on the rotor blade body portion facing the fluid and the blade root portion, which is the attachment portion. There are also ways to manufacture it. [0005]

【発明が解決しようとする課題】しかしながら前者の動
翼加工製造方法では、製造期間が長く、素材のコストが
高く且つ加工工程が多いので高価になり、重量が重い、
等の問題点があった。 [0006]又後者の動翼の製造方法は、前者の動翼製
造方法が有する問題点をなくし得るが、以下のような問
題点があった。 [0007]■動翼本体部分と翼根部分との間の厚みが
顕著に変化しているので、動翼本体部分及び翼根部分に
おける板状のプリプレグ材に圧縮成形中に掛る圧力を均
等化することができず、そのために作用圧力にバラツキ
が生じて板状のプリプレグ材に不均一な圧力が掛ること
になり、この圧力のバラツキ(不均一)により生ずる圧
力差により溶融樹脂の流動が圧力の高い方から低い方に
不規則に発生し、この流動により強化材であるファイバ
ー(f i be r)(樹脂繊維)の流動方向が不規
則なって乱れ(渦巻き等の不整現象)が生じる。 [0008]■上記フアイバーの流動方向の乱れにより
強度上必要とされているファイバーの同一向きの方向性
を得ることができず、そのために、強度が著しく低下し
所望の強度が得られない。 [0009]■所望の強度を得るために、実験し分析し
その結果により条件を変えて更に実験や分析を繰返すと
いう試行錯誤の作業を行なわねばならず、テストの時間
に費やす作業及び時間が増えて、コストアップや製作の
遅れの原因となる。 [00101本発明は、上述の実情に鑑み、動翼の加工
工程を減少して製造時間を短縮して、コストダウンと軽
量化を図り、更にファイバーの不整現象を防止して振動
減衰率、比強度、比剛性の向上をなし得る、動翼及び該
動翼の製造方法を提供することを目的とするものである
。 [00111
[Problems to be Solved by the Invention] However, the former rotor blade manufacturing method requires a long manufacturing period, high material costs, and many processing steps, making it expensive, heavy, and heavy.
There were problems such as. [0006]Although the latter method of manufacturing a rotor blade can eliminate the problems of the former method of manufacturing a rotor blade, it has the following problems. [0007] ■ Since the thickness between the rotor blade body and the blade root portion changes significantly, the pressure applied to the plate-shaped prepreg material in the rotor blade body and the blade root portion during compression molding is equalized. As a result, variations in working pressure occur and non-uniform pressure is applied to the plate-shaped prepreg material, and the pressure difference caused by this variation (non-uniformity) in pressure causes the flow of molten resin to increase in pressure. This flow occurs irregularly from high to low, and this flow causes the flow direction of the reinforcing material (fiber) (resin fiber) to become irregular, resulting in turbulence (irregular phenomena such as swirling). [0008] (2) Due to the disturbance in the flowing direction of the fibers, it is not possible to obtain the directionality of the fibers in the same direction, which is required for strength, so that the strength is significantly reduced and the desired strength cannot be obtained. [0009]■ In order to obtain the desired strength, it is necessary to perform trial and error work of experimenting and analyzing, changing the conditions according to the results, and repeating the experiment and analysis, which increases the work and time spent on testing. This can lead to increased costs and production delays. [00101] In view of the above-mentioned circumstances, the present invention reduces the number of processing steps for rotor blades, shortens manufacturing time, reduces cost and weight, and further improves the vibration damping rate and ratio by preventing fiber irregularities. It is an object of the present invention to provide a rotor blade and a method for manufacturing the rotor blade that can improve strength and specific rigidity. [00111

【課題を解決するための手段]請求項1の発明は、樹脂
繊維の向きが同一であるプリプレグ材から成る動翼本体
と、樹脂繊維の向きが動翼本体のプリプレグ材の樹脂繊
維と同じ向きのプリプレグ材から成り且つ動翼本体と連
なる翼根部と、該翼根部の反動翼本体側の略中央部から
動翼本体に挿入した仕切板と、からなることを特徴とす
る動翼、にかかるものである。 [0012]請求項2の発明は、動翼本体と該動翼本体
と連なる翼根部とを、板状のプリプレグ材をその樹脂繊
維の向きを揃えて積層形成し、翼根部の反動翼本体側の
略中央部から仕切板を、動翼本体に亘り適宜挿入し、ホ
ットプレスにより圧縮成形して一体化することを特徴と
する動翼の製造方法、にかかるものである。 [0013] 【作用】本発明によれば、従来の如く多数の加工工程行
なうことなく、簡単に動翼を製造できると共に、軽量化
できる。又板状のプリプレグ材のファイバーの不整現象
が発生することを防止でき、遠心応力に耐える強度の向
上が図れ、回転力によって発生する翼根部の剪断、曲げ
の各応力に耐える強度の向上が図れる。 [0014]
[Means for Solving the Problem] The invention of claim 1 provides a rotor blade body made of a prepreg material in which the resin fibers are oriented in the same direction, and a rotor blade body in which the resin fibers are oriented in the same direction as the resin fibers of the prepreg material of the rotor blade body. A rotor blade comprising: a blade root portion made of a prepreg material and connected to the rotor blade body; and a partition plate inserted into the rotor blade body from approximately the center of the blade root portion on the side of the reaction blade body. It is something. [0012] In the invention of claim 2, the rotor blade body and the blade root portion connected to the rotor blade body are formed by laminating plate-shaped prepreg materials with their resin fibers aligned in the direction, and the reaction blade body side of the blade root portion The present invention relates to a method for manufacturing a rotor blade, characterized in that a partition plate is appropriately inserted across the rotor blade body from approximately the center of the rotor blade, and the rotor blade is compression-molded and integrated by hot pressing. [0013] According to the present invention, a rotor blade can be easily manufactured without performing a large number of machining steps as in the conventional method, and the weight can be reduced. In addition, it is possible to prevent the occurrence of irregularities in the fibers of the plate-shaped prepreg material, improve the strength to withstand centrifugal stress, and improve the strength to withstand the shearing and bending stresses of the blade root caused by rotational force. . [0014]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。 [0015]図1は、本発明の動翼(可変動翼を含む)
を示す斜視図であり、又図2は図1のII力方向ら見た
図に相当し圧縮成形中の状態を示す図にして、図中1は
動翼本体、2は該動翼本体1と連なる翼根部であり、3
は該翼根部2から動翼本体1に亘り芯となる如く挿入し
た仕切板である。 [0016]又図中4. 5. 6は強化材である樹脂
繊維4a、5a、6aの向きが同一である板状のプリプ
レグ材であり、板状のプリプレグ材4と5から前記動翼
本体1が、又板状のプリプレグ材4と6から前記翼根部
2が夫々積層形成されている。 [0017]前記せる動翼の製造方法について説明する
。 [00181図3に示す如く板状のプリプレグ材4゜5
.6を高さ方向に平行にしかもこれら板状のプリプレグ
材4. 5. 6の樹脂繊維4a、5a、6aの向きを
同一方向にして(図2の矢印A方向に揃えて)積層して
、動翼本体1及び該動翼本体1と連なる翼根部2を積層
形成し、該翼根部2の反動翼本体1側の略中央部分から
動翼本体1に亘り仕切板3を適宜挿入して(遠心応力が
一番掛る部分を補強する如く挿入して)、ホットプレス
による圧縮成形法により、加圧、加熱し一体化して動翼
を製造する。 [0019]前記した如く動翼本体1及び翼根部2を積
層形成する板状のプリプレグ材4. 5. 6をそれら
の樹脂繊維4a、5a、6aの向きを同一方向(図2の
矢印六方向)にして積層し且つ仕切板3を翼根部2から
動翼本体1に亘り各板状のプリプレグ材4. 5. 6
の面と平行に挿入しているので、圧縮成形時に生じる溶
融樹脂の流れが仕切板3に規制されて該仕切板3に沿い
垂直方向(図2の矢印A方向)にしかも樹脂繊維4a、
  5a、  6aの向きと同方向に動翼の厚みのある
方からない方に流れることになる。即ち動翼本体1並び
に翼根部2においては、中央部で上下方向に対称に仕切
板3で仕切られているので、該仕切板3で規制された状
態で図2の矢印Aの方向に対称に溶融樹脂が圧力の高い
方から低い方に流れることになって左右の圧力バランス
がとれることになり、従って圧縮成形時に動翼を積層形
成する板状のプリプレグ材4. 5. 6に略均等な圧
力が掛ることになって樹脂繊維4a、5a、6aの向き
に沿いこの向きを乱すことなく溶融樹脂が流動し、その
結果、樹脂繊維の一方向性が維持されて樹脂繊維(ファ
イバー)の不整現象の発生を防止でき強度の向上を図り
得る。 [00201即ち、動翼に生じる引張り、曲げ、捩れ、
剪断等の各応力に対し、強度の向上を図ることができる
。 [0021]又圧縮成形時に動翼本体1と翼根部2とに
おける板状のプリプレグ材4. 5. 6に掛る圧力を
均一化できることにより、所望の強度を得るための内部
圧力状態の調査や調整等に費やす時間を大幅に短縮でき
て、特に開発試験中の動翼を製造する場合に最適であり
、しかも比強度及び比剛性が高いので過回転試験を高い
レベルで行なうことができる。 [0022]尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、例えば仕切板を金属板又はこれに類
する板材で形成すること、仕切板の動翼本体の挿入端部
分を先細り形状にすること等は任意であり、その他、本
発明の要旨を逸脱しない範囲内において種々変更を加え
得ることは勿論である。 [0023]
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. [0015] FIG. 1 shows a moving blade (including a variable blade) of the present invention.
FIG. 2 is a perspective view showing the state during compression molding, which corresponds to the view seen from the II force direction in FIG. It is the wing root that is connected to 3.
is a partition plate inserted from the blade root portion 2 to the rotor blade body 1 so as to form a core. [0016] Also, 4 in the figure. 5. Reference numeral 6 denotes a plate-shaped prepreg material in which the resin fibers 4a, 5a, and 6a serving as reinforcing materials are oriented in the same direction. and 6, the blade root portions 2 are formed in layers. [0017] A method for manufacturing the rotor blade described above will be explained. [00181 As shown in Fig. 3, a plate-shaped prepreg material 4゜5
.. 6 parallel to the height direction and these plate-shaped prepreg materials 4. 5. The resin fibers 4a, 5a, and 6a of No. 6 are laminated in the same direction (aligned in the direction of arrow A in FIG. 2) to form a rotor blade body 1 and a blade root portion 2 connected to the rotor blade body 1. , the partition plate 3 is appropriately inserted from the approximate center of the blade root 2 on the reaction blade body 1 side to the rotor blade body 1 (inserted so as to reinforce the part where the centrifugal stress is most applied), and then hot pressed. Using the compression molding method, the rotor blades are manufactured by pressurizing, heating, and integrating. [0019] As described above, the plate-shaped prepreg material 4 for laminating the rotor blade body 1 and the blade root portion 2. 5. 6 are laminated with their resin fibers 4a, 5a, and 6a oriented in the same direction (six directions of arrows in FIG. 2), and the partition plate 3 is formed by forming each plate-shaped prepreg material 4 from the blade root 2 to the blade body 1. .. 5. 6
Since the flow of the molten resin generated during compression molding is regulated by the partition plate 3, the flow of the molten resin is regulated by the partition plate 3, and the resin fibers 4a,
The flow will flow in the same direction as the directions of 5a and 6a from the side with the thicker rotor blades to the side with less thickness. That is, since the rotor blade body 1 and the blade root 2 are vertically symmetrically partitioned by a partition plate 3 at the center, the rotor blade body 1 and the blade root part 2 are partitioned symmetrically in the direction of arrow A in FIG. The molten resin flows from the high-pressure side to the low-pressure side, and the left and right pressures are balanced. Therefore, the plate-shaped prepreg material used to form the rotor blades by lamination during compression molding 4. 5. 6, the molten resin flows along the direction of the resin fibers 4a, 5a, 6a without disturbing the direction, and as a result, the unidirectionality of the resin fibers is maintained and the resin fibers It is possible to prevent the occurrence of irregularities in (fibers) and improve strength. [00201 That is, tension, bending, and twisting occurring in the rotor blade,
Strength can be improved against various stresses such as shearing. [0021] Also, during compression molding, plate-shaped prepreg material 4. 5. By being able to equalize the pressure applied to the blades, it is possible to significantly reduce the time spent investigating and adjusting the internal pressure state to obtain the desired strength, making it especially suitable for manufacturing rotor blades that are under development testing. Moreover, since the specific strength and specific rigidity are high, over-speed tests can be conducted at a high level. [0022] Note that the present invention is not limited to the above-described embodiments; for example, the partition plate may be formed of a metal plate or a similar plate material, and the insertion end portion of the partition plate into the rotor blade body may be tapered. It goes without saying that the shape can be changed arbitrarily, and various other changes can be made without departing from the gist of the present invention. [0023]

