JPH04208912A - High magnifying power zoom lens - Google Patents

High magnifying power zoom lens

Info

Publication number
JPH04208912A
JPH04208912A JP2400244A JP40024490A JPH04208912A JP H04208912 A JPH04208912 A JP H04208912A JP 2400244 A JP2400244 A JP 2400244A JP 40024490 A JP40024490 A JP 40024490A JP H04208912 A JPH04208912 A JP H04208912A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
focal length
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2400244A
Other languages
Japanese (ja)
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2400244A priority Critical patent/JPH04208912A/en
Priority to US07/801,487 priority patent/US5191476A/en
Publication of JPH04208912A publication Critical patent/JPH04208912A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Abstract

PURPOSE:To offer a high performance zoom lens including a wide-angle and having a specific zoom variable power rate and an F-number by adopting an extremely simple lens configuration for a second lens group G2 having negative first and second lens components G21 and G22, and a positive third lens component G23, in order form an object side. CONSTITUTION:In a zoom lens composed of the four groups of the positive, the negative, the positive, and the positive, the lens group G2 has the negative first and second lens components G21 and G22 and the positive third lens component G23, in the order from the object side. When variable power from a wide- angle end to a telephoto end is carried out, the lens groups G1, G3, and G4 are individually moved to the object side and the following conditions are satisfied; (1)-3<=fG2.hG2R/fT<=-2(2)5<=fG3.hG3F/FT<=9(3)10.3<=fG4.hG3F/fT<=25, where, fT is the focal distance of all systems on the telephoto end, fG2, fG3, and fG4 are the focal distances of the lens groups G2, G3, and G4, and hG2R, hG3F, and hG4F are the height of the ray of light from an object point at infinite on an axis, from a position where the light passes the most image sides of the lens groups G2, G3, and G4, or the most peripheral edge of the surface of the object side, to an axis.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は最大画角が60°を越え
る広画角を含み、所謂広角から準望遠までの比較的広い
変倍領域を有し、かつF2.8程度の口径を有するズー
ムレンズに関するものである。 [0002] 【従来の技術】近年、ズーム変倍比が3倍程度で広角側
に変倍域の一端を有するレンズでFナンバーがF3.5
よりも暗いレンズは種々提案されている。例えば、特開
昭55−62419号公報、特開昭56−114920
号公報等が知られている。又、この種のズームレンズに
おいて、大口径化を実現したものに特公昭46−430
19号公報が知られている。 [0003]
[Industrial Application Field] The present invention includes a wide angle of view with a maximum angle of view exceeding 60°, has a relatively wide variable magnification range from so-called wide-angle to semi-telephoto, and has an aperture of approximately F2.8. This relates to zoom lenses. [0002] [Prior Art] In recent years, lenses with a zoom ratio of about 3x and one end of the zoom range on the wide-angle side have an F number of F3.5.
Various lenses have been proposed that are darker than the above. For example, JP-A-55-62419, JP-A-56-114920
No. 2, etc. are known. Also, in this type of zoom lens, the one that achieved a large aperture was the
Publication No. 19 is known. [0003]

【発明が解決しようとする課題】上記特開昭55−62
419号及び特開昭56−114920号公報で提案さ
れているズームレンズは、何れも正負正正の4群構成の
ズームレンズであり、比較的高倍率化が図られている。 しかしながら、第2レンズ群の形状及び各群の屈折力配
置により比較的口径比が小さくなっている。しかも、十
分なる収差補正がなされていないため、結像性能が悪く
、特に像面湾曲及び非点収差、コマ収差の変倍による変
動力が著しく残留している。又、開放ではFナンバーが
小さく、暗いわりには、望遠端での球面収差の補正も十
分とはいえなかった。更に全系の大きさも、口径のわり
には大型でコンパクトとは言いがたかった。したがって
、この状態での屈折力配置で大口径化すると、収差補正
上の自由度がさらに不足し、同時に各レンズ部品が相互
干渉し、現実化は困難となる。 [0004]また、この種のズームレンズでは唯一、開
放のFナンバーが変倍範囲全域でF2.8程度の大口径
比を達成したものとして、特公昭46−43019号公
報が公知である。しかしながら、このズームレンズにお
いても、軸外収差の補正が不十分であり、特に変倍によ
るコマ収差の変動が太き(、そのまま実用化するのは困
難であった。 [0005]従って、本発明は上記の問題点を解決し、
広角を含み、しかもズーム変倍比が3倍程度でFナンバ
ーがF248程度を有する高性能なズームレンズを提供
することを目的としている。 [0006]
[Problem to be solved by the invention] The above-mentioned Japanese Unexamined Patent Application Publication No. 1983-1989
The zoom lenses proposed in No. 419 and Japanese Unexamined Patent Publication No. 114920/1980 are both zoom lenses having four groups of positive, negative, positive, and positive, and are designed to have relatively high magnification. However, the aperture ratio is relatively small due to the shape of the second lens group and the refractive power arrangement of each group. Furthermore, since sufficient aberration correction has not been performed, the imaging performance is poor, and in particular, significant fluctuation forces due to zooming due to field curvature, astigmatism, and coma aberration remain. Furthermore, although the F-number is small and the lens is dark at maximum aperture, the correction of spherical aberration at the telephoto end was not sufficient. Furthermore, the overall size of the system was too large for its caliber and could not be called compact. Therefore, if the refractive power is arranged in this state and the aperture is increased, the degree of freedom in correcting aberrations will be further insufficient, and at the same time, each lens component will interfere with each other, making it difficult to realize the lens. [0004] Furthermore, Japanese Patent Publication No. 46-43019 is known as the only zoom lens of this type that achieves a large aperture ratio of approximately F2.8 with an F number at full aperture over the entire zoom range. However, even in this zoom lens, the correction of off-axis aberrations is insufficient, and in particular, the fluctuation of coma aberration due to zooming is large (and it is difficult to put it into practical use as it is. [0005] Therefore, the present invention solves the above problems,
The object of the present invention is to provide a high-performance zoom lens that includes a wide angle, has a zoom ratio of about 3 times, and has an F number of about F248. [0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために、例えば図1に示す如く、物体側より順に
、正の屈折力を有する第1レンズ群G1と、負の屈折力
を有する第2レンズ群O2と、正の屈折力を有する第3
レンズ群G3と、正の屈折力を有する第4レンズ群G4
とを有し、前記第2レンズ群O2は、物体側から順に、
単レンズもしくは接合レンズよりなり負の屈折力を有す
る第1レンズ成分G21と、単レンズもしくは接合レン
ズよりなり負の屈折力を有する第2レンズ成分G22と
、接合レンズよりなり正の屈折力を有する第3レンズ成
分G23とを有し、広角端から望遠端への変倍に際して
、前記第1レンズ群G1、第3レンズ群G3及び第4レ
ンズ群G4はそれぞれ物体側へ移動し、以下の条件を満
足するようにしたものである。 (1)   −3≦fG2・hG2!I/f丁≦−2(
2)5≦fG+・hcu /ft≦9(3)   10
.3≦fG4・hG4p / ft≦25但し、fT:
望遠端における全系の焦点距離、fG2:第2レンズ群
O2の焦点距離、fG3:第3レンズ群G3の焦点距離
、fG.:第4レンズ群G4の焦点距離、hc2a  
:望遠端において軸上無限遠物点からの光線が第2レン
ズ群O2の最も像側の面の最周縁を通過する位置から光
軸までの光線の高さ、 hc3F:望遠端において軸上無限遠物点からの光線が
第3レンズ群G3の最も物体側の面の最周縁を通過する
位置から光軸までの光線の高さ、 hcu  :望遠端において軸上無限遠物点からの光線
が第4レンズ群G4の最も物体側の面の最周縁を通過す
る位置から光軸までの光線の高さ、である。 [00071そして、上記の基本構成に基づいて第2レ
ンズ群O2は以下の条件を満足する非球面を含むことが
より好ましい。 (4)  0.0008≦lAs−3/fw≦0.05
但し、fw:広角端での全系の焦点距離、AS−3:有
効径の最周辺における前記非球面と所定の頂点曲率半径
を有する基準球面との光軸方向における差、である。 [0008]
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first lens group G1 having a positive refractive power and a first lens group G1 having a negative refractive power in order from the object side, as shown in FIG. a second lens group O2 having a positive refractive power; and a third lens group O2 having a positive refractive power.
a lens group G3 and a fourth lens group G4 having positive refractive power
The second lens group O2 has, in order from the object side:
A first lens component G21 is made of a single lens or a cemented lens and has a negative refractive power; a second lens component G22 is made of a single lens or a cemented lens and has a negative refractive power; and a second lens component G22 is made of a cemented lens and has a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1, the third lens group G3, and the fourth lens group G4 each move toward the object side, and the following conditions are met. It is designed to satisfy the following. (1) −3≦fG2・hG2! I/f d ≦-2 (
2) 5≦fG+・hcu /ft≦9(3) 10
.. 3≦fG4・hG4p / ft≦25 However, fT:
Focal length of the entire system at the telephoto end, fG2: Focal length of the second lens group O2, fG3: Focal length of the third lens group G3, fG. : Focal length of the fourth lens group G4, hc2a
: Height of the ray from the position where the ray from the object point at infinity on the axis passes through the outermost edge of the image-side surface of the second lens group O2 to the optical axis at the telephoto end, hc3F: Infinity on the axis at the telephoto end The height of the ray of light from the far object point to the optical axis from the position where the ray of light passes through the outermost edge of the surface closest to the object of the third lens group G3, hcu: The height of the ray of light from the object point at infinity on the axis at the telephoto end This is the height of the light ray from the position passing through the outermost edge of the surface closest to the object side of the fourth lens group G4 to the optical axis. [00071 Based on the above basic configuration, it is more preferable that the second lens group O2 includes an aspheric surface that satisfies the following conditions. (4) 0.0008≦lAs-3/fw≦0.05
However, fw is the focal length of the entire system at the wide-angle end, and AS-3 is the difference in the optical axis direction between the aspherical surface and a reference spherical surface having a predetermined apex radius of curvature at the outermost periphery of the effective diameter. [0008]

【作用】一般に正・負・正・正の4群構成を有するズー
ムレンズにおいて、特に変倍比が3倍程度の標準ズーム
レンズでは、開放FナンバーはF3.5〜F5.6クラ
スのズームレンズが主流であり、本発明のごとく開放F
ナンバーが変倍域全域F2.8程度のレンズは、殆ど提
案されていない。 [0009]一般に、この種のタイプのズームレンズの
第2レンズ群O2は、主に広角端の軸外収差の補正に対
して大きな役割を果たしていた。しかし、このズームレ
ンズをそのまま大口径化にするには、広角側での軸外収
差ばかりか、望遠側での軸上収差に対する負担が大きく
かかる。特に、望遠側の球面収差及び下方コマ収差の補
正は更に困難になり、第2レンズ群での収差補正上の負
担は増大する。したがって、第2レンズ群O2の収差補
正上の自由度の中で、特に望遠端における球面収差及び
下方コマ収差に対する寄与率を増すと、広角側の歪曲、
像面湾曲、非点収差等の収差補正が不十分になる。 [00101そこで、本発明では、これの問題を克服す
るために、最適な第2レンズ群G2の構成と、これの最
適な屈折力配置とを見出した。すなわち、本発明では、
第2レンズ群O2が、物体側から順に、負の第1レンズ
成分G21、負の第2レンズ成分G22、正レンズと負
レンズの接合よりなる正の第3レンズ成分G23を有す
るという極めて簡素なレンズ構成で構成しても、最適な
屈折力配置により、広角端で非点収差、像面湾曲、下方
コマ収差及び歪曲等の軸外収差を良好に補正し、さらに
望遠端では球面収差と下方コマ収差を良好に補正するこ
とが可能となった。 [00111従って、第2レンズ群O2を上記の如き収
差の補正に対し良好に機能させ、レンズ系全体として少
ないレンズ枚数で構成しながら優れた結像性能を得るに
は、第2レンズ群O2のみならず、第3レンズ群G3及
び第4レンズ群G4での最適な屈折力配置をすることが
極めて重要となる。また、大口径化ズームレンズを実現
するには、開放Fナンバーを決定する光線、各レンズ群
の最も高い位置を通過するRand光線(軸上無限遠物
点からの光線)の光軸からの高さhをより高くする必要
がある。この高さhが高くなればなる程、光線が各群の
レンズでのより周辺部を通過するため、収差補正上にお
いてより有利な様に最適な屈折力配置が必要となる。 [0012]そこで、本発明では、第2乃至第4レンズ
群において最も高い位置を通過するRand光線の高さ
hとレンズ群の屈折力とに関する最適な条件式(1)〜
(3)を見出した。以下において、条件式(1)〜(3
)について説明する。条件式(1)の下限を越えると、
一定の口径比を有するレンズにおいて、第2レンズ群G
2の負の焦点距離が全系の焦点距離に比べ著しく大きく
なり、変倍に際する第2レンズ群O2の移動量が著しく
大きくなる。このため、所望の変倍比を得るには機械的
な干渉を招き、また第2レンズ群G2の厚肉化を招くの
で、レンズ系全体のコンパクト化を図ることが困難とな
る。また、反対に上限を越えると、第2レンズ群O2の
負の焦点距離が全系の焦点距離に比べ著しく小さくなる
。このため、特に収差補正上の自由度不足によって、望
遠側での球面収差が十分補正できなくなり、変倍による
球面収差の収差変動も大きくなる。そこで、この球面収
差を良好に補正しようとすると、その他の収差補正上の
自由度が不足するため、逆に下方コマ収差や非点収差及
び像面湾曲の補正が困難になる。また、第2レンズ群の
負の屈折力が強くなることにより、ペッツバール和の値
が著しく負の方向になるため、変倍による像面湾曲や非
点収差の変動が大きくなる。このため、これらの収差変
動を補正するには、レンズ構成枚数を増加させることと
なり、結果的にレンズ系の大型化を招く。なお、条件式
(1)の下限値を−2,5、上限値を−1,5とし、そ
の範囲を満足するように構成することが望ましい。これ
によって、さらにコンパクトでより良好なる結像性能を
有する広い画角を含む高倍率ズームレンズを達成するこ
とが可能となる。 [00131条件式(2)の下限を越えると、第3レン
ズ群G3の焦点距離が全系の焦点距離に比べ著しく小さ
くなるので、変倍による球面収差の変動が著しく大きく
なり、特に望遠側の球面収差の補正が困難になる。この
状態で球面収差を補正すると、第3レンズ群G3の構成
枚数を著しく増加させなければならず、結果的に、第3
レンズ群の複雑化及び大型化を招くので好ましくない。 反対に条件式(2)の上限を越えると、第3レンズ群G
3の焦点距離が全系の焦点距離に比べ著しく大きくなる
ので、諸収差の補正上では有利であるものの、第3レン
ズ群G3の大型化(厚肉化)を招くばかりか、変倍によ
る第3レンズ群G3の移動量が大きくなり、その結果、
全系の大型化を招き好ましくない。なお、条件式(2)
の下限値を5.7、上限値を8.5とし、その範囲を満
足するように構成することがより望ましい。これによっ
て、さらにコンパクトでより良好なる結像性能を有する
広い画角を含む高倍率ズームレンズを達成することが可
能となる。 [0014]条件式(3)の下限を越えると、全系の焦
点距離に比べ第4レンズ群G4の焦点距離が著しく小さ
くなる。特に明るいズームレンズの場合、各収差を補正
する自由度が著しく低下し、特に広角側での上方コマ収
差7変倍による上方コマ収差、像面湾曲及び非点収差の
変動が著しくなり、望遠端の球面収差も悪化する。また
、この状態で収差補正を行なうためには、第4レンズ群
G4の複雑化と大型化を招き好ましくない。反対に条件
式(3)の上限を越えると、全系の焦点距離に比べ第4
レンズ群G4の焦点距離が著しく大きくなる。このため
、第4レンズ群G4の大型化を招き、このレンズ群の後
玉径が著しく大きくなるのみならず、変倍のための第4
レンズ群G4の移動量が大きくなり、結果的に全系の大
型化を招くので好ましくない。なお、よりコンパクト化
とより優れた結像性能を得るには、条件式(3)の上限
値を20とし、この範囲を満足するように構成すること
が望ましい。 [0015]さて、第2レンズ群を少ないレンズ構成枚
数によって、大口径比化とコンパクト化を図りながら、
全ての変倍域でより優れた結像性能を得るには、第2レ
ンズ群中に非球面を設けることが効果的である。これに
より、軸外収差、特に像面湾曲、歪曲収差及び下方コマ
収差の変倍による変動の補正の自由度を格段に向上させ
ることが可能となる。 [0016]この場合、以下の条件式(4)を満足する
ことがより望ましい。 (4)  0.0008≦lAs|/fw≦0.05但
し、fw:広角端の全系の焦点距離、 AS−3:有効径の最周辺における前記非球面と所定の
頂点曲率半径を有する基準球面との光軸方向における差
、である。 [00171条件式(4)は、第2レンズ群中の非球面
の効果に関する条件である。この非球面は、特に広角端
の下方コマ収差や、変倍による下方コマ収差の変動、さ
らに望遠側の球面収差の補正に対し効果的に機能する。 このため、条件式(4)では、その補正効果を十分に得
るための非球面の最適な形状を規定している。条件式(
4)の下限を越えると、特に大口径ズームレンズの場合
、非球面の効果が著しく低下し、下方コマ収差の変倍に
よる変動や、広角側での下方コマ収差の補正効果が低下
する。さらには、望遠側の球面収差の補正効果が著しく
低下し補正困難となり、非球面の効果が無くなる。反対
に条件式(4)の上限を越えると、高次の収差の発生に
より画角の変動によるコマ収差の変動が甚大となり、ま
た非球面の製造も困難となる。なお、非球面の効果を効
果的に得ながら製造が容易でコストダウンを図れる非球
面を得るには、条件式(4)の上限値を0.03とし、
この範囲を満足するように構成することがより好ましい
。 [0018]また、より十分なる収差補正を果たすには
、以下の条件式(5)を満足することがより望ましい。 (5)   1.7≦fGl/f−≦2.55但し、f
G+ :41521群G1の焦点距離、fw:広角端で
の全系の焦点距離、である。 [00191条件式(5)は41521群G1の適切な
屈折力を規定するものである。条件式(5)の下限を越
えると、特に望遠側の球面収差及び下方コマ収差等の変
倍による変動の補正が困難となる。このため、これらの
収差変動を補正しようとすると、第2レンズ成のレンズ
構成枚数が多くなり、結果的にレンズ系の大型化やコス
トアップを招き好ましくない。反対に条件式(5)の上
限を越えると、41521群G1の屈折力が弱くなり、
変倍に際する41521群G1の移動量が大きくなる。 このため、望遠側で主光線がより41521群G1のレ
ンズ周辺部を通過するために、前玉径の増大につながり
、レンズ系の大型化を招く。また、レンズ系を保持する
レンズ鏡胴が大型化し、偏心等の問題によりレンズ鏡胴
の設計困難になる。 [00201この様に、条件式(5)を満足するように
構成すれば、本発明の実施例1のレンズ構成図を示す図
1から分かる如く、41521群G1を正レンズとこれ
に接合された負レンズとからなる接合正レンズと、正レ
ンズとの基本的に3枚のレンズで構成することが可能と
なる。また、上述の如く、本発明では、第2レンズ群を
、物体側から順に、負の第1レンズ成分G21、負の第
2レンズ成分G22、正レンズと負レンズの接合よりな
る正の第3レンズ成分G23とを有する構成とすること
により、広角端で非点収差、像面湾曲、下方コマ収差及
び歪曲等の軸外収差を良好に補正するように機能させ、
望遠端では球面収差と下方コマ収差の補正に大きく機能
させることが可能となった。これらの収差補正の効果を
最大限に得るには、第2レンズ群O2中の接合正レンズ
の第3レンズ成分G23は、物体側から順に、正レンズ
とこれに接合された負レンズとから構成されることが好
ましく、さらに以下の条件式(6)〜(9)を満足する
ことがより好ましい。 (6)    2.5≦fG2* / l fGz l
≦5.5(7)     O<QG2R/hc2i≦0
.15(8)     0.18 /FN T ≦D/
ft ≦0.35/FN(9)     0.09≦n
2n  n2p≦0.22但し、fG+++  :第2
レンズ群O2中の正の屈折力を有する第3レンズ成分G
23の焦点距離、 QO2+1  :第2レンズ群G2中の正の屈折力を有
する第3レンズ成分G23における最も物体側の面の曲
率半径をrい、最も像側の面の曲率半径をrsとすると
き、QG2R= (rs +rx ) / (r+−r
A)で定義される値、D:第2レンズ群O2中の正の屈
折力を有する第3レンズ成分G23の物体側に位置する
正レンズの中心厚、FNr:望遠端における開放時のF
ナンバーhc+*  :望遠端において軸上無限遠物点
からの光線が第2レンズ群G2の最も像側の面の最周縁
を通過する位置から光軸までの光線の高さ(mm)、 n2ゎ142221群O2中の正の屈折力を有する第3
レンズ成分G23での負レンズのd線(587,6nm
) に対する屈折率、 n2p :第2レンズ群G2中の正の屈折力を有する第
3レンズ成分G23での正レンズのd線(587,6n
m)に対する屈折率、 である。 [00211条件式(6)〜(9)は第2レンズ群O2
の中の正の屈折力を持つ接合レンズ(第3レンズ成分)
G23についての諸条件を規定したものである。前述し
た如く、第2レンズ群G2の構成は、本発明の効果を十
分に発揮させるためには極めて重要な構成となっており
、特に正の屈折力を持つ接合レンズG23は、明るいズ
ームレンズを実現させる上で、重要な働きをしている。 [00221条件式(6)は第2レンズ群O2の焦点距
離に対する正の屈折力の接合レンズ(第3レンズ成分)
G23の焦点距離の最適な割合の関係を示したものであ
る。前記した通り、この接合レンズG23は、特に変倍
による球面収差変動の補正及び望遠側の球面収差の補正
、更に下方コマ収差の補正に大きく寄与している。従っ
て、第2レンズ群O2に対する接合正レンズG23の最
適な屈折力配置が必要になる。条件式(6)の下限を越
えると、接合正レンズG23の屈折力が強くなり、特に
望遠側の球面収差の補正が困難となる。その結果、第2
レンズ群O2中の負レンズ成分G21及びG22の屈折
力も大きくなるため、軸外の収差補正のバランスも大き
く崩れ、特に広角側の歪曲収差、下方コマ収差の変動、
像面湾曲の変動が甚大となる。反対に条件式(6)の上
限を越えると、接合正レンズG23の屈折力が弱くなり
、望遠側の球面収差の補正を行なうことが困難になり、
さらにペッツバール和の値も著しく負の方向に移動し、
非点収差も悪化する。また、第2レンズ群中の色収差補
正のバランスも崩れ、倍率の色収差等の変動も甚大とな
る。また、接合正レンズG23による収差補正の効果を
十分に得るには、条件式(6)の下限値を3.15とし
、この範囲を満足するように構成することが望ましい。 [0023]条件(7)は、明るいズームレンズを実現
させる上で必要な、第2レンズ群O2の後方において開
放Fナンバーを決定する光線、即ち第2レンズ群O2の
最も像側面の最外周縁の通る軸上無限遠光線の高さhG
2Rと、接合正レンズ(第3レンズ成分)G23の形状
との最適な関係を示す条件である。開放Fナンバーが明
るくなればなる程、第2レンズ群G2の最も像側面の最
外周縁の通る軸上無限遠光線の高さhc2* は大きく
なり、特に望遠側では接合正レンズG23のより外周縁
を通過する。従って、望遠側の球面収差の補正に対して
、接合正レンズG23の形状が大きく寄与することなる
。また、絞りを第2レンズ群よりも像側に配置した場合
、広角端においても接合正レンズG23の絞りに対する
形状が重要となる。 [0024]条件式(7)の下限を越えると、接合正レ
ンズG23は両凸形状から像側により弱い凸面を向けた
形状を呈する様になり、広角端での像面湾曲や、変倍に
よる下方コマ収差の変動が補正困難となるばかりか、球
面収差の変倍による変動が増し、大口径かつ高倍率のズ
ームレンズを実現するのは困難になる。反対に条件式(
7)の上限を越えると、軸外光線により発生する収差補
正には有利であるももの、接合正レンズG23の形状が
、物体側に凸面を向けたメニスカス形状を呈する様にな
り、特に望遠側の球面収差補正の自由度が低下し、これ
の補正困難となり好ましくない。 [0025]条件式(8)は、接合正レンズ(第3レン
ズ成分)G23中の正レンズの最適な中心厚を規定する
条件である。接合正レンズG23中の正レンズの中心厚
は、特に望遠側の球面収差補正に重要な役割をしている
。特に大口径化を図る場合には、この正レンズの中心厚
を十分に利用する必要がある。条件式(8)の下限を越
えると、望遠側の球面収差の補正が困難となるばかりか
、変倍による球面収差の変動が甚大となり、大口径比の
ズームレンズが実現できなくなる。逆に条件式(8)の
上限を越えると、球面収差の補正には有利であるが、第
2レンズ群O2が厚肉化し、結果的に、レンズ系の大型
化を招く。 [00261条件式(9)は、接合正レンズ(第3レン
ズ成分)G23を構成する正レンズと負レンズとの最適
な屈折率の差を示すものである。条件式(9)の下限を
越えると、特に望遠側の球面収差の補正が困難となるば
かりか、ペッツバール和の値が著しく負の値をとるため
、非点収差が悪化する。逆に条件式(9)の上限を越え
ると、球面収差の補正には有利であるものの、ペッツバ
ール和が著しく大きな正の値をとるため、非点収差が悪
化する。なお、接合正レンズG23Gを構成する正レン
ズと負レンズとの最適な屈折率の差による効果を十分に
得るには、条件式(9)の下限値を0.135.上限値
を0.2とし、その範囲を満足するように構成すること
がより望ましい。 [0027]
[Function] In general, zoom lenses that have a positive, negative, positive, and positive 4-group configuration, especially standard zoom lenses with a variable magnification ratio of about 3x, have an open F number of F3.5 to F5.6 class zoom lenses. is the mainstream, and as in the present invention, open F
Very few lenses have been proposed with a number of around F2.8 over the entire zoom range. [0009] Generally, the second lens group O2 of this type of zoom lens plays a large role mainly in correcting off-axis aberrations at the wide-angle end. However, in order to increase the aperture of this zoom lens as it is, it imposes a large burden not only on off-axis aberrations on the wide-angle side, but also on axial aberrations on the telephoto side. In particular, it becomes more difficult to correct spherical aberration and lower coma on the telephoto side, and the burden of aberration correction on the second lens group increases. Therefore, among the degrees of freedom for correcting aberrations of the second lens group O2, if the contribution rate to spherical aberration and lower coma at the telephoto end is increased, distortion at the wide-angle side,
Correction of aberrations such as field curvature and astigmatism becomes insufficient. [00101] Therefore, in the present invention, in order to overcome this problem, we have discovered the optimal configuration of the second lens group G2 and its optimal refractive power arrangement. That is, in the present invention,
The second lens group O2 has, in order from the object side, a negative first lens component G21, a negative second lens component G22, and a positive third lens component G23 made of a cemented positive lens and a negative lens. Even with this lens configuration, the optimal refractive power arrangement effectively corrects off-axis aberrations such as astigmatism, field curvature, downward coma, and distortion at the wide-angle end, and further corrects spherical aberration and downward distortion at the telephoto end. This makes it possible to effectively correct coma aberration. [00111 Therefore, in order to make the second lens group O2 function well in correcting the above-mentioned aberrations and to obtain excellent imaging performance while configuring the entire lens system with a small number of lenses, only the second lens group O2 is required. Therefore, it is extremely important to arrange optimal refractive power in the third lens group G3 and the fourth lens group G4. In addition, in order to realize a large-diameter zoom lens, it is necessary to increase the height from the optical axis of the ray that determines the aperture f-number and the Rand ray (ray from an object point at infinity on the axis) that passes through the highest position of each lens group. It is necessary to make the height higher. The higher the height h, the more the light rays pass through the periphery of the lenses in each group, and therefore the optimum refractive power arrangement is required to be more advantageous in correcting aberrations. [0012] Therefore, in the present invention, optimal conditional expressions (1) to 1 regarding the height h of the Rand ray passing through the highest position in the second to fourth lens groups and the refractive power of the lens groups are
We found (3). In the following, conditional expressions (1) to (3
) will be explained. If the lower limit of conditional expression (1) is exceeded,
In a lens having a constant aperture ratio, the second lens group G
The negative focal length of O2 becomes significantly larger than the focal length of the entire system, and the amount of movement of the second lens group O2 during zooming becomes significantly large. Therefore, in order to obtain a desired variable power ratio, mechanical interference occurs, and the second lens group G2 becomes thicker, making it difficult to make the entire lens system more compact. On the other hand, when the upper limit is exceeded, the negative focal length of the second lens group O2 becomes significantly smaller than the focal length of the entire system. For this reason, especially due to the lack of freedom in correcting aberrations, spherical aberrations on the telephoto side cannot be sufficiently corrected, and fluctuations in spherical aberrations due to zooming also increase. Therefore, when attempting to correct this spherical aberration satisfactorily, the degree of freedom for correcting other aberrations is insufficient, and conversely it becomes difficult to correct lower coma aberration, astigmatism, and curvature of field. Furthermore, as the negative refractive power of the second lens group becomes stronger, the value of the Petzval sum becomes significantly negative, so that fluctuations in field curvature and astigmatism due to zooming become large. Therefore, in order to correct these aberration fluctuations, the number of lens components must be increased, resulting in an increase in the size of the lens system. Note that it is desirable to set the lower limit value of conditional expression (1) to -2, 5 and the upper limit value to -1, 5, and to configure so that the range is satisfied. This makes it possible to achieve a high-magnification zoom lens that is more compact, has better imaging performance, and has a wider angle of view. [00131 When the lower limit of conditional expression (2) is exceeded, the focal length of the third lens group G3 becomes significantly smaller than the focal length of the entire system, and the fluctuation of spherical aberration due to zooming becomes significantly large, especially on the telephoto side. It becomes difficult to correct spherical aberration. If spherical aberration is corrected in this state, the number of lenses constituting the third lens group G3 must be significantly increased, and as a result,
This is not preferable because it makes the lens group more complicated and larger. On the other hand, if the upper limit of conditional expression (2) is exceeded, the third lens group G
Since the focal length of G3 is significantly larger than the focal length of the entire system, it is advantageous in terms of correcting various aberrations, but it not only leads to an increase in the size (thickness) of the third lens group G3, but also increases the focal length due to zooming. The amount of movement of the third lens group G3 increases, and as a result,
This is undesirable as it increases the size of the entire system. Furthermore, conditional expression (2)
It is more desirable to set the lower limit value of 5.7 and the upper limit value 8.5, and to configure the structure so as to satisfy these ranges. This makes it possible to achieve a high-magnification zoom lens that is more compact, has better imaging performance, and has a wider angle of view. [0014] When the lower limit of conditional expression (3) is exceeded, the focal length of the fourth lens group G4 becomes significantly smaller than the focal length of the entire system. Particularly in the case of a fast zoom lens, the degree of freedom to correct each aberration is significantly reduced, and especially at the wide-angle end, variations in upper coma aberration, field curvature, and astigmatism due to 7 magnification changes become significant. The spherical aberration also worsens. Further, in order to correct aberrations in this state, the fourth lens group G4 becomes undesirably complicated and large. On the other hand, if the upper limit of conditional expression (3) is exceeded, the focal length of the entire system becomes 4th
The focal length of lens group G4 becomes significantly large. This not only leads to an increase in the size of the fourth lens group G4 and the diameter of the rear lens of this lens group, but also increases the size of the fourth lens group G4 for zooming.
This is not preferable because the amount of movement of the lens group G4 increases, resulting in an increase in the size of the entire system. Note that in order to obtain more compact size and better imaging performance, it is desirable to set the upper limit of conditional expression (3) to 20 and to configure the structure so that this range is satisfied. [0015] Now, while aiming for a large aperture ratio and compactness by using a small number of lenses in the second lens group,
In order to obtain better imaging performance in all zoom ranges, it is effective to provide an aspherical surface in the second lens group. This makes it possible to significantly improve the degree of freedom in correcting off-axis aberrations, particularly variations in field curvature, distortion, and lower coma due to zooming. [0016] In this case, it is more desirable to satisfy the following conditional expression (4). (4) 0.0008≦lAs|/fw≦0.05, where fw: focal length of the entire system at the wide-angle end, AS-3: reference having the aspherical surface at the outermost periphery of the effective diameter and a predetermined vertex radius of curvature This is the difference in the optical axis direction from the spherical surface. [00171 Conditional expression (4) is a condition regarding the effect of the aspheric surface in the second lens group. This aspherical surface particularly functions effectively to correct lower coma aberration at the wide-angle end, fluctuations in lower coma aberration due to zooming, and spherical aberration at the telephoto end. For this reason, conditional expression (4) defines the optimal shape of the aspheric surface in order to sufficiently obtain the correction effect. Conditional expression (
If the lower limit of 4) is exceeded, especially in the case of a large-diameter zoom lens, the effect of the aspheric surface will be significantly reduced, and the effect of correcting the fluctuation of lower coma aberration due to zooming and the lower coma aberration on the wide-angle side will be reduced. Furthermore, the effect of correcting spherical aberration on the telephoto side is significantly reduced, making it difficult to correct, and the effect of the aspheric surface is lost. On the other hand, when the upper limit of conditional expression (4) is exceeded, higher-order aberrations occur, resulting in significant fluctuations in comatic aberration due to fluctuations in the angle of view, and it becomes difficult to manufacture aspherical surfaces. In addition, in order to obtain an aspherical surface that is easy to manufacture and can reduce costs while effectively obtaining the effects of an aspherical surface, the upper limit of conditional expression (4) is set to 0.03.
It is more preferable to configure the structure so as to satisfy this range. [0018] Furthermore, in order to achieve more sufficient aberration correction, it is more desirable to satisfy the following conditional expression (5). (5) 1.7≦fGl/f−≦2.55, however, f
G+: Focal length of the 41521 group G1, fw: Focal length of the entire system at the wide-angle end. [00191 Conditional expression (5) defines the appropriate refractive power of the 41521 group G1. When the lower limit of conditional expression (5) is exceeded, it becomes difficult to correct fluctuations due to zooming, such as spherical aberration and lower coma aberration, especially on the telephoto side. For this reason, if an attempt is made to correct these aberration fluctuations, the number of lenses constituting the second lens component will increase, resulting in an undesirable increase in the size and cost of the lens system. On the other hand, if the upper limit of conditional expression (5) is exceeded, the refractive power of the 41521 group G1 becomes weaker,
The amount of movement of the 41521 group G1 during zooming increases. For this reason, on the telephoto side, the principal ray passes more through the lens periphery of the 41521 group G1, leading to an increase in the diameter of the front lens, leading to an increase in the size of the lens system. Furthermore, the lens barrel that holds the lens system becomes larger, and problems such as eccentricity make it difficult to design the lens barrel. [00201 In this way, if the conditional expression (5) is satisfied, the 41521 group G1 is cemented to a positive lens, as can be seen from FIG. It is possible to basically configure the lens with three lenses: a cemented positive lens consisting of a negative lens, and a positive lens. As described above, in the present invention, the second lens group includes, in order from the object side, a negative first lens component G21, a negative second lens component G22, and a positive third lens component made of a cemented positive lens and a negative lens. By having a configuration including lens component G23, it functions to satisfactorily correct off-axis aberrations such as astigmatism, field curvature, downward coma, and distortion at the wide-angle end,
At the telephoto end, it is now possible to significantly correct spherical aberration and downward coma. In order to maximize the effect of correcting these aberrations, the third lens component G23 of the cemented positive lens in the second lens group O2 is composed of, in order from the object side, a positive lens and a negative lens cemented to this. More preferably, the following conditional expressions (6) to (9) are satisfied. (6) 2.5≦fG2* / l fGz l
≦5.5 (7) O<QG2R/hc2i≦0
.. 15(8) 0.18 /FN T ≦D/
ft≦0.35/FN(9) 0.09≦n
2n n2p≦0.22 However, fG+++: 2nd
Third lens component G having positive refractive power in lens group O2
Focal length of 23, QO2+1: The radius of curvature of the surface closest to the object in the third lens component G23 having positive refractive power in the second lens group G2 is r, and the radius of curvature of the surface closest to the image is rs. When, QG2R= (rs +rx) / (r+-r
A), D: center thickness of the positive lens located on the object side of the third lens component G23 having positive refractive power in the second lens group O2, FNr: F when opened at the telephoto end
Number hc+*: Height (mm) of the ray from the position where the ray from the object point at infinity on the axis passes through the outermost edge of the image-side surface of the second lens group G2 to the optical axis at the telephoto end, n2ゎ142221 The third group with positive refractive power in O2
The d-line (587,6 nm) of the negative lens in lens component G23
), n2p: d-line (587, 6n
m) is the refractive index. [00211 Conditional expressions (6) to (9) are the second lens group O2
Cemented lens with positive refractive power (third lens component)
It stipulates various conditions regarding G23. As mentioned above, the configuration of the second lens group G2 is extremely important in order to fully exhibit the effects of the present invention, and in particular, the cemented lens G23 with positive refractive power is suitable for use with a bright zoom lens. They play an important role in making this a reality. [00221 Conditional expression (6) is a cemented lens (third lens component) with positive refractive power for the focal length of the second lens group O2
This shows the relationship between the optimum ratios of the focal lengths of G23. As described above, this cemented lens G23 greatly contributes particularly to correction of spherical aberration fluctuations due to zooming, correction of spherical aberration on the telephoto side, and correction of lower coma aberration. Therefore, it is necessary to arrange the optimal refractive power of the cemented positive lens G23 with respect to the second lens group O2. When the lower limit of conditional expression (6) is exceeded, the refractive power of the cemented positive lens G23 becomes strong, making it difficult to correct spherical aberration, especially on the telephoto side. As a result, the second
Since the refractive power of the negative lens components G21 and G22 in the lens group O2 also increases, the balance of off-axis aberration correction is also greatly disrupted, and fluctuations in distortion aberration and lower coma aberration, especially on the wide-angle side,
The variation in field curvature becomes significant. On the other hand, if the upper limit of conditional expression (6) is exceeded, the refractive power of the cemented positive lens G23 becomes weak, making it difficult to correct spherical aberration on the telephoto side.
Furthermore, the value of the Petzval sum also moves significantly in the negative direction,
Astigmatism also worsens. Furthermore, the balance of chromatic aberration correction in the second lens group is lost, and variations in lateral chromatic aberration and the like become significant. Further, in order to obtain a sufficient effect of aberration correction by the cemented positive lens G23, it is desirable that the lower limit of conditional expression (6) be 3.15, and the configuration be such that this range is satisfied. [0023] Condition (7) is a light ray that determines the open F-number behind the second lens group O2, which is necessary to realize a bright zoom lens, that is, the outermost edge of the second lens group O2 at the most image side. The height hG of the axial ray at infinity passing through
This is a condition indicating an optimal relationship between 2R and the shape of the cemented positive lens (third lens component) G23. The brighter the open F-number, the higher the height hc2* of the axial infinity ray passing through the outermost edge of the image side of the second lens group G2. Pass through the periphery. Therefore, the shape of the cemented positive lens G23 greatly contributes to the correction of spherical aberration on the telephoto side. Further, when the aperture is disposed closer to the image side than the second lens group, the shape of the cemented positive lens G23 relative to the aperture becomes important even at the wide-angle end. [0024] When the lower limit of conditional expression (7) is exceeded, the cemented positive lens G23 changes from a biconvex shape to a shape with a weaker convex surface facing the image side, resulting in field curvature at the wide-angle end and distortion due to zooming. Not only does it become difficult to correct fluctuations in lower coma aberration, but also fluctuations in spherical aberration due to zooming increase, making it difficult to realize a zoom lens with a large aperture and high magnification. On the other hand, the conditional expression (
When the upper limit of 7) is exceeded, the shape of the cemented positive lens G23, which is advantageous for correcting aberrations caused by off-axis rays, takes on a meniscus shape with the convex surface facing the object side, especially at the telephoto end. The degree of freedom in correcting spherical aberration decreases, making it difficult to correct this, which is undesirable. [0025] Conditional expression (8) is a condition that defines the optimal center thickness of the positive lens in the cemented positive lens (third lens component) G23. The center thickness of the positive lens in the cemented positive lens G23 plays an important role in correcting spherical aberration, especially on the telephoto side. Particularly when increasing the aperture, it is necessary to fully utilize the center thickness of this positive lens. If the lower limit of conditional expression (8) is exceeded, not only will it be difficult to correct spherical aberration on the telephoto side, but also the fluctuations in spherical aberration due to zooming will become significant, making it impossible to realize a zoom lens with a large aperture ratio. On the other hand, if the upper limit of conditional expression (8) is exceeded, although it is advantageous for correcting spherical aberration, the second lens group O2 becomes thicker, resulting in an increase in the size of the lens system. [00261 Conditional expression (9) indicates the optimum difference in refractive index between the positive lens and the negative lens that constitute the cemented positive lens (third lens component) G23. When the lower limit of conditional expression (9) is exceeded, it becomes difficult to correct spherical aberration, especially on the telephoto side, and the value of the Petzval sum takes a significantly negative value, resulting in worsening of astigmatism. On the other hand, if the upper limit of conditional expression (9) is exceeded, although it is advantageous for correcting spherical aberration, the Petzval sum takes a significantly large positive value, resulting in worsening of astigmatism. In addition, in order to fully obtain the effect of the optimum difference in refractive index between the positive lens and the negative lens that constitute the cemented positive lens G23G, the lower limit of conditional expression (9) should be set to 0.135. It is more desirable to set the upper limit to 0.2 and configure the structure to satisfy that range. [0027]

【実施例】次に、本発明による各実施例について説明す
る。本発明による各実施例とも、焦点距離fが36〜1
O2まで可変で、Fナンバーが2.9にも達する広い画
角を含む高倍率ズームレンズである。各実施例とも、基
本釣には図1に示す如く、物体側から順に、正の屈折力
を有する第ルンス群G1と、負の屈折力を有する第2レ
ンズ群O2と、正の屈折力を有する第31/シズ群G3
と、正の屈折力を有する第4レンズ群G4とを自1,3
、でいる。ぞし7て、広角端から望遠端への変倍に際L
 −<T、第1レンズ群G]−が物体側に直線状(@型
状)に、第21.・シス群O2が像側に非直線状(非線
型状)(1第31/ンズ群G3及び第4Ly:、−ズ群
G4が物体側に非直線状(非線型状)に移ajする。こ
の様な、広角端から望遠端への変倍による各1/シズ群
の移動により、第1しシス群Cローと第2L/〉ズ群G
2との空気間隔が増力前−7、第2レンズll’+’E
O2と第31/ンズ群G3との空気開面が減少し7、第
31/ンズ群G3と第4レンズ群G4との空気間隔が減
少する。 [00283次に、各$施例毎に説、明する。実施例1
のズームレンズでは、図1から分かイ)如く、正の第1
1.・シス群G1は、物体側に凸面を向けた負スニース
カスl/ンズ(L−1これに接合された両凸形状の1E
IzンズGilと、物体側に凸面を向けた正メニスカス
1.・ンズG ]、、2とから成り、負の第12レンズ
群G2は、像側に凹面を向けた負レンズ(第1−レンズ
成分)G21と、負1.・シズ(第2レンズ成分)G2
2と、像側により強い曲率の面を向けた正1/ンズとこ
11に接合された負l/〉・ズとからなる接合圧12〕
/ズ(第3レンズ成分)G23とで構成さ、LL下いる
。そし−で、′、正の第31.・シス群G3は、両凸形
状の正レンズG31と、同じく両凸形状の正I/ンズと
これに接合されて像側に凸面を向cツた負レンズどから
なる接合圧(/ンズG32どから成り、正の第41.シ
ス群G4は、両凸形状の正レンズG41と、物体側に凸
面を向けた正メースカスレンズG42と、負I/ンズG
43と、像側に凸面を向けた正メースカスレンズG44
とから構成されている。 [0029]本実施例での非球面は、第21.・ンス゛
群G2の最も物体側に位置する負I/ンズG(第1レン
ズ成分)21の像側面(こ設G」られており、また第4
しシス群G4の最も像側に位置する正レンズG44の像
側面(最終面)に設けられている。なお、開1]絞りS
は第31/シズ゛群G3の物体側に配置されている。実
施例Lシのズーム1/ンズは、図5に示す如く、基本的
にば実施例1のズーム1/〉ズと同様な構成を有してい
るが、第21/ンズ群O2中の負の第217ンズ成分G
22が接合)7・ンズとなっ℃いる。、1の接合負I/
ンズG22は、物体側から順に、像側に凸面を向けた正
メニスカスレンズと、これに接合さ第1て両凹形状の負
レンズとから成っている4、 [00303本実施例での非球面(・、i、第2し〉・
ズ群G2の最も物体側に位置する負l/ンス゛(第1ト
ンズ成分)G21の像側面に設けられており、また第4
レンズ群G4.の最も像側に位置する正レンズG44の
物体側面に設けられている。そし、て、これらの非球面
は球面ガラスレンズとプラスティック材料の複合形弁球
面(ハイブリッド1/シズ)で構成されUいる。なお、
本実施例での開口絞り′:4は第3L・シス群G3の内
部に配置されている。 [0031]実施例3のズーム1.・ンズては、図10
に示す如く、第1乃至第:31ノンズにおいて実施例]
のズーム1/〉・ズと同様な構成を有(−2ているが、
第4レンズ群G・・1の構成が異なる。すなわち、第4
レンズ群G4は、両凸形状の正レンズG4]と、同じく
両凸形状の正レンズG’42と、負!/ンズG・13と
の3枚のレンズより成っている。本実施例での非球面は
、第217ンズ群の最も物体側に位置1′る負レンズ(
第11.・ンズ成分)G21の物体側面に設けられてお
り、また第・41.シス群の最も像側に位置する負17
ンズG43の物体側面に設GJられでいる。なお、本実
施例での開口絞りSは第:3レンズ群G3の物体側に配
置されている。 [0032]以上にでU述べた各実施例とも、第2レン
ズ群以外の第・・1レンズ群中に井:球面を設けている
が、こitの配置によって、上方コマ収差の補正及び像
面湾曲の変倍による変動、球面収プ7の変りj等を補正
する自由度を向トさせるために効果的に機能させており
、この時、非球面の効果を効果的に得るには、条件式(
74)を満足するよ・うに構成することが望まし2い。 なお、第3しンズ群中(7−非球面を設けても良いこと
は言うまでもない。 1(OO33]ざらに、第2レンズ群に2中に配置する
非球面は、この第2L、ンズO2中に前置jればどの位
置でも良いが、軸外収差の補正に刻しより効果的に機能
させて本発明による効果を上針に得るためには、4−の
非球面をできるだけ第21/ンズO2中の物体側の!/
レンズ面配置することが望まし、い1、また、本実施例
中の非球面し〉・ズの中で製造を容易とし、二1スhの
低減を図るために、ガラスとプラスティック材料の複合
形弁球面(ハイブリッドI7・ンズ)を適用し5丁いる
が、ガラス材料のみで非球面を構成し7ても良いことば
言うまでもない9、[0034’lざて、以ドにおいI
−fねそれ順に本発明(、“4−3ける名実施例の諸元
の値及び条件対応数値を掲げる。 但シ57、左端の数字は物体側からの順序を表し、l゛
は1/シズ面の曲率半径、dは1.ンズ面間隔、1〕は
アツベ数(1)d)、nはd線(λ=587.6nm 
)に4−3ける屈折率、fは全系の焦点距阿、FNはF
す゛ンバー、φは非球面I/レンズの有効径を表しでい
る。また、諸元の値に示す非球面は、光軸から垂直方向
の高さyにおける名非球面の頂点の接平面からの光軸方
向に沿った一距離をX(lq)とし、基準の近軸曲率半
径をr、円錐係数をに、n次の非球面係数をC,l  
とするとき、X (h)= (h°/r)/ c++ 
(IKli’ / r2)”2] +C2h2+C4h
4+C6h’−1−C8h’ (−C10hlOで表現
して′いる。また、円錐係数1(及び11次の非球面係
数を(−二n中の左端のE−nは10−口を示している
。 [0035] r実施例1】 r      d    ν    nl    14
2.768  2.5O23,01,86074273
,4&(12,4070,01518603−280,
849,10 445,3759,0060,71,56384512
4、関2(mυ 6   418.949  2.0G52.3 1.7
48107    18.477  5.55 8   −51.766  2.0043.4 1.8
40429    76.133   .35 10    33.856  9.0O25,51,7
303811−15,7041,7035,71,90
265ソ  −41,34I   Cat口υ13  
 126.681  4.00 65.8 1.464
5014   −97.873    、2015  
  46.279 11.00 58.9 1.618
2316   −26.974  2.0O23,01
,8607417−70,750(可釣 18    59.247  6.5040.9 1.
7963119   −76.390   .1520
    30.786  3.9056.0 1.団8
8321    66、べ惑  3.35 22  −102.300  1.85 33.9 1
.8038423    29.128  4.30次
   −13!、935  3.60 58.9 1.
5182326   −45.970   (B f)
f   36.0000 59.9999 102.0
002d5  3.4087 18.5718 31.
7962d12 20.1182 13.6283  
7.5055d17 13.2124  7.0392
  3.8684Bf  44.9643 53.73
09 59.9710第7面(非球面)基準の近軸曲率
半径: r=18.477円錐係数:k・1 非球面係数 C2= 0. C4=−0,1729E−05、C6=
−0,4735E−07、C8= 0.3062E−0
9C10=−0,2365E−11第24面(非球面) 基準の近軸曲率半径: r=−124,935円錐係数
:k・I C2=0、C4=−0,9195E−05、C6=−0
,2412E−07、C8= 0.1272B−09C
10=−0,4185B−12fG2・hczi / 
ft =−2,04fG3・hc3p / ft = 
7.64fG<  ・ hc4p  / f丁 =12
.371 AS −S l / f w = 0.00
275・・・・・・第7面(φ=21゜fG1/ fw
 =2.44 fG2a / l fG21 =4.25QG2R/ 
hczi =0.0714D/ f t  =0.08
82  ・・・・・・ FN T  =2.9n2e 
 n2p=0.172 [0036]
Embodiments Next, embodiments according to the present invention will be described. In each embodiment according to the present invention, the focal length f is 36 to 1.
It is a high-power zoom lens that is variable up to O2 and has a wide angle of view with an F number of up to 2.9. In each of the embodiments, for basic fishing, as shown in FIG. 31st/Shizu Group G3 with
and a fourth lens group G4 having positive refractive power.
, is there. When changing the magnification from the wide-angle end to the telephoto end,
-<T, first lens group G]- is linear (@-shaped) toward the object side, and the 21st lens group G] - The cis group O2 moves non-linearly (non-linearly) toward the image side (1st 31/lens group G3 and 4th Ly:, the -z group G4 moves non-linearly (non-linearly) toward the object side). Due to the movement of each 1/cis group due to zooming from the wide-angle end to the telephoto end, the first and second cis group C low and the second L/〉 lens group G
The air distance with 2 is -7 before power increase, the second lens ll'+'E
The air aperture between O2 and the 31st/lens group G3 is reduced 7, and the air gap between the 31st/lens group G3 and the fourth lens group G4 is reduced. [00283 Next, each $ example will be explained and explained. Example 1
In the zoom lens shown in Fig. 1, the positive first
1.・The cis group G1 has a negative smooth casing with its convex surface facing the object side (L-1) and a double convex 1E joined to this.
Izzens Gil and a positive meniscus with the convex surface facing the object side 1. The negative twelfth lens group G2 is composed of a negative lens (first lens component) G21 having a concave surface facing the image side, and a negative lens G21, which has a concave surface facing the image side, and a negative lens G2.・Shiz (second lens component) G2
Bonding pressure 12] consisting of 2 and a negative 1/〉・zu joined to the positive 1/〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉》
/Z (third lens component) G23, below LL. Then, ′, the positive 31st. - The cis group G3 consists of a biconvex positive lens G31, a biconvex positive I/lens, and a negative lens cemented to this with a convex surface facing the image side (G32). The positive 41st cis group G4 consists of a biconvex positive lens G41, a positive mascara lens G42 with its convex surface facing the object side, and a negative I/n lens G4.
43, and a positive mascara lens G44 with a convex surface facing the image side.
It is composed of. [0029] The aspherical surface in this example is the 21st.・The negative I/lens G (first lens component) 21 located closest to the object side of the lens group G2 is located on the image side surface (this lens component G), and the fourth lens
It is provided on the image side surface (final surface) of the positive lens G44 located closest to the image side of the cis group G4. In addition, opening 1] Aperture S
is arranged on the object side of the 31st/sys group G3. As shown in FIG. 5, the zoom 1/lens of Example L has basically the same configuration as the zoom 1/> lens of Example 1, but the negative lens in the 21st lens group O2 is The 217th lens component G of
22 is a junction) and becomes 7.°C. , 1 junction negative I/
The lens G22 consists of, in order from the object side, a positive meniscus lens with a convex surface facing the image side, and a first biconcave negative lens cemented to this. (・, i, second shi〉・
It is provided on the image side of the negative l/ns (first tons component) G21 located closest to the object side of the lens group G2, and the fourth
Lens group G4. It is provided on the object side of the positive lens G44 located closest to the image side. These aspherical surfaces are composed of a composite spherical surface (hybrid spherical surface) made of a spherical glass lens and a plastic material. In addition,
The aperture stop ':4 in this embodiment is arranged inside the third L/cis group G3. [0031] Zoom 1 of Example 3.・Figure 10
Examples in the 1st to 31st Nons as shown in
It has the same configuration as the zoom 1/〉・zu (-2, but
The configuration of the fourth lens group G..1 is different. That is, the fourth
The lens group G4 includes a biconvex positive lens G4], a biconvex positive lens G'42, and a negative! It consists of three lenses: / Lens G.13. The aspherical surface in this example is the negative lens (1') located closest to the object side of the 217th lens group.
11th. - lens component) is provided on the object side of G21, and the 41st. Negative 17 located closest to the image side of the cis group
GJ is installed on the object side of the lenses G43. Note that the aperture stop S in this embodiment is arranged on the object side of the third lens group G3. [0032] In each of the embodiments described above, a spherical surface is provided in the first lens group other than the second lens group. It functions effectively to compensate for variations in surface curvature due to magnification, changes in spherical convergence 7, etc. At this time, in order to effectively obtain the effect of an aspheric surface, Conditional expression (
It is desirable to configure the system so that it satisfies (74). Note that it goes without saying that an aspherical surface may be provided in the third lens group. Although it may be placed at any position as long as it is placed at the front end in the center, in order to function more effectively in the correction of off-axis aberrations and to obtain the effect of the present invention on the upper needle, it is necessary to place the aspheric surface 4- at the 21st position as much as possible. /On the object side in O2!/
It is desirable to arrange the lens surface.1. Also, in order to facilitate manufacturing and reduce the aspherical surface in this example, a composite of glass and plastic material There are five models using a spherical surface (Hybrid I7), but it goes without saying that it is also possible to construct an aspherical surface using only glass material.
The values of the specifications and condition-corresponding numerical values of the present invention (4-3 examples) are listed in order. However, the leftmost number represents the order from the object side, and l゛ is 1/ The radius of curvature of the cylindrical surface, d is the distance between 1.lens surfaces, 1] is the Atsube number (1) d), and n is the d-line (λ = 587.6 nm
), f is the focal length of the entire system, and FN is F
Amber and φ represent the aspherical surface I/the effective diameter of the lens. In addition, for the aspherical surface shown in the specification values, the distance along the optical axis direction from the tangent plane of the apex of the aspherical surface at the height y perpendicular to the optical axis is defined as X(lq), and The radius of curvature of the axis is r, the conic coefficient is C, and the n-th aspherical coefficient is C, l.
When, X (h) = (h°/r)/c++
(IKli' / r2)"2] +C2h2+C4h
4+C6h'-1-C8h' (expressed as -C10hlO'. Also, the conic coefficient 1 (and the 11th order aspherical coefficient (E-n at the left end in -2n indicates 10-mouth). [0035] rExample 1] r d ν nl 14
2.768 2.5O23,01,86074273
,4&(12,4070,01518603-280,
849,10 445,3759,0060,71,56384512
4, Seki 2 (mυ 6 418.949 2.0G52.3 1.7
48107 18.477 5.55 8 -51.766 2.0043.4 1.8
40429 76.133. 35 10 33.856 9.0O25,51,7
303811-15,7041,7035,71,90
265 so -41,34I Cat mouth υ13
126.681 4.00 65.8 1.464
5014-97.873, 2015
46.279 11.00 58.9 1.618
2316 -26.974 2.0O23,01
, 8607417-70,750 (catchable 18 59.247 6.5040.9 1.
7963119 -76.390. 1520
30.786 3.9056.0 1. Group 8
8321 66, Beguiled 3.35 22 -102.300 1.85 33.9 1
.. 8038423 29.128 4.30th -13! , 935 3.60 58.9 1.
5182326 -45.970 (B f)
f 36.0000 59.9999 102.0
002d5 3.4087 18.5718 31.
7962d12 20.1182 13.6283
7.5055d17 13.2124 7.0392
3.8684Bf 44.9643 53.73
09 59.9710 Paraxial radius of curvature based on the 7th surface (aspherical surface): r=18.477 Conic coefficient: k・1 Aspherical coefficient C2= 0. C4=-0, 1729E-05, C6=
-0,4735E-07, C8=0.3062E-0
9C10=-0,2365E-11 24th surface (aspherical surface) Standard paraxial radius of curvature: r=-124,935 Conic coefficient: k・I C2=0, C4=-0,9195E-05, C6=- 0
, 2412E-07, C8= 0.1272B-09C
10=-0,4185B-12fG2・hczi/
ft = -2,04fG3・hc3p / ft =
7.64fG<・hc4p/fton=12
.. 371 AS-S l / f w = 0.00
275...7th surface (φ=21°fG1/fw
=2.44 fG2a/l fG21 =4.25QG2R/
hczi =0.0714D/ f t =0.08
82...FN T =2.9n2e
n2p=0.172 [0036]

【実施例2】 r     d   ν   n 1   160.001  2.2O23,01,86
074277,2541L、50 70.0 1518
603  −264.690  .10 4   46.775   g、5060.1 1.6
20415   丘1.025   (mυ 6   829.431   L7G  52.3  
L748107   22.000  .0355.9
 1.497128   19.522  5.56 9   −68.286  2.5G35.5  L5
950710   −31.061  1.7045.
4 17966811   62、m   、35 12   34.730  9.0027.8 1.6
991113   −14.755   L、7039
.8 18699414  −292.136   (
回り16   94.290 4.3065.8 1.
4645016  −100.α)1  3.0017
   46.323 10.30 58.9  L阻8
2318   −27.173 2.0O23,01,
8607419−77,467(iij口わ 20   57.255  6.0G40.9  L7
963121   −75.244  .15 22   30.552  3.9056.0 1.5
688323   88.801  3.35 24  −97.793  1.8533.9  L叔
■μ25   2B、8 4.80 26   −80.760  .0665.9 1.4
971227   −70.αハ  2.50 58.
9 15182328   −50.329   (B
f)f   35.9999 60.0000 102
.0008d5 4.0893 19.2524 32
.4768d14 18,1&(211,64&1  
5.5205d19 15.9310  9.7578
  6.6870bf  43.1230 5L889
7 5B、1296第8面(非球面) 基準の近軸曲率半径:I′・19.522円錐係数:k
・1 非球面係数 C2−0、C4=−0,4461王−05、C6=−0
,1156E−06、C8二 0.6830[ミー09
 C10ニー0.4316E−11第26面(非球面) 基準の近軸曲率半径:r=−80,750円錐係数二k
・1 非球面係数 C2−0、C4:・−0,9459E  O5、C6ニ
ー0.3315E−07、C8= 0.1960E09
C]、(ト−0,6054E(2fG、 ・ 1)、辷
n/fr  二=−2,08f0.3 ・ 113.科
  /fT== 7.51−f、41・ht;u / 
b =12.471 AS −S l / f w =
 0.01040・・・・・・第8面(r、l):::
□:=・23゜L;+/f!=2.44 fG:a / l fr、= l =4.66QG2R
/ 1st、= a =0.0641r)/fT=o、
0882  ・・・・・・ FtJrニー2.9rEn
 −rl!P =Q、 1.71[0(137N [実施例] v     tlJv     訂 11、郁、457  2.50  痘、0 1−、叩0
742    73、(Y?A  Xi、卯 じ。11
゜前苅如3   −189.μs3  .10 4   44.101  8.頻 60゜1−1゜62
0415   106.011   (司了DG103
.749  1.団 49.5 1゜77279718
゜συ  6o団 8   −fi、398   :1.、S)  45.
4 1.四t[36892,417、加 10    48.765  9.00 2?、 8 
1.699]、、、111   −15.829  1
−.5’l)  43.4 1゜84a4212   
−6Q、654   団υ 13    83、田O4,5064,11=51、隙
014、   −73゜^渇   、痘 15轄。601 11−、(158,91,618,2
316・−29゜8=49  2,0■ 態。01」弼
、074]7  ・−1誘。715(可変) 18   60.8!’d   6゜oa  a、 9
 1.、7963119   −91,396  .1
0 2O72,684)   5.(X)58.9 1.5
18羽21   −61.74’!5  3.50η 
  −35,!39:11.  2.■ %、7 1゜
回加523   1−05.287   (可変)f3
5゜Q%5 59.999f11.01.9998a 
5  3.8115 15.897O26,6032紋
12 19.5羽711゜頷6743◎頭2d17  
カ1,0栄僑 〕、S4加34 16.淋17Bf  
38゜1196 47.7881)  56.3529
第6面(非球面)基準の近軸曲率半径: r=103.
749円蔚係数二に:11誘面係数C2=O1C4= 
011056E −05、C6=  0.1251E−
07、C8ニー0.8668E(OC10=  0.2
457E−12第22面(非球面)基準の近軸曲率半径
:r・−35,691円錐係数:に:11誘面係数C2
−0、C4=−0,4476E、−05、C6=0.1
070E −07、C8=−0,4857E−10Cl
0=0.1316E−12b・、・hヒR/fT”−・
−2,27fI;3・hc:+F/ fT=6.64f
GビhGrp / b ””13.62 l AS−3
l / fw = 0.001.97 =−=−−−第
6面((iり−=27.5) fGl/ f=+ =2
.22f(、:!n / l fGz l ””3.2
3QC:!R/ hc!R−”’0.0137D/ f
−。 =0.0882  ・・・・・・FN T=2.911
:・n’ n・、、==Q、]41以ト、の如く、各実
施例の諸元の値から分かるように、各1/レンズども極
力少ない1/・ンズ檜成枚数でコンバク1−に構成25
J−1ながら、Fナンバーが2,8程度と明るく、しか
もズーム比が2.83にも達する広い画角を含む高倍率
ズームレンズが達成されていることが理解できる。 [00381図2、図3、図4にはぞオ]ぞれ本発明の
実施例1のズームレンズの広角端(@短焦点距離状態)
。 中間焦点距離状態9望遠端(最長焦点距離状態)での諸
収差図を示している。図6、図7、図8にはイれぞイ1
本発明の実施例2のズームレンズの広角端(最短焦点距
離状態)9Q間焦点距離状態9望遠端(最短焦点距離状
態)1″の諾収差図を示I−でいる。 [00393図10、図11.図12にはそれぞれ本発
明の実施例3のズームレンズの広角端(@短焦点距離状
態)、中間焦点距離状態、望遠端(@長焦点距離状態)
での諸収差図を示しているit j、こて、汽収差図に
おいて、dはd線(λ=587.6誘m)、gはg (
435,8nni)による収差曲線を示し7′て゛おり
、また各収差図中の非点収差+:おいで、点線は子牛的
像面(メリディオナル像面)、実線は球欠的像面(づジ
ッタル像面)を示し7ている。なお、諸収差図中のFN
ばFナンバー、Yは像高を示17ている。 [0040]各収差図の比較より、各実施例とも、広角
端から望、遠端にわたりシロ収差が極めυ良好に補正、
されており、優イ]だ結像性能を有していることが分か
る。なお、本発明の実施例のフォーカシングは、第2レ
ンズ群及び第3レンズ群がある一定の比によって物体方
向に移動するインナーフォーカス方式、あるいは第3レ
ンズ群及び第4レンズ群がある一定の比によって物体方
向に移動するリアフォーカス方式によって行なうことに
よって、近距離まで高性能はズームレンズを実現するこ
とができる。また、開口絞りは第2レンズ群より像側か
ら、第4レンズ群よりも物体側に設定するのが望ましく
、変倍に対して各群と別の動きをさせても良い。 [00411また、本発明による各実施例では、第2レ
ンズ群O2中の負の第1レンズ成分G21を単レンズで
構成した場合を示したが、この第1レンズ成分G21を
正レンズと負レンズとの接合で構成しても良いことは言
うまでもない。 [00421 【発明の効果]以上の如く、本発明によれば、各レンズ
群とも極力少ないレンズ構成枚数でコンパクトに構成さ
れながら、Fナンバーが2.8程度と明るく、しかもズ
ーム比が3倍程度にも達し、広角端から望遠端にわたり
優れた結像性能を有する高倍率ズームレンズが達成され
ていることが理解できる。
[Example 2] r d ν n 1 160.001 2.2O23,01,86
074277, 2541L, 50 70.0 1518
603-264.690. 10 4 46.775 g, 5060.1 1.6
20415 Hill 1.025 (mυ 6 829.431 L7G 52.3
L748107 22.000. 0355.9
1.497128 19.522 5.56 9 -68.286 2.5G35.5 L5
950710 -31.061 1.7045.
4 17966811 62, m , 35 12 34.730 9.0027.8 1.6
991113 -14.755 L, 7039
.. 8 18699414 -292.136 (
Circumference 16 94.290 4.3065.8 1.
4645016 -100. α)1 3.0017
46.323 10.30 58.9 L 8
2318 -27.173 2.0O23,01,
8607419-77,467 (iii mouth 20 57.255 6.0G40.9 L7
963121 -75.244. 15 22 30.552 3.9056.0 1.5
688323 88.801 3.35 24 -97.793 1.8533.9 L uncle■μ25 2B, 8 4.80 26 -80.760 . 0665.9 1.4
971227-70. αc 2.50 58.
9 15182328 -50.329 (B
f) f 35.9999 60.0000 102
.. 0008d5 4.0893 19.2524 32
.. 4768d14 18,1&(211,64&1
5.5205d19 15.9310 9.7578
6.6870bf 43.1230 5L889
7 5B, 1296 8th surface (aspherical surface) Standard paraxial radius of curvature: I'・19.522 Conic coefficient: k
・1 Aspheric coefficient C2-0, C4=-0, 4461K-05, C6=-0
,1156E-06,C82 0.6830 [Me09
C10 knee 0.4316E-11 26th surface (aspherical surface) Standard paraxial radius of curvature: r = -80,750 Conic coefficient 2k
・1 Aspheric coefficient C2-0, C4:・-0,9459E O5, C6 knee 0.3315E-07, C8= 0.1960E09
C], (To-0,6054E(2fG, ・1), Length n/fr 2=-2,08f0.3 ・113. Family /fT== 7.51-f, 41・ht; u/
b = 12.471 AS - S l / f w =
0.01040...8th surface (r, l):::
□:=・23゜L;+/f! =2.44 fG:a/l fr, = l =4.66QG2R
/ 1st, = a = 0.0641r) / fT = o,
0882 ・・・・・・ FtJr knee 2.9rEn
-rl! P = Q, 1.71 [0 (137N [Example] v tlJv Rev. 11, Iku, 457 2.50 Pox, 0 1-, Hit 0
742 73, (Y?A Xi, Uji.11
゜Maekaruyo 3 -189. μs3. 10 4 44.101 8. Frequency 60゜1-1゜62
0415 106.011 (Tsukasa Ryo DG103
.. 749 1. Group 49.5 1゜77279718
゜συ 6o group 8 -fi, 398:1. , S) 45.
4 1. 4t [36892,417, 10 48.765 9.00 2? , 8
1.699],,,111 -15.829 1
−. 5'l) 43.4 1°84a4212
-6Q, 654 group υ 13 83, field O4, 5064, 11 = 51, gap 014, -73゜^ thirst, pox 15 jurisdiction. 601 11-, (158,91,618,2
316・-29°8=49 2,0■ state. 01” 弼, 074] 7 ・-1 invitation. 715 (variable) 18 60.8! 'd 6゜oa a, 9
1. , 7963119 -91,396. 1
0 2O72,684) 5. (X)58.9 1.5
18 birds 21 -61.74'! 5 3.50η
-35,! 39:11. 2. ■ %, 7 1° rotation 523 1-05.287 (variable) f3
5゜Q%5 59.999f11.01.9998a
5 3.8115 15.897O26,6032 crest 12 19.5 birds 711° nod 6743◎head 2d17
Ka1.0 Eikyaku], S4 Ka34 16. Hino 17Bf
38°1196 47.7881) 56.3529
Paraxial radius of curvature based on the 6th surface (aspherical surface): r=103.
749 yen coefficient 2: 11 induction coefficient C2=O1C4=
011056E-05, C6= 0.1251E-
07, C8 knee 0.8668E (OC10= 0.2
457E-12 Paraxial radius of curvature based on the 22nd surface (aspherical surface): r・-35,691 Conic coefficient: 11 Dielectric surface coefficient C2
-0, C4=-0,4476E, -05, C6=0.1
070E -07, C8=-0,4857E-10Cl
0=0.1316E-12b・,・hhiR/fT”−・
-2,27fI;3・hc:+F/fT=6.64f
GbihGrp/b ””13.62 l AS-3
l/fw = 0.001.97 =-=--6th surface ((i-ri-=27.5) fGl/ f=+ =2
.. 22f(,:!n/l fGz l ””3.2
3QC:! R/hc! R-”'0.0137D/f
−. =0.0882...FN T=2.911
:・n' n・,,==Q, ]41 As can be seen from the values of the specifications of each example, each 1/lens can be made with as few 1/・nes cypress as possible. - configuration 25
Although it is J-1, it can be seen that it has achieved a high magnification zoom lens that is bright with an F number of about 2.8 and has a wide angle of view with a zoom ratio of 2.83. [00381 See FIGS. 2, 3, and 4] Wide-angle end (@ short focal length state) of the zoom lens of Example 1 of the present invention
. Various aberration diagrams are shown in intermediate focal length state 9 and telephoto end (longest focal length state). Figures 6, 7, and 8 are missing.1
The aberration diagram of the zoom lens according to Example 2 of the present invention at the wide-angle end (shortest focal length state) 9Q, the focal length state 9 and the telephoto end (shortest focal length state) 1'' is shown in I-. Figure 11 and Figure 12 respectively show the wide-angle end (@short focal length state), intermediate focal length state, and telephoto end (@long focal length state) of the zoom lens of Example 3 of the present invention.
In the it j, trowel, and steam aberration diagrams showing various aberration diagrams at
435, 8nni), and in each aberration diagram, astigmatism +: The dotted line is the meridional image surface, and the solid line is the spherical image surface (meridional image surface). image plane). In addition, FN in the various aberration diagrams
17 indicates the F number and Y indicates the image height. [0040] Comparison of each aberration diagram shows that in each example, the shiro aberration is very well corrected from the wide-angle end to the telephoto and far ends.
It can be seen that it has excellent imaging performance. Note that focusing in the embodiments of the present invention is performed using an inner focus method in which the second lens group and the third lens group move toward the object at a certain ratio, or a focusing method in which the second lens group and the third lens group move toward the object at a certain ratio. By employing a rear focusing system that moves toward the object, a zoom lens with high performance up to short distances can be realized. Further, it is preferable that the aperture stop is set closer to the image side than the second lens group and closer to the object side than the fourth lens group, and may be moved differently from each group for zooming. [00411 Furthermore, in each of the embodiments according to the present invention, a case was shown in which the negative first lens component G21 in the second lens group O2 was composed of a single lens, but this first lens component G21 was composed of a positive lens and a negative lens. Needless to say, it may be configured by joining with. [00421] [Effects of the Invention] As described above, according to the present invention, each lens group has a compact structure with as few lenses as possible, has a bright F number of about 2.8, and has a zoom ratio of about 3 times. It can be seen that a high-magnification zoom lens with excellent imaging performance from the wide-angle end to the telephoto end has been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1における広角端(最短焦点距
離状態)、中間焦点距離状態及び望遠端(最短焦点距離
状態)でのレンズ構成図である。
FIG. 1 is a lens configuration diagram at a wide-angle end (minimum focal length state), an intermediate focal length state, and a telephoto end (minimum focal length state) in Example 1 of the present invention.

【図2】本発明の実施例1における広角端(最短焦点距
離状態)の諸収差図である。
FIG. 2 is a diagram of various aberrations at the wide-angle end (shortest focal length state) in Example 1 of the present invention.

【図3】本発明の実施例1における中間焦点距離状態の
諸収差図である。
FIG. 3 is a diagram of various aberrations in an intermediate focal length state in Example 1 of the present invention.

【図4】本発明の実施例1における望遠端(最長焦点距
離状態)の諸収差図である。
FIG. 4 is a diagram of various aberrations at the telephoto end (longest focal length state) in Example 1 of the present invention.

【図5】本発明の実施例2における広角端(最短焦点距
離状態)、中間焦点距離状態及び望遠端(最短焦点距離
状態)でのレンズ構成図である。
FIG. 5 is a lens configuration diagram at a wide-angle end (minimum focal length state), an intermediate focal length state, and a telephoto end (minimum focal length state) in Example 2 of the present invention.

【図6】本発明の実施例2における広角端(最短焦点距
離状態)の諸収差図である。
FIG. 6 is a diagram showing various aberrations at the wide-angle end (shortest focal length state) in Example 2 of the present invention.

【図7】本発明の実施例2における中間焦点距離状態の
諸収差図である。
FIG. 7 is a diagram of various aberrations in an intermediate focal length state in Example 2 of the present invention.

【図8】本発明の実施例2における望遠端(最長焦点距
離状態)の諸収差図である。
FIG. 8 is a diagram of various aberrations at the telephoto end (longest focal length state) in Example 2 of the present invention.

【図9】本発明の実施例3における広角端(最短焦点距
離状態)、中間焦点距離状態及び望遠端(最短焦点距離
状態)でのレンズ構成図である。
FIG. 9 is a lens configuration diagram at a wide-angle end (minimum focal length state), an intermediate focal length state, and a telephoto end (minimum focal length state) in Example 3 of the present invention.

【図10】本発明の実施例3における広角端(最短焦点
距離状態)の諸収差図である。
FIG. 10 is a diagram of various aberrations at the wide-angle end (shortest focal length state) in Example 3 of the present invention.

【図11】本発明の実施例3における中間焦点距離状態
の諸収差図である。
FIG. 11 is a diagram of various aberrations in an intermediate focal length state in Example 3 of the present invention.

【図12】本発明の実施例3における望遠端(最長焦点
距離状態)の諸収差図である。
FIG. 12 is a diagram of various aberrations at the telephoto end (longest focal length state) in Example 3 of the present invention.

【主要部分の符号の説明IGI・・・41521群O2
・・・第2レンズ群G3・・・第3レンズ群G4・・・
第4レンズ群 【i¥12】
[Explanation of symbols of main parts IGI...41521 group O2
...Second lens group G3...Third lens group G4...
4th lens group [i¥12]

【図4】[Figure 4]

【図7) 【図9】 【図111[Figure 7) [Figure 9] [Figure 111

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力を有する第1
レンズ群G1と、負の屈折力を有する第2レンズ群G2
と、正の屈折力を有する第3レンズ群G3と、正の屈折
力を有する第4レンズ群G4とを有し、前記第2レンズ
群G2は、物体側から順に、単レンズもしくは接合レン
ズよりなり負の屈折力を有する第1レンズ成分G21と
、単レンズもしくは接合レンズよりなり負の屈折力を有
する第2レンズ成分G22と、接合レンズよりなり正の
屈折力を有する第3レンズ成分G23とを有し、広角端
から望遠端への変倍に際して、前記第1レンズ群G1、
第3レンズ群G3及び第4レンズ群G4はそれぞれ物体
側へ移動し、以下の条件を満足することを特徴とする高
倍率ズームレンズ。 (1)−3≦f_G_2・h_G_2_R/f_T≦−
2(2)5≦f_G_3・h__G_3_F/f_T≦
9(3)10.3≦f_G_4・h_G_4_F/f_
T≦25但し、f_T:望遠端における全系の焦点距離
、f_G_2:第2レンズ群G2の焦点距離、f_G_
3:第3レンズ群G3の焦点距離、f_G_4:第4レ
ンズ群G4の焦点距離、h_G_2_R:望遠端におい
て軸上無限遠物点からの光線が第2レンズ群G2の最も
像側の面の最周縁を通過する位置から光軸までの光線の
高さ、 h_G_3_F:望遠端において軸上無限遠物点からの
光線が第3レンズ群G3の最も物体側の面の最周縁を通
過する位置から光軸までの光線の高さ、 h_G_4_F:望遠端において軸上無限遠物点からの
光線が第4レンズ群G4の最も物体側の面の最周縁を通
過する位置から光軸までの光線の高さ、である。
Claim 1: In order from the object side, the first lens has a positive refractive power.
a lens group G1 and a second lens group G2 having negative refractive power
, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power, and the second lens group G2 includes, in order from the object side, a single lens or a cemented lens. A first lens component G21 having a negative refractive power, a second lens component G22 comprising a single lens or a cemented lens and having a negative refractive power, and a third lens component G23 comprising a cemented lens having a positive refractive power. and when changing the magnification from the wide-angle end to the telephoto end, the first lens group G1,
A high-power zoom lens characterized in that the third lens group G3 and the fourth lens group G4 each move toward the object side and satisfy the following conditions. (1) −3≦f_G_2・h_G_2_R/f_T≦−
2 (2) 5≦f_G_3・h__G_3_F/f_T≦
9 (3) 10.3≦f_G_4・h_G_4_F/f_
T≦25 However, f_T: Focal length of the entire system at the telephoto end, f_G_2: Focal length of the second lens group G2, f_G_
3: Focal length of the third lens group G3, f_G_4: Focal length of the fourth lens group G4, h_G_2_R: At the telephoto end, the ray from the object point at infinity on the axis is the most image-side surface of the second lens group G2. Height of the ray from the position where it passes through the peripheral edge to the optical axis, h_G_3_F: The height of the ray from the position where the ray from the object point at infinity on the axis passes through the outermost edge of the surface closest to the object of the third lens group G3 at the telephoto end. Height of the ray to the axis, h_G_4_F: Height of the ray from the position where the ray from the object point at infinity on the axis passes through the outermost edge of the surface closest to the object of the fourth lens group G4 to the optical axis at the telephoto end , is.
【請求項2】請求項1の高倍率ズームレンズにおいて、
前記第2レンズ群G2は以下の条件を満足する非球面を
含むことを特徴とする高倍率ズームレンズ。(4)0.
0008≦|AS−S|/fw≦0.05但し、fw:
広角端の全系の焦点距離、 AS−S:有効径の最周辺における前記非球面と所定の
頂点曲率半径を有する基準球面との光軸方向における差
、である。
2. The high-power zoom lens according to claim 1,
A high-power zoom lens characterized in that the second lens group G2 includes an aspherical surface that satisfies the following conditions. (4) 0.
0008≦|AS−S|/fw≦0.05 However, fw:
Focal length of the entire system at the wide-angle end, AS-S: the difference in the optical axis direction between the aspherical surface and a reference spherical surface having a predetermined apex radius of curvature at the outermost periphery of the effective diameter.
JP2400244A 1990-12-03 1990-12-03 High magnifying power zoom lens Pending JPH04208912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2400244A JPH04208912A (en) 1990-12-03 1990-12-03 High magnifying power zoom lens
US07/801,487 US5191476A (en) 1990-12-03 1991-12-02 Great relative aperture zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400244A JPH04208912A (en) 1990-12-03 1990-12-03 High magnifying power zoom lens

Publications (1)

Publication Number Publication Date
JPH04208912A true JPH04208912A (en) 1992-07-30

Family

ID=18510154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400244A Pending JPH04208912A (en) 1990-12-03 1990-12-03 High magnifying power zoom lens

Country Status (1)

Country Link
JP (1) JPH04208912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JPH09101458A (en) * 1995-10-06 1997-04-15 Minolta Co Ltd Zoom lens
US6055114A (en) * 1997-06-18 2000-04-25 Nikon Corporation Zoom lens optical system
JP2001228395A (en) * 2000-02-18 2001-08-24 Canon Inc Rear focus type zoom lens and optical equipment using the same
US7817346B2 (en) 2006-10-02 2010-10-19 Sony Corporation Zoom lens and image capture apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248319A (en) * 1995-03-13 1996-09-27 Canon Inc Zoom lens
JPH09101458A (en) * 1995-10-06 1997-04-15 Minolta Co Ltd Zoom lens
US6055114A (en) * 1997-06-18 2000-04-25 Nikon Corporation Zoom lens optical system
US6166863A (en) * 1997-06-18 2000-12-26 Nikon Corporation Zoom lens optical system
US6215599B1 (en) 1997-06-18 2001-04-10 Nikon Corporation Zoom lens optical system
JP2001228395A (en) * 2000-02-18 2001-08-24 Canon Inc Rear focus type zoom lens and optical equipment using the same
JP4593716B2 (en) * 2000-02-18 2010-12-08 キヤノン株式会社 Rear focus zoom lens and optical apparatus using the same
US7817346B2 (en) 2006-10-02 2010-10-19 Sony Corporation Zoom lens and image capture apparatus

Similar Documents

Publication Publication Date Title
JPH05249373A (en) Wide-angle zoom lens
JPH05249374A (en) Zoom lens with wide field angle
JPH063592A (en) Large-diameter zoom lens
JPH04235514A (en) Super-wide angle zoom lens
US20010046090A1 (en) Zoom lens system and photographic device equipped therewith
JPH1020193A (en) Zoom lens
JPH04235515A (en) Super-wide angle zoom lens
US6621643B2 (en) Zoom lens system
JP4096399B2 (en) Large aperture zoom lens
JP2001166206A (en) Zoom lens and photographing device having this lens
JPH09211327A (en) Zoom lens
JPH10197794A (en) Zoom lens
JPH04208912A (en) High magnifying power zoom lens
JP4210876B2 (en) Zoom lens
JP4453120B2 (en) Zoom lens
JP2018040948A (en) Zoom lens
JP2006053437A (en) Zoom lens
JP4720005B2 (en) Zoom lens
JPH08286110A (en) Zoom lens of high power
JP3744042B2 (en) Zoom lens
JPH04181910A (en) Compact high variable power zoom lens
JPH0990226A (en) Variable power optical system
JP2000321497A (en) Zoom lens
JPH05134181A (en) Wide angle zoom lens
JP3077200B2 (en) Large aperture ratio zoom lens