JPH04209817A - High strength polyethylene fiber having creep resistance - Google Patents

High strength polyethylene fiber having creep resistance

Info

Publication number
JPH04209817A
JPH04209817A JP34095690A JP34095690A JPH04209817A JP H04209817 A JPH04209817 A JP H04209817A JP 34095690 A JP34095690 A JP 34095690A JP 34095690 A JP34095690 A JP 34095690A JP H04209817 A JPH04209817 A JP H04209817A
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
strength
fiber
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34095690A
Other languages
Japanese (ja)
Other versions
JP2586213B2 (en
Inventor
Yasuo Ota
康雄 大田
Hiroshige Sugiyama
博茂 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2340956A priority Critical patent/JP2586213B2/en
Publication of JPH04209817A publication Critical patent/JPH04209817A/en
Application granted granted Critical
Publication of JP2586213B2 publication Critical patent/JP2586213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject fiber comprising PE polymer having an ultrahigh mol.wt. and having specific strength, specific elastic modulus, specific creep rate, and good creep resistance. CONSTITUTION:The objective fiber comprising a polymer consisting mainly of an ultrahigh mol.wt. PE having a viscosity-average mol.wt. of >=500000, preferably >=1500000, and having a strength of >=25g/d, an elastic modulus of >=800g/d, and a creep rate of <=5X10<-6> sec<-1> under a load of 9g/d at 50 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常にすぐれた耐クリープ性を有する高強度
ポリエチレン繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high strength polyethylene fibers having very good creep resistance.

〔従来の技術〕[Conventional technology]

粘度平均分子量が数十万から数百万に達するようないわ
ゆる超高分子量のポリエチレンを原料にして高強度、高
弾性率を有するポリエチレン繊維を得ようとする試みは
近年活発に行われており、非常に高い強度と弾性率を有
するポリエチレン繊維が開発されている(例えば特開昭
56−15408号、特開昭55−107506号参照
)。
In recent years, attempts have been made to obtain polyethylene fibers with high strength and high elastic modulus using so-called ultra-high molecular weight polyethylene, which has a viscosity average molecular weight of several hundred thousand to several million, as a raw material. Polyethylene fibers having very high strength and elastic modulus have been developed (see, for example, JP-A-56-15408 and JP-A-55-107506).

超高分子量ポリエチレンが可撓性高分子材料として最初
に高強度化された背景には、その−次構造が極めて単純
であることが挙げられるーしかしながらポリエチレンは
分子鎖間に水素結合を持たず、グリープし易いという欠
点があった。かかる欠点は長時間荷重がかかるような用
途へのポリエチレン繊維の用途範囲を著しく限定してい
た。
The reason why ultra-high molecular weight polyethylene was first developed to be highly strong as a flexible polymer material is that its secondary structure is extremely simple; however, polyethylene does not have hydrogen bonds between its molecular chains. The drawback was that it was easy to greep. These drawbacks have severely limited the range of use of polyethylene fibers in applications where loads are applied for long periods of time.

従来ポリエチレンIIapaの耐クリープ性を改良する
試みとして二ま、架橋剤を添加し、又は添加せずム熱的
手段又は電子線照射等の手段によって分子鎖間に架橋を
導入しようとする検討が知られているが、ポリエチレン
繊維の高強度を保持したまま架橋を導入することは非常
に困難で、耐クリープ性と高強度を併立させることがで
きないのが現状である。
Conventionally, as an attempt to improve the creep resistance of polyethylene II apa, studies have been made to introduce crosslinks between molecular chains by means such as thermal means or electron beam irradiation, with or without adding a crosslinking agent. However, it is extremely difficult to introduce crosslinking while maintaining the high strength of polyethylene fibers, and it is currently impossible to achieve both creep resistance and high strength.

また特開昭61−28911号には、後延伸又は熱処理
することによってポリエチレン繊維の耐クリープ性が改
良されたと記載されているが、非常に低速な延伸と複雑
な工程のため経済性、生産性の見地から問題があった。
Furthermore, JP-A No. 61-28911 states that the creep resistance of polyethylene fibers is improved by post-stretching or heat treatment, but due to the very slow stretching and complicated process, economic efficiency and productivity are low. There was a problem from this point of view.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者等は鋭意検討した結果、ポリエチレン繊維中の
結晶構造中に乱れが少なく、かつポリエチレン以外の不
純物が少ない程耐クリープ性が良好になるという事実を
見出し、本発明を完成した。
As a result of extensive studies, the inventors of the present invention have found that the less disordered the crystal structure of polyethylene fibers and the less impurities other than polyethylene, the better the creep resistance, and have completed the present invention.

従って本発明の目的は高強度、高弾性率を有し、しかも
今までにない非常に優れた耐クリープ性を有する高強度
ポリエチレン繊維及びその製造方法を提供することにあ
るっ 〔課題を解決するための手段〕 本発明は実質的に粘度平均分子IL50万以上の超高分
子量ポリエチレンを主成分とするポリマーからなり、璧
度が25!%/d以上、弾性率が800g/d以上のポ
リエチレン繊維において、50°C,9y−/d荷重下
でのクリープ速度が、5 X 10”” 5ee−’以
下である耐クリープ性高強度ポリエチレン繊維である。
Therefore, an object of the present invention is to provide a high-strength polyethylene fiber having high strength, high modulus of elasticity, and unprecedentedly excellent creep resistance, and a method for producing the same. Means for Achieving] The present invention consists essentially of a polymer whose main component is ultra-high molecular weight polyethylene with a viscosity average molecular weight IL of 500,000 or more, and a degree of perfectness of 25! %/d or more, and a polyethylene fiber having an elastic modulus of 800 g/d or more, a creep-resistant high-strength polyethylene whose creep rate under a load of 50°C and 9y-/d is 5 x 10""5ee-' or less It is a fiber.

以下詳細に本発明を説明する。The present invention will be explained in detail below.

可撓性高分子である実質的に粘度平均分子量が50万以
上の超高分子量ポリエチレンを用いて高強度、高弾性率
を有する繊維を製造するには、いかに分子鎖を長く均一
に引き揃えるかという点に集約されるが、実際にはポリ
エチレンの分子自体がフレキシブルであるため、分子鎖
が互いに絡みあったり、分子鎖の折れ畳み等の状態を内
在したまま結晶化が進行するため、通常の溶融押し出し
技術では蛾維製造が困難である0 このような分子鎮の折り畳み及び分子末端等は非晶部と
して存在するが、二nが結晶の中に取り込まれると結晶
内の欠陥となる。近手高強度ポリエチレン延伸物特に4
ilaの構造について、結晶の中に非晶部(欠陥)が偏
在する一層系であるとするモデルが一般化しつつあるが
、このような結晶の乱れについて定量的に記述する方法
として、ホーゼマンプロット(FlosemannPl
ot)によるl値がある。
In order to produce fibers with high strength and high elastic modulus using ultra-high molecular weight polyethylene, which is a flexible polymer and has a viscosity average molecular weight of 500,000 or more, how can the molecular chains be aligned long and uniformly? However, since the polyethylene molecule itself is actually flexible, crystallization progresses with the molecular chains intertwined with each other and the molecular chains folded. It is difficult to produce moth fibers using melt extrusion technology. Such folds and molecular terminals exist as amorphous parts, but when 2n is incorporated into the crystal, they become defects within the crystal. High-strength polyethylene stretched products, especially 4
Regarding the structure of ila, a model that assumes that it is a single-layer system in which amorphous parts (defects) are unevenly distributed in the crystal is becoming popular, but as a method to quantitatively describe such crystal disorder, the Hoseman plot (FlosemannPl
ot).

本発明者箋は、このg値と他の結晶中の欠陥及びポリエ
チレン以外の不純物とクリープ特性との関係を詳細に調
査したところ、結晶中の乱れが多い程又、残留する溶剤
や添加剤などの不純物が多い程耐クリープ性が悪化する
という事実を見出した。この原因は明らかでないが、結
晶内の乱れがより弱い分子間力の原因となって、分子鎖
間のスリップを促進するか、又はこの欠陥がクリープと
共に移動するような転位が支配要因ではないかと推定さ
れる。
The inventor investigated in detail the relationship between this g value, other defects in the crystal, impurities other than polyethylene, and creep characteristics, and found that the more disordered the crystal, the more the residual solvent and additives It has been found that the more impurities there are, the worse the creep resistance is. The cause of this is not clear, but the dominant factor may be that disorder within the crystal causes weaker intermolecular forces and promotes slippage between molecular chains, or that dislocations that cause these defects to move together with creep are the dominant factors. Presumed.

かかる観点から、以下に述べるように、今まで考慮され
なかつTこ結晶がより完全となり、かつ不純物を含まな
い超高分子量ポリエチレンの4魂の製造方法を見出し、
麓来得られなかった耐クリープ性を有する高強度ポリエ
チレン繊維椎を得ることに成功した。ここで!J調さn
ることは、本発!による超高分子量ポリエチレン*iは
、耐クリープ性が良くなっただけに留まらず、超高分子
量ポリエチレン繊維が本来有する高強度、高弾性率を保
持し、すぐれている点にある。
From this point of view, as described below, we have discovered a method for producing ultra-high molecular weight polyethylene that has not been considered until now, has more perfect T crystals, and does not contain impurities.
We succeeded in obtaining high-strength polyethylene fiber vertebrae that have creep resistance that has not been available in the past. here! J key n
It all comes from the truth! The ultra-high molecular weight polyethylene*i produced by the above-mentioned ultra-high molecular weight polyethylene*i not only has improved creep resistance, but also maintains the high strength and high elastic modulus inherent to ultra-high molecular weight polyethylene fibers.

本発明で使用するポリエチレンを主成分とするポリマー
は、後述するポリエチレン単独、又はエチレンと他のα
−オレフィン例えばプロピレン、ブテン等との共重合体
であってもよく、ポリエチレンホモポリマーとこれらの
ポリエチレン共重合体のブレンドであってもよい。ポリ
マーの主鎖中にメチル、エチw’@の側嬢を導入するこ
とは、耐クリープ性向上という点では効果があるが、3
11@が増加しすぎると、壜維製造途中での延伸性が著
しく低下し、強度等の物性が著しく低下するので好まし
くない。
The polyethylene-based polymer used in the present invention may be polyethylene alone or ethylene and other α
- It may be a copolymer with an olefin such as propylene, butene, etc., or it may be a blend of a polyethylene homopolymer and these polyethylene copolymers. Introducing methyl and ethyl w'@ flanks into the main chain of the polymer is effective in improving creep resistance, but 3
If 11@ increases too much, the stretchability during the production of bottle fibers will be significantly lowered, and physical properties such as strength will be significantly lowered, which is not preferable.

従って本発明の目的である高強度、高弾性率という点か
ら、使用しうるポリエチレン共重合体又はブレンドとし
て混入するポリエチレン共重合体により導入される側鎖
成分は、メチル基、エチル基程度のあまり嵩高でないも
のが好ましく、含有率としては土製炭素1000当り1
以下であるのが好ましい。
Therefore, from the viewpoint of high strength and high elastic modulus, which are the objectives of the present invention, the side chain components introduced by the polyethylene copolymer that can be used or the polyethylene copolymer mixed as a blend should not be too large, such as methyl groups or ethyl groups. It is preferable that it is not bulky, and the content rate is 1 per 1000 earthen carbon.
It is preferable that it is below.

本発明で使用する前述した如きポリエチレンを主成分と
するポリマーは、粘度平均分子量が50万以上、好まし
くは100万以上、更に好ましくは150万以上である
ことが必要である。
The above-mentioned polyethylene-based polymer used in the present invention needs to have a viscosity average molecular weight of 500,000 or more, preferably 1,000,000 or more, and more preferably 1,500,000 or more.

かかる超高分子量化は高強度ポリエチレン繊維を製造す
るに当って不可欠の要件であり、このことは高分子量化
により分子末端の低域により、分子末端由来の欠陥を少
なくする効果を有する。
Such ultra-high molecular weight is an essential requirement for producing high-strength polyethylene fibers, and this has the effect of reducing defects originating from the molecular ends due to the low range of molecular ends due to the high molecular weight.

上述した如き超高分子量のポリエチレンを主成分とする
ポリマーを用いて高強度ポリエチレン繊維を製造するに
は、前述したとおり、通常の寥融紡糸法では製造困難で
ある。このため一つの適切な方法として例えば特開昭5
5−107506号等に開示されているような、溶剤を
用いた通常「ゲル紡糸法」として知られている方法があ
る。このゲル紡糸法によれば一応強度2511/d以上
、弾性率80 G li/d以上のポリエチレン繊維が
得られる。しかしながら耐クリープ性が悪い欠点を有し
ている。これは前述した如く、繊維の結晶内の欠陥や不
純物が存在するためである。
As mentioned above, it is difficult to produce high-strength polyethylene fibers using a polymer whose main component is ultra-high molecular weight polyethylene as described above using the normal melt spinning method. For this reason, one suitable method is, for example,
There is a method generally known as a "gel spinning method" using a solvent, as disclosed in Japanese Patent No. 5-107506. According to this gel spinning method, polyethylene fibers having a strength of 2511/d or more and an elastic modulus of 80 Gli/d or more can be obtained. However, it has the disadvantage of poor creep resistance. This is due to the presence of defects and impurities within the fiber crystals, as described above.

このため**の結晶内の欠陥及び不純物をできるだけ減
少させて、耐クリープ性を向上させるためには以下に示
すことが重要であることを見出した。
Therefore, it has been found that the following is important in order to reduce defects and impurities in the crystal of ** as much as possible and improve creep resistance.

第一に本発明による耐クリープ性にすぐれたポリエチレ
ン繊維を得るには、ポリエチレン繊維中に含まれるポリ
エチレンを主成分とするポリマー以外の残留成分具体的
には溶剤及び添加剤が、重量分率で1o o o pp
m以下であることが重要であることが判った。残留成分
が1000pp−を越えると耐クリープ性は著しく劣化
する。
First, in order to obtain polyethylene fibers with excellent creep resistance according to the present invention, residual components other than the polyethylene-based polymer contained in the polyethylene fibers, specifically solvents and additives, must be 1 o o o pp
It was found that it is important that the distance be less than m. When the residual component exceeds 1000 pp-, the creep resistance deteriorates significantly.

本発明によるポリエチレン礒遮の製造法としてはゲル紡
糸法が適していることから必然的に溶剤を後述する如く
多量に使用する。このため残留成分としては使用した溶
剤が主たるものである。溶削以外の添加物も使用した場
合には、これらも含めて残留成分を1000 ppm以
下にする必要がある。かかる溶削以外の添加物には、繊
維製造過程で分子最低下を防止するために加えられる酸
化防止剤がある。しかしながら、本発明のポリエチレン
繊維を製造するに際し、溶剤とポリマー成分の混合物を
混合溶解するに当って、スクリュー型押し出し機中で加
熱雰囲気を実質的に無酸素状態、具体的には150wH
P以下の減圧にすれば雪化防止)を使用しなくても同等
の効果が得られることを見出した。従って酸化防止剤は
使用しないのが好ましい。又その他の通常の添加剤もな
るべく使用しないのが好ましい。
Since the gel spinning method is suitable for the production of polyethylene fibers according to the present invention, a large amount of solvent is necessarily used as described below. Therefore, the residual component is mainly the solvent used. If additives other than those for cutting are also used, the residual components including these must be kept at 1000 ppm or less. Such non-cutting additives include antioxidants that are added during the fiber manufacturing process to prevent molecular degradation. However, when producing the polyethylene fibers of the present invention, the heating atmosphere is maintained in a substantially oxygen-free state in a screw extruder when mixing and dissolving a mixture of a solvent and a polymer component, specifically at 150 wH.
It has been found that if the pressure is reduced to P or less, the same effect can be obtained without using snow formation prevention. Therefore, it is preferable not to use antioxidants. It is also preferable not to use other common additives as much as possible.

本発明の方法では、前述した如く粘度平均分子量が50
万以上のポリエチレンを主成分とするポリマーを用い、
ゲルV糸法で、紡糸するため、紡糸用原料混合物として
、上記ポリマー成分と、溶剤の1混合物を使用する。ポ
リマー成分と、溶剤の割合は使用するポリマー成分の分
子量と溶剤の種類によって変化するが通常ポリマー成分
5〜20重量部に対して溶剤95〜aoiit部を使用
する。
In the method of the present invention, as mentioned above, the viscosity average molecular weight is 50
Using a polymer whose main component is over 10,000 polyethylene,
In order to perform spinning using the gel V yarn method, a mixture of the above polymer components and a solvent is used as a raw material mixture for spinning. The ratio of the polymer component to the solvent varies depending on the molecular weight of the polymer component and the type of solvent used, but it is usually 95 to 20 parts by weight of the solvent to 5 to 20 parts by weight of the polymer component.

使用しうる溶剤としては、最終的に形成される繊維中の
残留成分即ち溶剤成分及び添伽剤の割合が前述した如<
10001)1)!1以下になるようにするために揮発
性の溶剤を用いることが必須であり、その融点がポリマ
ー成分の融点より低く、その沸点がポリマー成分の髄点
より15℃以上高く、シかもなるべくは15℃より大き
く高くないものを使用するとよい。
As for the solvent that can be used, the ratio of the residual component, that is, the solvent component and the additive in the finally formed fiber is as described above.
10001)1)! 1 or less, it is essential to use a volatile solvent whose melting point is lower than the melting point of the polymer component, whose boiling point is 15°C or more higher than the core temperature of the polymer component, and preferably at a temperature of 15°C or less. It is best to use one that is not much higher than ℃.

使用しうる溶剤には、原料のポリエチレンの分子量によ
って変化するが、例えばデカリン、テトラリン、ジクロ
ルベンゼン、ナフタレン及びこれらの混合物等がある。
Solvents that can be used vary depending on the molecular weight of the raw material polyethylene, and include, for example, decalin, tetralin, dichlorobenzene, naphthalene, and mixtures thereof.

本発明では原則として、上述した超高分子量のポリマー
成分と・溶剤のみからなる混合物を紡糸唾液として使用
するのが好ましい。
In the present invention, in principle, it is preferable to use a mixture consisting only of the above-mentioned ultra-high molecular weight polymer component and a solvent as the spinning saliva.

本発明方法においては、前述したポリマー成分と溶剤成
分を含t1−混合物をスクリュー型押し出し機に150
 tmg以下の減圧下で供給し、その後充分均−になる
種混合′S解し、紡糸ノズルより押し出した後、得られ
たゲル状未延沖糸を加熱することにより溶剤を除去し、
上記加熱と同時に又はそれに引き破いて前記未延伸糸を
延伸するのである。
In the method of the present invention, a t1-mixture containing the above-mentioned polymer component and solvent component is passed through a screw extruder for 150 m
The mixture is supplied under a reduced pressure of tmg or less, after which the seeds are thoroughly mixed and dissolved, and after being extruded from a spinning nozzle, the obtained gel-like unrolled yarn is heated to remove the solvent,
The undrawn yarn is stretched simultaneously with the heating or by tearing it apart.

上記押し出し後得られた未延伸糸の加熱は90℃以上、
好ましくは100〜130℃の加熱オープン中で滞留時
間0.5分以上好ましくは0、7分以上行う。又延伸は
3倍以上好ましくは4倍以上行うとよい。
The undrawn yarn obtained after the above extrusion was heated to 90°C or higher,
Preferably, the heating is carried out at 100 to 130° C. for a residence time of 0.5 minutes or more, preferably 0.7 minutes or more. Further, the stretching may be carried out 3 times or more, preferably 4 times or more.

尚超高分子量のポリエチレンを主成分とするポリマーと
溶剤の混合物を用いてポリエチレン繊維を製造するに当
り、溶剤を除去することは例えば特開昭58−5228
号に開示さnでいるが、この発明の目的は、その後の延
伸工程の操業性の向上を目的としており、残留溶剤につ
いては全く考慮されていない。従って耐クリープ性の向
上については全く考慮されていない。
When producing polyethylene fibers using a mixture of a polymer containing ultra-high molecular weight polyethylene as a main component and a solvent, removing the solvent is described in, for example, JP-A-58-5228.
However, the purpose of this invention is to improve the operability of the subsequent stretching process, and no consideration is given to residual solvent at all. Therefore, no consideration is given to improving creep resistance.

本発明によるポリエチレン44は上述したような残留物
が少ないことに加えて鷹砿中の結晶溝道が嘱めで乱れの
少ないIIaを有することが必要である。結晶の乱れを
表現する測定法としては例えばX −Ray Diff
raction Methods inpoiymer
  5cience、  ?、  4 2 4 、 L
 E、Alexander。
The polyethylene 44 according to the present invention is required to have a small amount of residue as described above, and also to have IIa in which the crystal grooves in the tungsten are well-defined and less disordered. For example, X-Ray Diff is a measurement method that expresses crystal disorder.
ration Methods impoiymer
5science, ? , 4 2 4, L
E. Alexander.

Robert K、 Krieger Publish
ing Cotspany 、 Inc。
Robert K., Krieger Publishing
ing Cotspany, Inc.

に記載された広角X[測定により得られる(110)面
指数及びその高次ピーク群のホーゼマンプロット(Ho
semann Plot )のlI値がある。本発明に
よる繊維はこのg値が0.035以下で非常に構造の乱
れが少なく、これが低クリープ性の一因であると考えら
れる。
Wide-angle
semann Plot). The fiber according to the present invention has a g value of 0.035 or less and has very little structural disorder, which is considered to be one of the reasons for the low creep property.

この様な乱れを少ない構造にする1こめに、もつとも重
要な要因は、スクリュー内の溶解条件であり、g値が0
.035以下になる様に充分均一温合するスクリュー回
転数及び温度を選択する必要がある。
The most important factor in creating a structure with less turbulence is the melting conditions inside the screw, and the g value is 0.
.. It is necessary to select a screw rotation speed and temperature that will achieve sufficiently uniform heating so that the temperature is 0.035 or less.

また、溶液の1度は、重要であり、ポリマー成分の分率
5〜20重ti好ましくは5〜12.5tt!1sであ
ることが重要である。高農度になる湿、分子のからみ合
いが増加し、こn6;結晶内の欠陥となる。
Also, the degree of solution is important, and the fraction of polymer components is 5-20%, preferably 5-12.5tt! It is important that the time is 1s. As the humidity increases, molecular entanglement increases, resulting in defects within the crystal.

本発明は前述した如く、形成さnるポリエチレン磁電中
の他の成分の残留t!it分率を11000pp以T及
びホーゼマンプロットによるy値が0.035以下であ
ることの相乗効果によってはじめてすぐれた耐クリープ
性を有するのである。
As mentioned above, the present invention provides a method for reducing the residual amount of other components in the polyethylene magnet to be formed. It has excellent creep resistance only due to the synergistic effect of having an IT fraction of 11,000 pp or more and a y value of 0.035 or less according to Hoseman plot.

即ち本発明によるポリエチレン4に推は従来の超高分子
量ポリエチレン繊維の有する25g/d以上の強度、8
009/d以上の弾性率を保有し、しかも50℃、97
7/d荷重下で測定したクリープ速度(CRY 50 
)が5 X 10−@5ec−’以下であるすぐれた耐
クリープ性を有する。
That is, the polyethylene 4 according to the present invention has a strength of 25 g/d or more that conventional ultra-high molecular weight polyethylene fibers, 8
Possesses an elastic modulus of 009/d or more, and also has an elasticity of 97% at 50°C.
Creep rate measured under 7/d load (CRY 50
) is less than 5 x 10-@5ec-' and has excellent creep resistance.

〔作用〕[Effect]

本発明によれば超高分子ポリエチレンを主成分とするポ
リマーから作った繊碓中の残留成分、特に溶剤及び添煽
剤を10001)I)1m以下にすること及び結晶構造
を乱れの少ないものにす゛ることによって、耐クリープ
性に丁ぐれた高強度ポリエチレンis推が得らnる。
According to the present invention, the residual components, especially solvents and additives, in the fiber made from a polymer whose main component is ultra-high molecular weight polyethylene are reduced to 10001) I) 1 m or less, and the crystal structure is made less disordered. By doing so, a high-strength polyethylene resin with excellent creep resistance can be obtained.

〔実1例〕 以下に実1例を挙げて本発明を説明する。向g値及びク
リープ速度の測定法は下記の如く行った。
[One Practical Example] The present invention will be explained below by giving one practical example. The method of measuring the g value and the creep rate was as follows.

g埴の測定方法 本明細書で使用する9値は、例えばX −Ra7Dif
fraction Methods in I’oly
mer 5cience 。
Method for measuring g-Ra7The 9 values used in this specification are, for example, X-Ra7Dif
Fraction Methods in I'oly
mer 5science.

P、424、L、 K、 Alexander、Rob
ert E、にriegerPublishing C
oa+pany、 Inc、に記載されているホーゼマ
ンプロットとして知られている方法で測定するが、その
方法は以下の通りである二通常の蛾遂測定用の広角X線
装置を用いて試料の繊礁軸に対して垂直方向の広角X*
回折曲線を測定する(このとき適昂する手法、特に散乱
角等の各種補正については例えば九勝株式会社発行「X
壕結晶学(仁田勇監修)」参照)。
P,424,L,K,Alexander,Rob
ert E, rieger Publishing C
The measurement is carried out using a method known as the Hosemann plot described in OA+Pany, Inc. The method is as follows. Wide angle X* perpendicular to the axis
Measure the diffraction curve (for details on the appropriate method at this time, especially various corrections such as scattering angle, etc., please refer to "X
(See “Trenches Crystallography (Supervised by Isamu Nita)”).

得られた散乱曲線の(110)及び(220)ピークの
積分@Bを求め、それぞれB、1.及びB□。
The integrals @B of the (110) and (220) peaks of the obtained scattering curve are calculated, and B, 1. and B□.

とする。但しこれらの各B値は、装置特有のピークの広
がりbを含むため、下記の様番斤補正する(B□、にて
示す) このように補正されたBの2乗した値を面指数(h)の
4乗に対してグロットする。画点を通過する直線の傾き
と切片から次式によりI値を算出することができる。
shall be. However, each of these B values includes the peak spread b that is unique to the device, so it is corrected as follows (indicated by B□). The squared value of B thus corrected is calculated as the surface index ( h) to the fourth power. The I value can be calculated from the slope and intercept of the straight line passing through the image point using the following equation.

B”= 1 a”X (1/ N”+ III:’f 
h’ )ここでB=積分幅(degree ) a:結晶格子の面間隔(degref’ )N:微結晶
内の格子の繰返し数 クリープ速度 本明細書で使用するクリープ速度は、例えばJourn
al Polymer 5cience第22巻、第5
61頁(1961年)に記載されている方法により求め
られる。その方法は、試料に荷重を加えてから時間に対
しての歪率の変化が一定番こなった時、或いはその変化
率が最低になった時の歪速度、即ち平坦部クリープ(P
lateau creep )での変形速度をいう。特
に本明則書でのクリープ速度(CRV50)とは、50
℃の温度に調節した糸試料に9.F/dの荷重を加える
。元の試料の長さを1. (m)、2時間後の長さを1
. (cm)、22時間後の長さをI、−)とするとC
RV 50 (5ee−’)は次式で与えられる。
B”= 1 a”X (1/ N”+ III:'f
h') Here, B=integral width (degree) a: Interplanar spacing of crystal lattice (degree) N: Number of repetitions of lattice within microcrystal Creep rate
al Polymer 5science Volume 22, No. 5
61 (1961). This method is based on the strain rate when the change in strain rate over time after a load is applied to the sample is constant, or when the rate of change is the lowest, that is, the plateau creep (P
deformation speed (lateau creep). In particular, the creep rate (CRV50) in this specification is 50
9. onto a yarn sample adjusted to a temperature of ℃. Apply a load of F/d. The length of the original sample is 1. (m), the length after 2 hours is 1
.. (cm), and the length after 22 hours is I, -), then C
RV 50 (5ee-') is given by the following formula.

CRY 50”(I−L)/(20x3600x1.)
実施例 1 粘度平均分子量190万の超高分子量ポリエチレン5重
量部及びデカリン95重量部を混合し、温度210℃、
300 rpmのスクリュー押し出し機で混練溶解し、
直径0.5のオリフィスから押し出した。この時超高分
子量ポリエチレン溶液の調合タンクから押し出し機に至
るまでを実質的に150saaHJiEの圧力に保った
。押し出されたフィラメントは空気流で冷却し、30x
/分の引き取り速度で引き取や、引き続いて100℃に
調節した空気オープン中で6倍に延伸した。この場合オ
ーブン内でのフィラメントの平均滞留時間は0.95分
であった。尚平均滞留時間(Tr)は次式で表わされる
CRY 50”(IL)/(20x3600x1.)
Example 1 5 parts by weight of ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.9 million and 95 parts by weight of decalin were mixed and heated at a temperature of 210°C.
Kneaded and dissolved using a 300 rpm screw extruder,
It was extruded through an orifice with a diameter of 0.5. At this time, the pressure from the ultra-high molecular weight polyethylene solution preparation tank to the extruder was maintained at substantially 150 saaHJiE. The extruded filament is cooled by air flow and 30x
The film was drawn off at a drawing speed of 1/2 min, and then stretched 6 times in an open air chamber adjusted to 100°C. In this case, the average residence time of the filament in the oven was 0.95 minutes. Note that the average residence time (Tr) is expressed by the following formula.

Tr=2L/(VO+RxVO)(Q)ここでL:オー
プン長−1vO:供給速度(m/分)R=延伸倍率 この糸を引き続き温度100℃の加熱雰囲気下で5倍に
延伸した、最終巻取速度は100wL/分であった。得
られた延伸糸の強度は37g/d、弾性率は1580.
9/dと優れたものであった。又この延伸糸からの抽出
物もガスクロマトグラフィなどの方法により分析した結
果、残留するボッエチレン以外の残留物は55 ppm
であった。I値、クリープ速度、溶剤残留分率は後掲の
表2に示す。
Tr=2L/(VO+RxVO) (Q) where L: Open length - 1vO: Supply speed (m/min) R=Stretching ratio This yarn was subsequently stretched 5 times in a heated atmosphere at a temperature of 100°C, the final volume. The sampling rate was 100 wL/min. The strength of the obtained drawn yarn was 37 g/d, and the elastic modulus was 1580.
It was excellent at 9/d. Furthermore, as a result of analyzing the extract from this drawn yarn using methods such as gas chromatography, it was found that the amount of residue other than the remaining bokethylene was 55 ppm.
Met. The I value, creep rate, and residual solvent fraction are shown in Table 2 below.

比較例 1,2及び実施例 2〜4 溶解のスクリュー回転数及び溶解温度(スクリュー温度
)を下表1の様に変えた他は実施例1と同じ製法を用い
て糸を作成した。ただし、最終的な延伸倍率が低い場合
は、可能な倍率で延伸を行った。尚比較例2では溶剤と
してパラフィンワックス(非揮発性)を使用した。
Comparative Examples 1 and 2 and Examples 2 to 4 Yarns were produced using the same manufacturing method as in Example 1, except that the screw rotation speed and melting temperature (screw temperature) were changed as shown in Table 1 below. However, when the final stretching ratio was low, stretching was performed at the possible ratio. In Comparative Example 2, paraffin wax (non-volatile) was used as a solvent.

表 1 実施例 5 粘度平均分子@190万の超高分子量ポリエチレンを1
0重量部、デカヒドロナフタレンを90重量部とした他
は、実施例1と同様の製法で糸を作成した。完成糸の物
性は強度で35g/d%弾性率で17209/dと優G
たちのであった。
Table 1 Example 5 Ultra-high molecular weight polyethylene with viscosity average molecular @ 1.9 million
A yarn was produced in the same manner as in Example 1, except that the amount of 0 parts by weight and the amount of decahydronaphthalene were 90 parts by weight. The physical properties of the finished yarn are excellent with a strength of 35 g/d% and an elastic modulus of 17209/d.
It was ours.

比較例 3 粘度平均分子量190万の超高分子量ポリエチレンを3
0重量部、デカヒドロナフタレンを70重量部とした他
は、実施例1と同様の製法で糸を作成した。ただし、2
段目の延伸では、3倍までしか延伸できなかったが物性
としては31 p/dの引張り強度と11209/dの
弾性率を有する延伸物が得られた。
Comparative Example 3 Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.9 million
A yarn was produced in the same manner as in Example 1, except that the amount of 0 parts by weight and the amount of decahydronaphthalene were 70 parts by weight. However, 2
In the second stage of stretching, although the stretching was only possible up to 3 times, a stretched product having physical properties of tensile strength of 31 p/d and elastic modulus of 11209/d was obtained.

比較例 4 粘度平均分子量40万の超高分子量ポリエチレンを用い
た他は、実施例1と同様の製法で糸を作成した。得られ
た糸の物性としては、強度18、p/d、弾性率800
9/dと不充分なものであった。
Comparative Example 4 A thread was produced in the same manner as in Example 1, except that ultra-high molecular weight polyethylene with a viscosity average molecular weight of 400,000 was used. The physical properties of the obtained yarn include strength 18, p/d, and elastic modulus 800.
It was 9/d, which was unsatisfactory.

比較例 5 実施例1と同様のポリマー、ポリマーaKbよび、はぼ
同様の製糸条件で糸を作成した。ただしポリマードープ
作成時にポリマーに対して1重量部の分量で酸化防止剤
(商標名「ヨシノックスBHTJ:吉富製薬株式会社製
)を加え、ドープからスクリュー供給部に至るまでは、
実質的に大気中雰囲気下に置いた。得られたwA惟の物
性は、強度3sy/as弾性率1623.p/dであっ
た。
Comparative Example 5 A yarn was produced using the same polymer and polymer aKb as in Example 1, and under the same yarn spinning conditions. However, when making the polymer dope, add an antioxidant (trade name: Yoshinox BHTJ, manufactured by Yoshitomi Pharmaceutical Co., Ltd.) to the polymer in an amount of 1 part by weight, and from the dope to the screw supply section,
It was placed under a substantially atmospheric atmosphere. The physical properties of the obtained wA resin are as follows: strength: 3 sy/as; elastic modulus: 1623. It was p/d.

比較例 6 粘度平均分子量190万の超高分子量ポリエチレン15
重tXに対して、パラフィンワックス(融点士48〜5
0℃)85重11部の混合物を実m9’llの押し出し
条件にて未延伸糸を作成した。この未延伸糸をn−ヘキ
サンの延伸槽中で、パラフィンを抽出しながら5倍に延
伸した。
Comparative Example 6 Ultra-high molecular weight polyethylene 15 with a viscosity average molecular weight of 1.9 million
Paraffin wax (melting point 48-5
An undrawn yarn was prepared by extruding a mixture of 85 parts by weight (0°C) and 11 parts by weight under actual conditions of 9'll. This undrawn yarn was drawn five times in an n-hexane drawing tank while extracting paraffin.

引き続き143℃の厚囲気下のオープンにて6倍の延伸
を行った。得られた繊維の物性は、強度33,9/d%
弾性率x3z3.F/dであった。
Subsequently, the film was stretched 6 times in an open atmosphere at 143°C. The physical properties of the obtained fibers are as follows: strength: 33.9/d%
Elastic modulus x3z3. It was F/d.

比較例 7 ゾーン長50sのオープンにて3沿の1段延伸を行った
他は、実施例1と同様の方法にしたがった。オープンで
の滞留時間Trは0.47分であった。
Comparative Example 7 The same method as in Example 1 was followed, except that one stage of stretching in three directions was performed with an open zone length of 50 seconds. The residence time Tr in the open state was 0.47 minutes.

強實は、34 g/d、弾性率は1390@/dと良好
であった。
The strength was 34 g/d and the elastic modulus was 1390@/d, which were good.

g筐及びクリープ速度 表2に、各実施例及び比較例で作った糸のgffi、G
ClH5法で求めたポリエチレン以外の残留分率及び5
0℃、9i/dの荷重下でのクリープ速度を示す。この
様(こi値が0.03を越えるか、残留成分が1000
ppaI)越えるかあるいは、溶解混合が不充分で均一
混合物とならず、選択した条件が好ましくない場合は、
クリープ速度が非常に大きくなる事がわかる。
G case and creep speed Table 2 shows the gffi and G of the yarns made in each example and comparative example.
Residual fraction other than polyethylene determined by ClH5 method and 5
It shows the creep rate under a load of 9 i/d at 0°C. In this case (the i value exceeds 0.03 or the residual component is 1000
ppaI) or if the selected conditions are unfavorable due to insufficient dissolution and mixing to form a homogeneous mixture,
It can be seen that the creep rate becomes very large.

表  2Table 2

Claims (1)

【特許請求の範囲】 1、実質的に粘度平均分子量50万以上の超高分子量ポ
リエチレンを主成分とするポリマーからなり、強度が2
5g/d以上、弾性率が800g/d以上のポリエチレ
ン繊維において、50℃、9g/d荷重下でのクリープ
速度が、5×10^−^6sec^−^1以下であるこ
とを特徴とする耐クリープ性高強度ポリエチレン繊維。 2、ポリエチレンを主成分とするポリマー以外の残留溶
剤及び添加剤の重量分率が1000ppm以下である請
求項1記載のポリエチレン繊維。 3、ポリエチレンを主成分とするポリマーが、ポリエチ
レンのみからなるか、エチレンと他のα−オレフィンと
の共重合体、又はポリエチレンとポリエチレン共重合体
とのブレンドである請求項1又は2記載のポリエチレン
繊維。 4、ポリエチレン繊維の広角X線測定により得らたる(
110)面指数及びその高次ピーク群のホーゼマンプロ
ット(Hosemann Plot)より得られるg値
が0.035以下である請求項1〜3の何れかに記載の
ポリエチレン繊維。
[Claims] 1. Consists of a polymer whose main component is ultra-high molecular weight polyethylene with a viscosity average molecular weight of 500,000 or more, and has a strength of 2.
A polyethylene fiber having an elastic modulus of 5 g/d or more and an elastic modulus of 800 g/d or more, characterized in that the creep rate under a load of 9 g/d at 50°C is 5 x 10^-^6 sec^-^1 or less. Creep resistant high strength polyethylene fiber. 2. The polyethylene fiber according to claim 1, wherein the weight fraction of residual solvents and additives other than the polyethylene-based polymer is 1000 ppm or less. 3. The polyethylene according to claim 1 or 2, wherein the polyethylene-based polymer consists only of polyethylene, a copolymer of ethylene and another α-olefin, or a blend of polyethylene and a polyethylene copolymer. fiber. 4. Obtained by wide-angle X-ray measurement of polyethylene fibers (
110) The polyethylene fiber according to any one of claims 1 to 3, which has a g value of 0.035 or less obtained from a Hosemann plot of a surface index and its higher-order peak group.
JP2340956A 1990-11-30 1990-11-30 High strength polyethylene fiber with creep resistance Expired - Fee Related JP2586213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340956A JP2586213B2 (en) 1990-11-30 1990-11-30 High strength polyethylene fiber with creep resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340956A JP2586213B2 (en) 1990-11-30 1990-11-30 High strength polyethylene fiber with creep resistance

Publications (2)

Publication Number Publication Date
JPH04209817A true JPH04209817A (en) 1992-07-31
JP2586213B2 JP2586213B2 (en) 1997-02-26

Family

ID=18341862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340956A Expired - Fee Related JP2586213B2 (en) 1990-11-30 1990-11-30 High strength polyethylene fiber with creep resistance

Country Status (1)

Country Link
JP (1) JP2586213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012885A1 (en) * 1999-08-11 2001-02-22 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and its use
JP2009500091A (en) * 2005-07-05 2009-01-08 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE filament based surgical repair products
JP2010522286A (en) * 2007-03-27 2010-07-01 ディーエスエム アイピー アセッツ ビー.ブイ. Method for removing residual spinning solvent from a gel-spun filament, the filament, a multifilament yarn containing the filament and a product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438439A (en) * 1987-08-04 1989-02-08 Toyo Boseki Creep-resistant high-strength polyethylene molding and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438439A (en) * 1987-08-04 1989-02-08 Toyo Boseki Creep-resistant high-strength polyethylene molding and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012885A1 (en) * 1999-08-11 2001-02-22 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and its use
JP2009500091A (en) * 2005-07-05 2009-01-08 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE filament based surgical repair products
JP2010522286A (en) * 2007-03-27 2010-07-01 ディーエスエム アイピー アセッツ ビー.ブイ. Method for removing residual spinning solvent from a gel-spun filament, the filament, a multifilament yarn containing the filament and a product
JP2014129638A (en) * 2007-03-27 2014-07-10 Dsm Ip Assets Bv Method for removing residual spinning solvent from gel spun filament, the filament, multifilament yarn and product including the filament
US9260801B2 (en) 2007-03-27 2016-02-16 Dsm Ip Assets B.V. Process for removing residual spin solvent from a gel spun filament, the filament, multi-filament yarn and products comprising the filament

Also Published As

Publication number Publication date
JP2586213B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
EP1189985B1 (en) Polypropylene with high melt strength and drawability
DE69837573T2 (en) HIGH-DENSITY POLYETHYLENE FILMS WITH IMPROVED CURING CAPACITY
EP1023388B1 (en) Polypropylene composition useful for making solid state oriented film
RU2433047C2 (en) Polyethylene composition for products from stretched belt
JP2017507216A5 (en)
US3686385A (en) Formation of elastic and high-tenacity fibers from butene-1 homopolymers and copolymers
JPS648083B2 (en)
US20050159532A1 (en) Processing aids for enhanced machine direction orientation rates and property enhancement of polyolefin films using hydrocarbon waxes
US7176259B1 (en) High density polyethylene films with improved barrier properties
US4938911A (en) Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus
JPH04209817A (en) High strength polyethylene fiber having creep resistance
JP3738873B2 (en) High strength polyethylene fiber
JP3226062B2 (en) High strength polyethylene fiber
US6743845B2 (en) Oriented high density polyethylene film, compositions and process suitable for preparation thereof
JPH10183421A (en) Production of polypropylene fiber
JPS6241311A (en) Improved polypropylene monofilament and production thereof
JPS59168116A (en) Production of drawn polyethylene
JPS60232927A (en) Manufacture of orientated polyethylene
JPH02308839A (en) Polypropylene composition
JPH0240764B2 (en)
BRPI0707168A2 (en) polyethylene composition, use of a polyethylene composition, film, article, and process for preparing drawn tapes with a polyethylene composition
JPH0226915A (en) Production of ultra-high-molecular weight polyolefin fiber
JPS599207A (en) Drawn tape
JPS5911222A (en) Stretched tape
JPH0465512A (en) Molecular oriented formed polyethylene having excellent creep resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees