JPH04206335A - Electron microscope - Google Patents

Electron microscope

Info

Publication number
JPH04206335A
JPH04206335A JP33665890A JP33665890A JPH04206335A JP H04206335 A JPH04206335 A JP H04206335A JP 33665890 A JP33665890 A JP 33665890A JP 33665890 A JP33665890 A JP 33665890A JP H04206335 A JPH04206335 A JP H04206335A
Authority
JP
Japan
Prior art keywords
electron beam
electron
diffracted
sample
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33665890A
Other languages
Japanese (ja)
Other versions
JP2662723B2 (en
Inventor
Takeo Ueno
武夫 上野
Norie Yaguchi
紀恵 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP2336658A priority Critical patent/JP2662723B2/en
Publication of JPH04206335A publication Critical patent/JPH04206335A/en
Application granted granted Critical
Publication of JP2662723B2 publication Critical patent/JP2662723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To quantitatively grasp the crystal orientation of a crystalline sample by providing a specified electron beam deflecting means and electron beam intensity detecting means. CONSTITUTION:A sinusoidal AC voltage is applied to deflecting coils 18X, 18Y so that a diffracted electron beam 3a starts a precession with the natural optical axis as the center. The electron beam starting the precession is imaged by an imaging lens system 20, and a circular movement having the distance R between the optical axis of the lens system and a spot position 30 when the diffracted electron beams starts no precession is started with the spot position 30 as the center. When a current detecting element 10 is thus provided on the optical axis position of the lens system on the imaging surface, the diffracted electron beam periodically crosses the current detecting element 10 in replay to the deflecting period of the deflecting coils 18X, 18Y, so that the current intensity of the diffracted electron beam can be detected, and the intensity of the diffracted electron beam can be quantitatively measured. Thus, the crystal orientation of a crystalline sample can be quantitatively grasped.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子顕微鏡に係り、特に、結晶質試料の結晶成
長面の配向性を電子線回折を利用して測定する機能を備
えた電子顕微鏡に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electron microscope, and more particularly, to an electron microscope having a function of measuring the orientation of a crystal growth plane of a crystalline sample using electron beam diffraction. It is related to.

(従来技術) 近年の電子顕微鏡では、いわゆるTENi像の他に電子
線回折像を観察することか可能であり、オペレータが必
要に応じて電子顕微鏡の動作モートをTEM像モートま
たは回折像モードに設定すると、その設定に応して各電
子レンズの励磁電流か自動的に調整されるようになって
いる。
(Prior art) With recent electron microscopes, it is possible to observe electron beam diffraction images in addition to so-called TENi images, and the operator can set the operation mode of the electron microscope to TEM image mode or diffraction image mode as necessary. Then, the excitation current for each electron lens is automatically adjusted according to the settings.

これまで、電子顕微鏡を用いた電子線回折像の観察では
、収束された電子線を試料に照射し、蛍光板上に結像さ
れる電子線回折像を解析することによって試料の結晶構
造、配向性を判断していた。
Until now, in the observation of electron beam diffraction images using an electron microscope, the crystal structure and orientation of the sample have been determined by irradiating the sample with a focused electron beam and analyzing the electron beam diffraction image formed on a fluorescent screen. was judging.

(発明が解決しようとする課題) 結晶質試料に電子線か入射すると電子線回折像が得られ
る。このとき、電子線の光軸に対する回折角度θは、入
射電子線の波長をλ、結晶面の格子間隔をdとすると、
次式(1)で表される2d−sinθ−λ ・(1) 電子線の回折角度θは、同じ面指数を有する結晶面で回
折された場合は同一であるか、回折方向は結晶の方位に
より様々なので、同じ面指数を有する結晶面で回折され
た電子線は一点に結像せず、螢光板上では光軸から等距
離に分布してしまう。
(Problems to be Solved by the Invention) When an electron beam is incident on a crystalline sample, an electron beam diffraction image is obtained. At this time, the diffraction angle θ with respect to the optical axis of the electron beam is expressed as follows, where λ is the wavelength of the incident electron beam and d is the lattice spacing of the crystal plane.
2d-sinθ-λ expressed by the following formula (1) (1) The diffraction angle θ of an electron beam is the same when diffracted by a crystal plane with the same plane index, or the diffraction direction is the orientation of the crystal. Therefore, electron beams diffracted by crystal planes having the same plane index do not focus on a single point, but are distributed equidistantly from the optical axis on the phosphor plate.

