JPH04209448A - Deflection yoke - Google Patents

Deflection yoke

Info

Publication number
JPH04209448A
JPH04209448A JP40620090A JP40620090A JPH04209448A JP H04209448 A JPH04209448 A JP H04209448A JP 40620090 A JP40620090 A JP 40620090A JP 40620090 A JP40620090 A JP 40620090A JP H04209448 A JPH04209448 A JP H04209448A
Authority
JP
Japan
Prior art keywords
magnetic field
angle
slots
deflection
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40620090A
Other languages
Japanese (ja)
Inventor
Kimiharu Shiyouji
東海林 君春
Saburo Miyakoshi
宮腰 三郎
Satoru Saruishi
悟 去石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP40620090A priority Critical patent/JPH04209448A/en
Publication of JPH04209448A publication Critical patent/JPH04209448A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish compensation of pin cushion barrel distortion with high accuracy as well as focusing with high resolution by arranging a slot formed inside a ferrite core in a specified relation between an angle at a neck part and an angle of screen part. CONSTITUTION:In a deflection yoke for image pick-up tube, vertical deflection coiling is applied to a plurality of slots 13 formed at the inner face of annular magnetic ferrite core 11 in a funnel shape, and further onto the inner face horizontal deflection coiling is applied. A part of each slot 13 is cut slantly without cutting it radially. Namely, in an angle measured from a horizontal axis to the center of a groove is formed such that the angle of other slots at a neck part than a 1st or 2nd slot on the side of the horizontal axis is made smaller than the angle at a screen part. With a core with such a constitution, the distribution of vertical deflection magnetic field can be controlled in a barrel shape at the neck side while in a pin cushion shape at the screen side. It is thus possible to have focusing with high resolution and perform compensation of pin cushion-barrel distortion with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は受像管装置用偏向ヨーク
に関する。 [0002] 【従来技術】従来、受像管上に装着される偏向ヨークと
して、偏向感度の向上を図る目的で、朝顔状の環状磁性
フェライトコアの内面に複数個のスロットを形成し、垂
直偏向巻線及び水平偏向巻線をこれらのスロットに装入
したものが使用されている。スロットはコイル巻線の位
置を正確に規制するから、ばらつきの少ない高精度の製
品が達成される。 [0003]従来の偏向ヨークにおいては、コアの内面
に設けるスロットの角度は等しく設定されるものであっ
た。このため、スロット内に挿入して巻回される偏向巻
線はコアの前端(スクリーン側)及び後端(ネック側)
で同一のスリット溝内に巻装されるもので、巻線の巻回
位置(巻線分布)が限定され所望の偏向磁界を得るよう
な巻線分布を任意に得ることが難しい、と言う欠点があ
った。 [0004]第11〜15図に従来の偏向ヨークの構造
を示す。第11〜13図に示すようにフェライトコア1
は管軸に沿った方向に延びる複数のスロット3を有し、
間にティース5を有する。これを管軸方向から見るとス
ロット3は丁度放射状になっている。これに図14及び
図15 (これらの図は巻線端部を引っ掛けるフックを
省略しである)に示すように水平方向の磁界を生じる垂
直巻線7及び垂直方向の磁界を生じる水平巻線9を施す
と、管軸上の磁界強度分布は図16のようになる。管軸
上の磁界分布を求めると図17のように斉一磁界に近い
分布となる。この図から分かるようネック側及びスクリ
ーン側の断面内の磁界分布は図18及び図19のように
わずかにピンクッション分布ではあるがほぼ均一の斉一
磁界分布になる。この偏向ヨークを利用して実際の電子
ビームを偏向すると、図20のようなピンクッション型
のラスターがスクリーン上に表われる。これを慣用の永
久磁石で補正すると、図21のような水平ラスターが現
われる。図は誇張しであるが、実際にはほぼ−様な歪の
少ないラスターが得られる。 [0005]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection yoke for a picture tube device. [0002] Conventionally, as a deflection yoke mounted on a picture tube, a plurality of slots are formed on the inner surface of a bosh-shaped annular magnetic ferrite core and a vertical deflection winding is used for the purpose of improving deflection sensitivity. Wires and horizontal deflection windings inserted into these slots have been used. Since the slot precisely regulates the position of the coil winding, a highly accurate product with little variation is achieved. [0003] In conventional deflection yokes, the angles of the slots provided on the inner surface of the core are set to be equal. Therefore, the deflection winding inserted into the slot and wound is at the front end (screen side) and rear end (neck side) of the core.
The disadvantage is that the winding position (winding distribution) of the winding is limited and it is difficult to arbitrarily obtain a winding distribution that will obtain the desired deflection magnetic field. was there. [0004] Figures 11 to 15 show the structure of a conventional deflection yoke. Ferrite core 1 as shown in Figures 11 to 13
has a plurality of slots 3 extending in a direction along the tube axis,
It has teeth 5 in between. When viewed from the tube axis direction, the slots 3 are exactly radial. In addition, as shown in FIGS. 14 and 15 (the hooks for hooking the ends of the windings are omitted), there are a vertical winding 7 that generates a horizontal magnetic field and a horizontal winding 9 that generates a vertical magnetic field. When this is applied, the magnetic field strength distribution on the tube axis becomes as shown in FIG. When the magnetic field distribution on the tube axis is determined, the distribution is close to a uniform magnetic field as shown in FIG. 17. As can be seen from this figure, the magnetic field distribution in the cross section on the neck side and the screen side is a substantially uniform uniform magnetic field distribution, although it has a slight pincushion distribution as shown in FIGS. 18 and 19. When an actual electron beam is deflected using this deflection yoke, a pincushion-shaped raster as shown in FIG. 20 appears on the screen. When this is corrected using a conventional permanent magnet, a horizontal raster as shown in FIG. 21 appears. Although the figure is exaggerated, in reality, a raster with almost -like distortion and little distortion can be obtained. [0005]

【発明が解決すべき課題】第11〜15図に示した従来
フェライトコアでは巻線分布の調整がほとんどできない
のでフォーカスと歪の両者を独立に制御して高品質の画
像を得ることができない。例えば、ピンクッション歪又
はバレル歪の補正が適正に行なわれると、フォーカスが
低下して解像度の良い画像を得ることができなくなる。 [0006]この問題を解決するために従来スロットの
方向をスクリーン側で放射方向から7字形に分岐するす
ようにしたフェライトコアが提案されている(実公平1
−21473号)。これによりネック側と独立してスク
リーン側の磁界分布が制御できることになった。しかし
ながら、この手段によると、スクリーン側の巻線分布は
ある程度任意に調整できるが巻線位置決めに困難がある
だけでなく、ネック側は調整されていないから、歪の補
正とフォーカスの補正を両立させることが不十分となる
。 [0007]従って、本発明は巻線分布が歪とフォーカ
スの両補正が可能なような分布の偏向ヨークを提供する
ことである。 [00081
Problems to be Solved by the Invention In the conventional ferrite cores shown in FIGS. 11 to 15, it is almost impossible to adjust the winding distribution, so it is impossible to independently control both focus and distortion to obtain a high-quality image. For example, if pincushion distortion or barrel distortion is properly corrected, the focus will drop and it will no longer be possible to obtain a high-resolution image. [0006] In order to solve this problem, a ferrite core has been proposed in which the direction of the slot is branched in a figure 7 shape from the radial direction on the screen side (Actual Fair 1
-21473). This allows the magnetic field distribution on the screen side to be controlled independently from the neck side. However, according to this method, although the winding distribution on the screen side can be arbitrarily adjusted to some extent, it is not only difficult to position the windings, but also because the neck side is not adjusted, it is necessary to achieve both distortion correction and focus correction. It becomes insufficient. [0007] Accordingly, it is an object of the present invention to provide a deflection yoke whose winding distribution is such that both distortion and focus can be corrected. [00081

【課題を解決するための手段]本発明は、朝顔形の環状
磁性フェライトコアの内面に形成した複数のスロットに
垂直偏向巻線を施し、更にその内面に水平偏向巻線を施
した受像管用偏向ヨークにおいて、前記スロットは管軸
に直交する水平軸からスロットの中心線まで測った角度
が、水平軸側の1ないし2スロットのみネック部での角
度よりもスクリーン部での角度の方が大きいか(図1)
、同一か(図2)か、または小さい(図3)であり、残
りの過半部ではネック部での角度よりもスクリーン部で
の角度の方が大きい角度に形成され、ネック側でバレル
型磁界分布となり、スクリーン側でピンクッション型の
磁界分布となるように垂直偏向巻線がこれらの溝に巻装
されている受像管用偏向ヨークである。好ましくは更に
水平巻線も同様な磁界分布を生じるように巻線する。 [00091本発明によると、フォーカスと歪が同時に
補正できるので高分解能で低歪の優れた画像を得ること
ができる。 [00101 【実施例の説明]図1ないし図10は本発明による偏向
ヨークとその作用の説明図である。 [00111図1ないし図3は本発明の朝顔形の磁性フ
ェライトコアをスクリーン側から見た正面図である。 [0012]図1は第1実施例によるフェライトコア1
1を示し、ティース15で隔離されたスロット13を有
する。この例ではネック側ではほぼ均一に分布したスロ
ットが形成されているが、スクリーン側に行くにつれて
水平軸(X軸)近傍のスロットの不存在部の幅が大きく
なる。垂直軸(Y軸)に更に近付くと、スロット13は
垂直軸側へ傾斜する。より厳密に規定すると、コア11
のネック側で水平軸からスロット13の中心線16まで
測った角度をθl とし、スクリーン側での同様の角度
O2としたとき、θlくθ2となるように定める。ただ
し垂直軸では放射状になる。ついで垂直巻線17を公知
の端部フック(図示せず)を利用してこれらのスロット
13にサドル状に巻き込み、ついで水平巻線19を公知
の支持枠(図示せず)にサドル状に巻き込み図4のよう
に構成する。図において両巻線の端部の曲っている部分
は端部フックに支持された状態を図式的に示したもので
ある。 [0013]図2は第2実施例による朝顔形のフェライ
トコア11を示す。この例ではネック側でも水平軸近傍
にスロットがない。又角度θ3で放射状のスロットが形
成され、それ以外では、θ1くθ2となるように定めで
ある。ついで垂直巻線17を公知の端部フック(図示せ
ず)を利用してこれらのスロット13にサドル状に巻き
込み、ついで水平巻線19を公知の支持枠(図示せず)
にサドル状に巻き込み図4のように構成する。 [0014]図3は第3実施例による朝顔形のフェライ
トコア11を示す。この例ではネック側でも水平軸近傍
にスロットがない。水平軸近傍ではスロット13は水平
軸に平行であり、更に垂直軸近傍ではそれに平行なスロ
ットとなっている。水平軸と垂直軸の中間では、θ1〈
02 となるように定めである。ついで垂直巻線17を
公知の端部フック(図示せず)を利用してこれらのスロ
ット13にサドル状に巻き込み、ついで水平巻線19を
公**知の支持枠(図示せず)にサドル状に巻き込み図
4のように構成する。 [0015]更に水平巻線を同様な巻線方法で行なうと
ネック側でバレル磁界、スクリーン側でピンクッション
磁界となる。 [0016]水平巻線は上記の条件を満たすように設定
したものについての結果を次に挙げる。図5は図1〜3
の実施例の偏向ヨークの管軸上の概略磁界強度分布を示
す。 [00171図6は同じ実施例の偏向ヨークの偏向歪み
磁界を示す。従来の磁界分布とは明らかに違い、ネック
側がバレル型、スクリーン側がピンクッション型となっ
ている。 [00181図7は同実施例のネック側の磁界分布を示
す。この分布は従来とはかなり違う。 [0019]図8は同実施例のスクリーン側の磁界分布
を示す。 [00201この実施例の偏向ヨークは図9に示すよう
なラスター像を蛍光スクリーン上に生じる。ここに歪Δ
X′及びΔy゛は図20に示した従来のコアの歪ΔX及
びΔyに比して同等以下に制御できる。 [00211これを磁石補正すると図10に示したよう
な補正が可能であり、その歪も図21に示したものに比
して同等以下にできる。 [0022]次に表1に本実施例のフォーカスと従来例
のそれを比較して示した。 [0023] 【表1】 なお、測定条件はCRT、110度、2QpFS管、高
※※圧18KV、振幅370X280mm、残留歪60
%うスタ一部での片側ピン歪残り量。なお、上下歪は振
幅(280mm)に対する△Y+  +△Y2の百分率
、残留歪は直線からの偏り、及び半値幅50%幅である
。 [0024]
[Means for Solving the Problems] The present invention provides a deflection tube for picture tubes in which vertical deflection windings are applied to a plurality of slots formed on the inner surface of a morning glory-shaped annular magnetic ferrite core, and horizontal deflection windings are further provided on the inner surface of the slots. In the yoke, the angle of the slot measured from the horizontal axis perpendicular to the tube axis to the center line of the slot is larger at the screen part than at the neck part of only one or two slots on the horizontal axis side. (Figure 1)
, the same (Fig. 2) or smaller (Fig. 3), and in the remaining majority, the angle at the screen part is larger than the angle at the neck part, and the barrel-shaped magnetic field is formed at the neck side. This is a deflection yoke for picture tubes in which vertical deflection windings are wound around these grooves so that a pincushion-type magnetic field distribution is formed on the screen side. Preferably, the horizontal winding is also wound to produce a similar magnetic field distribution. [00091] According to the present invention, since focus and distortion can be corrected simultaneously, an excellent image with high resolution and low distortion can be obtained. [00101] [Description of Embodiments] FIGS. 1 to 10 are explanatory diagrams of a deflection yoke according to the present invention and its function. [00111 FIGS. 1 to 3 are front views of the morning glory-shaped magnetic ferrite core of the present invention as viewed from the screen side. [0012] FIG. 1 shows a ferrite core 1 according to a first embodiment.
1 and has slots 13 separated by teeth 15. In this example, the slots are almost uniformly distributed on the neck side, but the width of the slot-free area near the horizontal axis (X-axis) increases as you move toward the screen side. Further approaching the vertical axis (Y-axis), the slot 13 tilts toward the vertical axis. To specify more strictly, core 11
The angle measured from the horizontal axis to the center line 16 of the slot 13 on the neck side is θl, and the same angle O2 on the screen side is determined to be θl minus θ2. However, it becomes radial on the vertical axis. The vertical windings 17 are then saddled into these slots 13 using known end hooks (not shown), and the horizontal windings 19 are then saddled into known support frames (not shown). It is configured as shown in FIG. In the figure, the bent portions of the ends of both windings are schematically shown in a state where they are supported by the end hooks. [0013] FIG. 2 shows a morning glory-shaped ferrite core 11 according to a second embodiment. In this example, there is no slot near the horizontal axis on the neck side either. Also, a radial slot is formed at an angle θ3, and at other angles θ1 and θ2 are defined. Vertical windings 17 are then saddled into these slots 13 using known end hooks (not shown), and horizontal windings 19 are then saddled into known support frames (not shown).
It is rolled up into a saddle shape and constructed as shown in Fig. 4. [0014] FIG. 3 shows a morning glory-shaped ferrite core 11 according to a third embodiment. In this example, there is no slot near the horizontal axis on the neck side either. Near the horizontal axis, the slot 13 is parallel to the horizontal axis, and near the vertical axis, the slot 13 is parallel to it. Between the horizontal and vertical axes, θ1〈
02. Vertical windings 17 are then saddled into these slots 13 using known end hooks (not shown), and horizontal windings 19 are then saddled into known support frames (not shown). Roll it up into a shape and configure it as shown in Figure 4. [0015] Furthermore, if horizontal winding is performed using the same winding method, a barrel magnetic field will be generated on the neck side and a pincushion magnetic field will be generated on the screen side. [0016] The results for the horizontal winding set to satisfy the above conditions are listed below. Figure 5 is Figures 1-3
3 shows a rough magnetic field strength distribution on the tube axis of the deflection yoke of the embodiment. [00171 Figure 6 shows the deflection distortion magnetic field of the deflection yoke of the same embodiment. The magnetic field distribution is clearly different from the conventional one, with the neck side being barrel-shaped and the screen side being pincushion-shaped. [00181 FIG. 7 shows the magnetic field distribution on the neck side of the same example. This distribution is quite different from the conventional one. [0019] FIG. 8 shows the magnetic field distribution on the screen side of the same example. [00201 The deflection yoke of this embodiment produces a raster image on the fluorescent screen as shown in FIG. Here is the strain Δ
X' and Δy' can be controlled to be equal to or lower than the strains ΔX and Δy of the conventional core shown in FIG. [00211 If this is subjected to magnetic correction, correction as shown in FIG. 10 is possible, and the distortion can be made equal to or lower than that shown in FIG. 21. [0022] Next, Table 1 shows a comparison between the focus of this embodiment and that of the conventional example. [0023] [Table 1] The measurement conditions are CRT, 110 degrees, 2QpFS tube, high pressure 18 KV, amplitude 370 x 280 mm, residual strain 60
% Remaining pin distortion on one side of part of Usta. Note that the vertical distortion is the percentage of ΔY+ +ΔY2 with respect to the amplitude (280 mm), and the residual distortion is the deviation from a straight line and the half width of 50%. [0024]

【発明の効果】以上のように本発明のコアによると少な
くとも垂直偏向磁界の磁界分布をネック側でバレル型、
及びスクリーン側でピンクッション型に制御できるので
、高解像度のフォーカスと高精度のピンクッションバレ
ル歪補正が可能であり、従来の欠点を改善することがで
きた。
Effects of the Invention As described above, according to the core of the present invention, at least the magnetic field distribution of the vertical deflection magnetic field is shaped like a barrel on the neck side.
And since pincushion-type control can be performed on the screen side, high-resolution focus and high-precision pincushion barrel distortion correction are possible, and the drawbacks of the conventional system can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の受像管用偏向ヨークに使用するフェラ
イトコアをスクリーン側から見た正面図である。
FIG. 1 is a front view of a ferrite core used in a picture tube deflection yoke according to the present invention, viewed from the screen side.

【図2】本発明の第2実施例のフェライトコアをスクリ
ーン側から見た正面図である。
FIG. 2 is a front view of a ferrite core according to a second embodiment of the present invention, viewed from the screen side.

【図3】本発明の第3実施例のフェライトコアをスクリ
ーン側から見た正面図である。
FIG. 3 is a front view of a ferrite core according to a third embodiment of the present invention, viewed from the screen side.

【図4】図3または図4のこれらの一つコアを組み込ん
だ偏向ヨークの組み立てを示す該略図である。
4 is a schematic diagram showing the assembly of a deflection yoke incorporating one of these cores of FIG. 3 or 4; FIG.

【図5】図1〜3の実施例の管軸上の概略磁界強度分布
を示すグラフである。
FIG. 5 is a graph showing the approximate magnetic field strength distribution on the tube axis of the embodiments shown in FIGS. 1 to 3;

【図6】図6は同実施例の磁界分布を示すグラフである
FIG. 6 is a graph showing the magnetic field distribution of the same example.

【図7】図6の実施例のネック側の磁界分布を示す図で
ある。
FIG. 7 is a diagram showing the magnetic field distribution on the neck side of the embodiment of FIG. 6;

【図8】図6の実施例のスクリーン側の磁界分布を示す
図である。
8 is a diagram showing the magnetic field distribution on the screen side of the embodiment of FIG. 6. FIG.

【図9】図6の同実施例による蛍光スクリーン上のラス
タ像を示す図である。
FIG. 9 is a diagram showing a raster image on a fluorescent screen according to the same embodiment of FIG. 6;

【図101図6の実施例の偏向ヨークを磁石補正したラ
スタ像を示す図である。 【図11】従来の受像管用偏向ヨークに使用するフェラ
イトコアの斜視図である。
101 is a diagram showing a raster image obtained by magnetically correcting the deflection yoke of the embodiment of FIG. 6; FIG. FIG. 11 is a perspective view of a ferrite core used in a conventional deflection yoke for a picture tube.

【図12】従来のコアをスクリーン側から見た正面図で
ある。
FIG. 12 is a front view of a conventional core viewed from the screen side.

【図13】従来のコアの管軸に垂直な断面図である。FIG. 13 is a cross-sectional view of a conventional core perpendicular to the tube axis.

【図14】巻線を施した従来の偏向ヨークをスクリーン
側から見た正面図である。
FIG. 14 is a front view of a conventional deflection yoke provided with windings, viewed from the screen side.

【図15】アを組み込んだ偏向ヨークの組み立てを示す
該略図である。
FIG. 15 is a schematic diagram showing the assembly of a deflection yoke incorporating a.

【図16】従来例の偏向ヨークの管軸上の磁界分布を示
すグラフである。
FIG. 16 is a graph showing the magnetic field distribution on the tube axis of a conventional deflection yoke.

【図17】実施例の歪み磁界を示すグラフである。FIG. 17 is a graph showing a distorted magnetic field in an example.

【図18】実施例のネック側の磁界分布を示す図である
FIG. 18 is a diagram showing the magnetic field distribution on the neck side of the example.

【図19】同実施例のスクリーン側の磁界分布を示す図
である。
FIG. 19 is a diagram showing the magnetic field distribution on the screen side of the same example.

【図20】同実施例による蛍光スクリーン上のラスタ像
を示す図である。
FIG. 20 is a diagram showing a raster image on a fluorescent screen according to the same embodiment.

【図21】同実施例の偏向ヨークを磁石補正したラスタ
像を示す図である。
FIG. 21 is a diagram showing a raster image obtained by magnetically correcting the deflection yoke of the same embodiment.

【図8】 なお、測定条件はCRT上110度、29.φ−FS管
、高圧18KV、振幅370X280mm、残留歪60
%ラスタ一部での片側ビン歪残り量。なお、上下歪は振
幅(280mm)に対する△Y++△Y2の百分率、残
留歪は直線からの偏り、及びフォーカスは半値幅50%
幅である。
[Fig. 8] The measurement conditions are 110 degrees on the CRT and 29 degrees. φ-FS pipe, high pressure 18KV, amplitude 370X280mm, residual strain 60
%Remaining one-sided bin distortion in part of the raster. Note that the vertical distortion is the percentage of △Y+++△Y2 with respect to the amplitude (280 mm), the residual distortion is the deviation from a straight line, and the focus is the half width of 50%.
It is the width.

【手続補正2】[Procedural amendment 2]

【補正対象書類名】明細書[Name of document to be amended] Specification

【補正対象項目名】図4[Correction target item name] Figure 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図4】図3または図4のこれらの一つのコアを組み込
んだ偏向ヨークの組み立てを示す概略図である。
FIG. 4 is a schematic diagram showing the assembly of a deflection yoke incorporating one of the cores of FIG. 3 or FIG. 4;

【手続補正3】[Procedural amendment 3]

【補正対象書類名】明細書[Name of document to be amended] Specification

【補正対象項目名】図16[Correction target item name] Figure 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図16】従来例の偏向ヨークの管軸上の磁界法皇分布
を示すグラフである。
FIG. 16 is a graph showing the magnetic field distribution on the tube axis of a conventional deflection yoke.

【手続補正4】[Procedural amendment 4]

【補正対象書類名】明細書[Name of document to be amended] Specification

【補正対象項目名】図17[Correction target item name] Figure 17

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図17】実施例の磁界分布を示すグラフである。FIG. 17 is a graph showing magnetic field distribution in an example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】朝顔形の環状磁性フェライトコアの内面に
形成した複数のスロットに垂直偏向巻線を施し、更にそ
の内面に水平偏向巻線を施した受像管用偏向ヨークにお
いて、前記スロットは水平軸から溝中心線まで測った角
度が、水平軸側の1または2スロットのみ、ネック部よ
りもスクリーン部の方が大きいか、同一かまたは小さい
角度をなすか、その他の部分ではネック部よりもスクリ
ーン部の方が大きい角度に形成され、ネック側でバレル
型磁界分布となり、スクリーン側でピンクッション型の
磁界分布となるように垂直偏向巻線がこれらの溝に巻装
されている受像管用偏向ヨーク。
1. A picture tube deflection yoke in which vertical deflection windings are provided in a plurality of slots formed on the inner surface of a morning glory-shaped annular magnetic ferrite core, and horizontal deflection windings are further provided on the inner surface of the slots, wherein the slots are arranged along the horizontal axis. Is the angle measured from A deflection yoke for picture tubes in which the vertical deflection windings are wound around these grooves so that the neck side has a barrel-shaped magnetic field distribution and the screen side has a pincushion-shaped magnetic field distribution. .
JP40620090A 1990-12-07 1990-12-07 Deflection yoke Pending JPH04209448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40620090A JPH04209448A (en) 1990-12-07 1990-12-07 Deflection yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40620090A JPH04209448A (en) 1990-12-07 1990-12-07 Deflection yoke

Publications (1)

Publication Number Publication Date
JPH04209448A true JPH04209448A (en) 1992-07-30

Family

ID=18515814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40620090A Pending JPH04209448A (en) 1990-12-07 1990-12-07 Deflection yoke

Country Status (1)

Country Link
JP (1) JPH04209448A (en)

Similar Documents

Publication Publication Date Title
US4257023A (en) Deflecting device for cathode-ray tube
US4237437A (en) Deflection unit for color television display tubes
JP4240541B2 (en) Deflection yoke and geometric distortion correction
JPH04370629A (en) Deflection yoke device
US5306982A (en) Field harmonic enhancer in a deflection yoke
JP3102868B2 (en) Combination of display tube and deflection unit to reduce vertical raster error
JPH04209448A (en) Deflection yoke
EP0297635A1 (en) Picture display system including a deflection unit with a double saddle coil system
JPS5933153Y2 (en) deflection yoke
US5514931A (en) Apparatus for displaying video images
US6621203B2 (en) Deflection unit for in-line type cathode ray tubes having grooves separated by groove walls including a thickened groove wall section
US6072379A (en) Saddle shaped deflection winding having winding spaces in the rear
JPH041986B2 (en)
JP2003514364A (en) Deflection unit for cathode ray tube and method of manufacturing saddle deflection coil
JP2551059Y2 (en) Deflection yoke device
JPH0275135A (en) Beam spot correcting device
JPH09265922A (en) Deflection yoke
JPH08129974A (en) Deflection device
JPH06119884A (en) Correcting coil for deflection yoke
JP3318169B2 (en) Color picture tube device
JPH10125257A (en) Deflection yoke
JPS63289748A (en) Deflecting yoke for color cathode-ray tube
JPS628898B2 (en)
JPS61214336A (en) Deflection york
EP1105911A1 (en) Color display device having quadrupole convergence coils

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991005