【発明の効果】以上説明したように、本発明の動翼及び
該動翼の製造方法によれば、下記の如き優れた効果を奏
し得る。 [0024]■請求項1によれば、樹脂繊維の向きが同
一である板状のプリプレグ材を積層して動翼本体及び翼
根部を形成し且つこれら動翼本体及び翼根部の中央部に
仕切板を挿入してなるので、金属製の動翼に比べ安価に
製造できて軽量であり、比強度及び比剛性が高く、しか
も表面の仕上りが滑らかであるので空力性能が向上する
。 [0025]■請求項1によれば、使用時に動翼に作用
する引張り、曲げ、捩れ、剪断等の各応力に対応できる
。 [0026]■請求項2によれば、所望の強度を得るた
めに、圧縮成形時に動翼本体と翼根部とにおける作用圧
力状態の調査や調整(例えば作用圧力の均一化を図るた
めの調査や調整)に費やす作業や時間等を大幅に短縮で
き、又表面の仕上りが滑らかであるので仕上工程が必要
でなく製造時間の短縮化を図り得る。 [0027]■請求項2によれば、製作期間が短くて済
むので、特に開発試験用の動翼を製造する場合に最適で
ある。 [0028]■請求項1.2によれば、樹脂繊維(ファ
イバー)の不整現象をなくすことができるので、品質が
安定し向上する。 [0029]■請求項1.2によれば、動翼の回転試験
に際しては、比強度及び比剛性高いために過回転試験が
高いレベルまで可能となり、又軽量化により動翼に発生
する負荷荷重を減少せしめることができて動翼に生ずる
応力を低減でき、更に過回転試験が高いレベルまで可能
となり、従って構造設計も容易となる。
As explained above, according to the rotor blade and the method for manufacturing the rotor blade of the present invention, the following excellent effects can be achieved. [0024] ■ According to claim 1, the rotor blade body and the blade root are formed by laminating plate-shaped prepreg materials in which the resin fibers are oriented in the same direction, and a partition is provided at the center of the rotor blade body and the blade root. Since it is made by inserting plates, it is cheaper to manufacture and lighter than metal rotor blades, has high specific strength and specific rigidity, and has a smooth surface finish, which improves aerodynamic performance. [0025] ■ According to claim 1, it is possible to cope with various stresses such as tension, bending, torsion, and shearing that act on the rotor blade during use. [0026] ■ According to claim 2, in order to obtain the desired strength, investigation and adjustment of the working pressure state in the rotor blade body and the blade root during compression molding (for example, investigation to equalize the working pressure, The work and time required for adjustment can be greatly reduced, and since the surface finish is smooth, no finishing process is required, which can shorten manufacturing time. [0027] (2) According to claim 2, the manufacturing period is short, so it is particularly suitable for manufacturing rotor blades for development tests. [0028] ■According to claim 1.2, it is possible to eliminate the irregular phenomenon of resin fibers (fibers), thereby stabilizing and improving the quality. [0029] ■ According to claim 1.2, when testing the rotation of the rotor blade, the high specific strength and specific rigidity make it possible to perform an over-rotation test to a high level, and the weight reduction makes it possible to reduce the load generated on the rotor blade. This makes it possible to reduce the stress generated on the rotor blades, and also enables over-rotation testing to a high level, thereby facilitating structural design.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の動翼を示す斜視図である。FIG. 1 is a perspective view showing a rotor blade of the present invention.

【図2】図1のII力方向ら見た図に相当し圧縮成形中
の状態を示す図である。
FIG. 2 is a view corresponding to a view seen from the II force direction in FIG. 1 and showing a state during compression molding.

【図3】本発明の動翼の製造方法における積層状態を示
す斜視図である。
FIG. 3 is a perspective view showing a stacked state in the method for manufacturing a rotor blade of the present invention.

【符号の説明】[Explanation of symbols]

1  動翼本体 2  翼根部 3  仕切板 4、 5.6   板状のプリプレグ材4a、  5a
、  6a   樹脂繊維
1 Moving blade body 2 Blade root 3 Partition plate 4, 5.6 Plate-shaped prepreg material 4a, 5a
, 6a resin fiber

【図1】[Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】樹脂繊維の向きが同一であるプリプレグ材
から成る動翼本体と、樹脂繊維の向きが動翼本体のプリ
プレグ材の樹脂繊維と同じ向きのプリプレグ材から成り
且つ動翼本体と連なる翼根部と、該翼根部の反動翼本体
側の略中央部から動翼本体に挿入した仕切板と、からな
ることを特徴とする動翼。
Claim 1: A rotor blade body made of a prepreg material in which the resin fibers are oriented in the same direction; and a rotor blade body made of a prepreg material in which the resin fibers are oriented in the same direction as the resin fibers of the prepreg material of the rotor blade body, and connected to the rotor blade body. A rotor blade comprising: a blade root; and a partition plate inserted into the rotor blade body from approximately the center of the blade root on the reaction blade body side.
【請求項2】動翼本体と該動翼本体に連なる翼根部とを
、板状のプリプレグ材をその樹脂繊維の向きを揃えて積
層形成し、翼根部の反動翼本体側の略中央部から仕切板
を、動翼本体に亘り適宜挿入し、ホットプレスにより圧
縮成形して一体化することを特徴とする動翼の製造方法
[Claim 2] The rotor blade body and the blade root portion connected to the rotor blade body are formed by laminating plate-shaped prepreg materials with their resin fibers aligned in the same direction, and starting from the approximate center of the blade root portion on the reaction blade body side. A method for manufacturing a rotor blade, which comprises inserting a partition plate as appropriate across the rotor blade body and compression-molding it by hot pressing to integrate the partition plate.
JP40975690A 1990-12-10 1990-12-10 Moving blade and manufacture thereof Pending JPH04209901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40975690A JPH04209901A (en) 1990-12-10 1990-12-10 Moving blade and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40975690A JPH04209901A (en) 1990-12-10 1990-12-10 Moving blade and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04209901A true JPH04209901A (en) 1992-07-31

Family

ID=18519043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40975690A Pending JPH04209901A (en) 1990-12-10 1990-12-10 Moving blade and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04209901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375978A (en) * 1992-05-01 1994-12-27 General Electric Company Foreign object damage resistant composite blade and manufacture
US9945389B2 (en) 2014-05-05 2018-04-17 Horton, Inc. Composite fan

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375978A (en) * 1992-05-01 1994-12-27 General Electric Company Foreign object damage resistant composite blade and manufacture
US9945389B2 (en) 2014-05-05 2018-04-17 Horton, Inc. Composite fan
US10415587B2 (en) 2014-05-05 2019-09-17 Horton, Inc. Composite fan and method of manufacture
US10914314B2 (en) 2014-05-05 2021-02-09 Horton, Inc. Modular fan assembly

Similar Documents

Publication Publication Date Title
US3942231A (en) Contour formed metal matrix blade plies
EP0496550B1 (en) Wide chord fan blade
US5407326A (en) Hollow blade for a turbomachine
EP1973716B1 (en) Method for the milling machining of components
US8734605B2 (en) Manufacturing a composite component
CN110238747A (en) Process and frock clamp for complex profile blade surface light decorations
JP2978579B2 (en) Method of forming hollow blade
CN110788562A (en) Manufacturing method of nickel-based alloy dual-performance blisk
EP1939403A2 (en) Hybrid fan blade and method for their manufacture
CN106286660B (en) The design method of few piece root Enhanced type band spring camber of the non-grade structures in end
DE3444810C2 (en) Blade for a gas turbine engine
Bałon et al. Thin-walled integral constructions in aircraft industry
JPH05192729A (en) Manufacture of hollow blade for turbomachine
WO2007115550A2 (en) Method for producing a gas turbine component
US2807435A (en) Turbine stator blade
WO2010000238A1 (en) Process for producing gas turbine blades or vanes
EP2113358A1 (en) Lead rotors of a lead rotor grid of a flight gas turbine
JPH04209901A (en) Moving blade and manufacture thereof
GB2239214A (en) A sandwich structure and a method of manufacturing a sandwich structure
DE3007097C2 (en) Method for manufacturing a component with a highly precise surface
JPS635101A (en) Moving vane provided with platform
DE10354648A1 (en) Process for the production of coated, turbulent light metal components with turbulent flow
EP1553203B1 (en) Method for producing hollow airfoils, also to produce a rotor with hollow airfoils
JPS61272402A (en) Stationary blade and manufacture thereof
Thamizh et al. Finite element analysis of metal matrix composite blade