したかって、電子線回折像を解析するたけでは同じ面指
数を有する結晶面で回折された電子線の総量を測定する
ことができす、結晶配向性について定量的に把握する二
とができないという問題かあった。
Therefore, by simply analyzing electron beam diffraction images, it is possible to measure the total amount of electron beams diffracted by crystal planes with the same plane index, but it is not possible to quantitatively understand the crystal orientation. There was.

また、これまでは結晶構造の解析と配向性の測定とを同
一の装置で行うことかできす、電子顕微鏡で結晶構造を
解析したのちに、X線回折装置によって配向性を測定す
るようにしていたので、試料交換時に試料か変質したり
損傷したりしてしまうという問題かあった。
In addition, until now it was only possible to analyze the crystal structure and measure the orientation using the same device; instead, the crystal structure was analyzed using an electron microscope, and then the orientation was measured using an X-ray diffraction device. As a result, there was a problem in that the sample deteriorated or was damaged when the sample was replaced.

本発明の目的は、上記した問題点を解決して、結晶質試
料の結晶配向性を定量的に把握すること−の可能な電子
顕微鏡を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electron microscope that solves the above-mentioned problems and allows quantitative determination of the crystal orientation of a crystalline sample.

(課題を解決するための手段) 上記した目的を達成するために、本発明では、電子銃か
ら放射された電子線を収束して試料に照射し、回折され
た電子線を結像して電子線回折像を得る電子顕微鏡にお
いて、以下のような不良を講じた点に特徴がある。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the present invention focuses an electron beam emitted from an electron gun and irradiates the sample, and images the diffracted electron beam to form an electron beam. The electron microscope used to obtain line diffraction images is characterized by the following defects.

(1)電子線回折像上の任意の測定点か、該測定点位置
を中心に円周運動してレンズ系光軸を横切るように前記
回折電子線に歳差運動を起こさせる電子線偏向手段と、
前記レンズ系光軸を横切る回折電子線の強度を検出する
電子線強度検出手段とを具備した。
(1) Electron beam deflection means that causes the diffracted electron beam to precess at an arbitrary measurement point on the electron beam diffraction image or by moving circumferentially around the measurement point position to cross the optical axis of the lens system. and,
and electron beam intensity detection means for detecting the intensity of the diffracted electron beam that crosses the optical axis of the lens system.

(2)電子銃から放射された電子線に、レンズ系光軸を
中心に歳差運動を起こさせる電子線偏向手段と、前記電
子線を収束して試料に照射する手段と、前記電子線が試
料に垂直に照射されるように、前記電子線の歳差運動に
同期して試料に歳差運動を起こさせる手段と、回折され
た電子線の強度を検出する電子線強度検出手段とを具備
した。
(2) an electron beam deflecting means for causing the electron beam emitted from the electron gun to precess around the optical axis of the lens system; a means for converging the electron beam to irradiate the sample; Equipped with means for causing a sample to precess in synchronization with the precession of the electron beam so that the sample is irradiated perpendicularly, and an electron beam intensity detection means for detecting the intensity of the diffracted electron beam. did.

(3)レンズ系光軸を中心に回転して、レンズ系光軸か
ら等距離の位置で結像された回折電子線の強度を測定す
る電子線強度検出手段を具備した。
(3) An electron beam intensity detection means was provided that rotates around the optical axis of the lens system and measures the intensity of the diffracted electron beam that is imaged at a position equidistant from the optical axis of the lens system.

(作用) 上記した各構成によれば、同じ面指数を有する結晶面に
よって同一角度で各方位に回折された全ての回折電子線
か電子線強度検出手段を横切るようになるので、同じ面
指数を有する結晶面で回折された電子線を全て検出でき
るようになる。
(Function) According to each of the configurations described above, all the diffracted electron beams diffracted in each direction at the same angle by the crystal planes having the same plane index cross the electron beam intensity detection means. It becomes possible to detect all electron beams diffracted by the crystal planes.

(実施例) 以下に図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の基本概念を説明するための図である。FIG. 1 is a diagram for explaining the basic concept of the present invention.

同図において、偏向コイル18X、113Yには、回折
角度θで回折された回折電子線3aが本来の光軸を中心
にして角度θて歳差運動を起こすように、正弦波交流電
圧Vt5inθ、Vtcosθが印加される。
In the figure, the deflection coils 18X and 113Y are provided with sinusoidal AC voltages Vt5inθ and Vtcosθ so that the diffracted electron beam 3a diffracted at a diffraction angle θ causes a precession at an angle θ about the original optical axis. is applied.

歳差運動を起こした電子線は結像レンズ系20によって
結像され、回折電子線が前記歳差運動を起こさない場合
のスポット位置30を中心にして、レンズ系の光軸と該
スポット位置30との距離Rを半径とした円周運動を起
こす。
The precessing electron beam is imaged by the imaging lens system 20, and the optical axis of the lens system and the spot position 30 are centered on the spot position 30 when the diffracted electron beam does not precess. It causes a circular motion with the radius being the distance R from the

ここで、結像面でのレンズ系の光軸位置に電流検出素子
10を設ければ、前記偏向コイル18X、18Yの偏向
周期に応答して回折電子線が電流検出素子10を周期的
に横切るので、回折電子線の電流強度l 、か検出され
る。
Here, if the current detection element 10 is provided at the optical axis position of the lens system on the imaging plane, the diffracted electron beam will periodically cross the current detection element 10 in response to the deflection period of the deflection coils 18X, 18Y. Therefore, the current intensity l of the diffracted electron beam is detected.

1g したがって、電流強度l 、を参照すれば、回1g 折重子線の強度を定量的に測定することができるように
なる。
1g Therefore, by referring to the current intensity l, it becomes possible to quantitatively measure the intensity of the 1g folded beam.

第5図は本発明の一実施例である電子顕微鏡の構成を示
した図であり、前記と同一の符号は同一または同等部分
を表している。
FIG. 5 is a diagram showing the configuration of an electron microscope which is an embodiment of the present invention, and the same reference numerals as above represent the same or equivalent parts.

同図において、電子銃2から放射された電子線3は収束
レンズ4によって試料5上に収束される。
In the figure, an electron beam 3 emitted from an electron gun 2 is focused onto a sample 5 by a converging lens 4.

試料5で回折された電子線は対物レンズ6で収束された
後に電子線偏向器8によって偏向される。
The electron beam diffracted by the sample 5 is focused by an objective lens 6 and then deflected by an electron beam deflector 8.

電子線偏向器8には、信号処理装置13によって制御さ
れる電子線偏向電源11から正弦波交流電圧Viが印加
され、電子線3は歳差運動を起二 ゛す。歳差運動を起
こした電子線は結像レンズ9によって拡大されて結像す
る。
A sinusoidal AC voltage Vi is applied to the electron beam deflector 8 from an electron beam deflection power supply 11 controlled by a signal processing device 13, and the electron beam 3 causes precession. The precessed electron beam is magnified and imaged by the imaging lens 9.

結像面でのレンズ系の光軸位置には電流検出素子10が
配置され、電流検出素子10を周期的に横切る回折電子
線の電流強度1 、が検出される。
A current detection element 10 is arranged at the optical axis position of the lens system on the imaging plane, and the current intensity 1 of the diffracted electron beam that periodically crosses the current detection element 10 is detected.

1g 電子線輝度Gl定装置12は前記電流強度’ sigに
基づいて回折電子線の輝度を検出し、検出信号を信号処
理装置13に出力する。
1g The electron beam brightness Gl determining device 12 detects the brightness of the diffracted electron beam based on the current intensity 'sig, and outputs a detection signal to the signal processing device 13.

このような構成において、電子線偏向器8に印加する正
弦波交流電圧を、第2図に示したようにVt1s i 
nθからVt2s i nθ(Vtlc o sθから
Vt2cosθ)に変化させると、該交流電圧の変化は
回折電子線の振れ角の変化となって表れる。
In such a configuration, the sinusoidal AC voltage applied to the electron beam deflector 8 is set to Vt1s i as shown in FIG.
When changing from nθ to Vt2s i nθ (from Vtlcosθ to Vt2cosθ), the change in the AC voltage appears as a change in the deflection angle of the diffracted electron beam.

このとき、試料5に配向性があれば、以下に第4図を参
照して詳述するように、前記電圧の変化に応答して前記
電流検出素子10で検出される電流強度i 、が、例え
ば第3図に示した、ように1g isiglから151g2へ変化する。
At this time, if the sample 5 has orientation, as will be described in detail below with reference to FIG. 4, the current intensity i detected by the current detection element 10 in response to the change in voltage will be For example, as shown in FIG. 3, 1g isigl changes to 151g2.

第4図は本実施例による電子線回折像を示した図である
FIG. 4 is a diagram showing an electron beam diffraction image according to this example.

同図(a)に示した回折パターンが観察されたときに、
例えば[002]スポツトが該スポット位置を中心に円
周運動してレンズ系光軸([000]スポツト)に設け
られた電流検出素子10を横切るように、電子線偏向器
8を制御して回折電子線に歳差運動を起こさせると、同
図(b)に示したように、他のスポットも同様に円周運
動する。
When the diffraction pattern shown in figure (a) is observed,
For example, the electron beam deflector 8 is controlled so that the [002] spot moves circumferentially around the spot position and crosses the current detection element 10 provided on the optical axis of the lens system ([000] spot). When the electron beam is caused to precess, other spots also move circumferentially, as shown in FIG. 2(b).

このとき、[002] スポットを結像する結晶面と同
じ面指数を有する結晶面で回折された電子線による[0
20コ、[00丁]、[020]スポツトも、[002
]スポツトと同様に電流検出素子10を横切るように円
周運動する。
At this time, [002] is caused by the electron beam diffracted by the crystal plane having the same plane index as the crystal plane on which the spot is imaged.
20 pieces, [00 pieces], [020] spots, [002 pieces]
] Similar to the spot, it moves circumferentially across the current detection element 10.

ところが、[022]スポツトや[022]スポツトの
ように、前記[002]スポツトを結像する結晶面と異
なる面指数を有する結晶面で回折された電子線によるス
ポットが電流検出素子10を横切ることはない。
However, such as a [022] spot or a [022] spot, a spot caused by an electron beam diffracted by a crystal plane having a plane index different from the crystal plane on which the [002] spot is imaged crosses the current detection element 10. There isn't.

したがって、このときに電流検出素子10で検圧される
電流強度1 、を観察すれば、結晶質試1g 料の結晶配向性を定量的に把握できるようになる。
Therefore, by observing the current intensity 1 detected by the current detection element 10 at this time, it becomes possible to quantitatively grasp the crystal orientation of the crystalline sample 1g.

同様に、同図(C)に示したように、[022]スポツ
トが該スポット位置を中心に円周運動して電流検出素子
10を横切るように回折電子線に歳差運動を起こさせる
と、[022]スポツトを結ぶ結晶面と同じ面指数を有
する結晶面で回折された電子線による[022]、[0
22コ、[022]スポツトも電流検出素子10を横切
るように円周運動する。ところが、[002]スポツト
や[020]スポツトが電流検出素子1oを横切ること
はない。
Similarly, as shown in FIG. 3C, when the [022] spot moves circumferentially around the spot position and causes the diffracted electron beam to precess so as to cross the current detection element 10, [022] and [0
22, the [022] spot also moves circumferentially across the current detection element 10. However, the [002] spot and the [020] spot never cross the current detection element 1o.

したかって、電子線偏向器8に印加する正弦波交流電圧
の値に応答して変化する電流強度l 。
Therefore, the current intensity l changes in response to the value of the sinusoidal AC voltage applied to the electron beam deflector 8.

1g を測定すれば、試料5の結晶配向性の状態を判定するこ
とができるようになる。
By measuring 1 g, the state of crystal orientation of sample 5 can be determined.

また、各回折電子線に関して、全回折電子線に対する強
度比、すなわちi  /Σi   ヲ求メS1g   
    S1g ておけば、結晶配向性について定量的に把握することが
できる。
Also, for each diffracted electron beam, find the intensity ratio to the total diffracted electron beam, i.e., i/Σi.S1g
By using S1g, it is possible to quantitatively understand the crystal orientation.

第6図は本発明の第2実施例の基本構成を示した図であ
る。
FIG. 6 is a diagram showing the basic configuration of a second embodiment of the present invention.

同図において、電子線偏向器8X、8Yは電子銃2から
放射された電子線3に、レンズ系光軸33を中心に歳差
運動を起こさせる。歳差運動を起こした電子線3は収束
レンズ6oによって試料5上に収束される。
In the figure, electron beam deflectors 8X and 8Y cause the electron beam 3 emitted from the electron gun 2 to precess around the optical axis 33 of the lens system. The precessed electron beam 3 is focused onto the sample 5 by a converging lens 6o.

試料5は、前記収束された電子線が常に垂直に照射され
るように、前記電子線の歳差運動に同期して歳差運動を
起こす。このような試料5の歳差運動は、図示しない試
料ステージを駆動することによって達成される。
The sample 5 precesses in synchronization with the precession of the electron beam so that the focused electron beam is always irradiated vertically. Such precession of the sample 5 is achieved by driving a sample stage (not shown).

このような構成によれば、試料5によって回折角度θで
各方位に回折された回折電子線は、試料5の歳差運動に
よって電流検出素子10を横切るようになるので、本実
施例によれば、前記した第1実施例の場合と同様に、結
晶配向性について定量的に把握することかできるように
なる。
According to such a configuration, the diffracted electron beam diffracted in each direction by the sample 5 at the diffraction angle θ comes to cross the current detection element 10 due to the precession of the sample 5. As in the case of the first embodiment described above, it becomes possible to quantitatively understand the crystal orientation.

第7図は本発明の第3実施例の基本構成を示した図であ
る。
FIG. 7 is a diagram showing the basic configuration of a third embodiment of the present invention.

同図において、電流検出素子10はレンズ系光軸を中心
に、任意の半径で回転するように構成されている。
In the figure, the current detection element 10 is configured to rotate at an arbitrary radius around the optical axis of the lens system.

このような構成によれば、前記第1ないL2第2実施例
の場合と同様に、試料5によって回折角度θで各方位に
回折された回折電子線は電流検出素子10を横切るよう
になるので、結晶配向性について定量的に把握すること
ができるようになる。
According to such a configuration, the diffracted electron beam diffracted by the sample 5 in each direction at the diffraction angle θ crosses the current detection element 10, as in the case of the second embodiment. , it becomes possible to quantitatively understand crystal orientation.

しかも、本発明によれば、結晶構造の解析と配向性の測
定とを同一の装置で行えるようになるので、試料の変質
や損傷なとか最小限に押さえられて操作性の向上および
測定データの信頼性か向上される。
Moreover, according to the present invention, crystal structure analysis and orientation measurement can be performed using the same device, so deterioration or damage to the sample can be minimized, improving operability and improving measurement data. Reliability will be improved.

(発明の効果) 以上の説明から明らかなように、本発明によれば、結晶
配向性について簡単かつ量的に把握することができるよ
うになる。
(Effects of the Invention) As is clear from the above description, according to the present invention, crystal orientation can be easily and quantitatively understood.

また、本発明によれば、結晶構造の解析と配向性の測定
とを同一の装置で行えるようになるので、試料の変質や
損傷などが最小限に押さえられて操作性の向上および測
定データの信頼性か向上される。
Furthermore, according to the present invention, crystal structure analysis and orientation measurement can be performed using the same device, which minimizes deterioration and damage to the sample, improving operability and improving measurement data. Reliability will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念を説明するための図、第2.
3.4図は第5図の動作を説明するだめの図、第5図は
本発明の一実施例である電子顕微鏡のブロック図、第6
図は本発明の第2実施例の基本構成を示した図、第7図
は本発明の第3実施例の基本構成を示した図である。 2・・・電子銃、4・・・収束レンズ、5・・・試料、
6・・対物レンズ、8・・・電子線偏向器、9・・・結
像レンズ、10・・・電流検出素子、11・・・電子線
偏向電源、12・・・電子線輝度測定装置、13・・・
信号処理装置、18X、18Y・・・偏向コイル、20
・・・結像レンズ系
FIG. 1 is a diagram for explaining the basic concept of the present invention, and FIG.
3.4 is a diagram for explaining the operation of FIG. 5, FIG. 5 is a block diagram of an electron microscope which is an embodiment of the present invention, and FIG.
The figure shows the basic configuration of a second embodiment of the invention, and FIG. 7 shows the basic configuration of a third embodiment of the invention. 2... Electron gun, 4... Converging lens, 5... Sample,
6... Objective lens, 8... Electron beam deflector, 9... Imaging lens, 10... Current detection element, 11... Electron beam deflection power source, 12... Electron beam brightness measuring device, 13...
Signal processing device, 18X, 18Y...Deflection coil, 20
...Imaging lens system

Claims (3)

【特許請求の範囲】[Claims] (1)電子銃から放射された電子線を収束して試料に照
射し、回折された電子線を結像して電子線回折像を得る
電子顕微鏡において、 電子線回折像上の任意の測定点が、該測定点位置を中心
に円周運動してレンズ系光軸を横切るように、前記回折
電子線に歳差運動を起こさせる電子線偏向手段と、 前記レンズ系光軸を横切る回折電子線の強度を検出する
電子線強度検出手段とを具備したことを特徴とする電子
顕微鏡。
(1) In an electron microscope that converges the electron beam emitted from an electron gun and irradiates the sample, and forms an image of the diffracted electron beam to obtain an electron diffraction image, any measurement point on the electron beam diffraction image can be measured. an electron beam deflecting means for causing the diffracted electron beam to precess so as to move circumferentially around the measurement point position and cross the optical axis of the lens system; and the diffracted electron beam that crosses the optical axis of the lens system. An electron microscope characterized by comprising an electron beam intensity detection means for detecting the intensity of the electron beam.
(2)電子銃から放射された電子線を収束して試料に照
射し、回折された電子線を結像して電子線回折像を得る
電子顕微鏡において、 電子銃から放射された電子線に、レンズ系光軸を中心に
歳差運動を起こさせる電子線偏向手段と、前記電子線を
収束して試料に照射する手段と、前記電子線が試料に垂
直に照射されるように、前記電子線の歳差運動に同期し
て試料に歳差運動を起こさせる手段と、 回折された電子線の強度を検出する電子線強度検出手段
とを具備したことを特徴とする電子顕微鏡。
(2) In an electron microscope, an electron beam emitted from an electron gun is focused and irradiated onto a sample, and the diffracted electron beam is imaged to obtain an electron diffraction image. an electron beam deflector for causing precession around the optical axis of a lens system; a means for converging the electron beam to irradiate the sample; and a means for converging the electron beam to irradiate the sample; What is claimed is: 1. An electron microscope comprising means for causing a precession in a sample in synchronization with the precession of the electron beam, and an electron beam intensity detection means for detecting the intensity of a diffracted electron beam.
(3)電子銃から放射された電子線を収束して試料に照
射し、回折された電子線を結像して電子線回折像を得る
電子顕微鏡において、 レンズ系光軸を中心に回転して、レンズ系光軸から等距
離の位置で結像された回折電子線の強度を測定する電子
線強度検出手段を具備したことを特徴とする電子顕微鏡
(3) In an electron microscope, the electron beam emitted from the electron gun is focused and irradiated onto the sample, and the diffracted electron beam is imaged to form an electron beam diffraction image.In an electron microscope, the lens system rotates around the optical axis. An electron microscope characterized in that it is equipped with an electron beam intensity detection means for measuring the intensity of a diffracted electron beam imaged at a position equidistant from the optical axis of a lens system.
JP2336658A 1990-11-30 1990-11-30 electronic microscope Expired - Fee Related JP2662723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2336658A JP2662723B2 (en) 1990-11-30 1990-11-30 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336658A JP2662723B2 (en) 1990-11-30 1990-11-30 electronic microscope

Publications (2)

Publication Number Publication Date
JPH04206335A true JPH04206335A (en) 1992-07-28
JP2662723B2 JP2662723B2 (en) 1997-10-15

Family

ID=18301451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336658A Expired - Fee Related JP2662723B2 (en) 1990-11-30 1990-11-30 electronic microscope

Country Status (1)

Country Link
JP (1) JP2662723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110483A (en) * 2018-03-20 2019-09-30 테스칸 템페, 엘엘씨 A method for automatically aligning a scanning transmission electron microscope for precession electron diffraction data mapping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105150A (en) * 1983-11-11 1985-06-10 Jeol Ltd Electron microscope
JPS60150548A (en) * 1984-01-17 1985-08-08 Jeol Ltd Electron beam diffraction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105150A (en) * 1983-11-11 1985-06-10 Jeol Ltd Electron microscope
JPS60150548A (en) * 1984-01-17 1985-08-08 Jeol Ltd Electron beam diffraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110483A (en) * 2018-03-20 2019-09-30 테스칸 템페, 엘엘씨 A method for automatically aligning a scanning transmission electron microscope for precession electron diffraction data mapping

Also Published As

Publication number Publication date
JP2662723B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US6636301B1 (en) Multiple beam inspection apparatus and method
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US6879390B1 (en) Multiple beam inspection apparatus and method
US9400176B2 (en) Dynamic focus adjustment with optical height detection apparatus in electron beam system
US7091476B2 (en) Scanning probe microscope assembly
US6548811B1 (en) Transmission electron microscope apparatus with equipment for inspecting defects in specimen and method of inspecting defects in specimen using transmission electron microscope
JPH08152430A (en) Microscope with aligning function
KR20070056947A (en) Optical sample characterization system
WO2012060391A1 (en) Defect testing method and device for defect testing
JP6410902B2 (en) Micro Raman spectroscopic device and micro Raman spectroscopic system
JP4603177B2 (en) Scanning laser microscope
WO2002014846A9 (en) Multiple beam inspection apparatus and method
JPH07209187A (en) Laser scanning type cell analyser
JP2002286663A (en) Sample analysis and sample observation apparatus
JPH04206335A (en) Electron microscope
JPH10239242A (en) Apparatus and method for inspection of smooth face of sample
CN108231513B (en) Method for operating a microscope
JP2000193434A (en) Foreign substance inspecting device
JPH04106853A (en) Scanning electron microscope
JPH0996615A (en) X-ray analysis method by electronic probe microanalyzer and electronic probe microanalyzer
JP3644997B2 (en) Laser processing equipment
JPS61217014A (en) Scanning type inspecting instrument
JPH08102478A (en) Crystal defect detecting equipment
US20220244201A1 (en) Transmission Electron Microscope and Inspection Method Using Transmission Electron Microscope
JP2005055265A (en) X-ray analysis device, x-ray analysis method and surface inspection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees