JPH04206198A - Plasma stabilizer - Google Patents

Plasma stabilizer

Info

Publication number
JPH04206198A
JPH04206198A JP2328262A JP32826290A JPH04206198A JP H04206198 A JPH04206198 A JP H04206198A JP 2328262 A JP2328262 A JP 2328262A JP 32826290 A JP32826290 A JP 32826290A JP H04206198 A JPH04206198 A JP H04206198A
Authority
JP
Japan
Prior art keywords
plasma
voltage
electron density
probe
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2328262A
Other languages
Japanese (ja)
Other versions
JPH0711993B2 (en
Inventor
Kibatsu Shinohara
己拔 篠原
Kozo Obara
小原 耕三
Kazuto Umezawa
梅沢 九十
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP2328262A priority Critical patent/JPH0711993B2/en
Priority to US07/915,809 priority patent/US5365147A/en
Priority to PCT/JP1991/001617 priority patent/WO1992010076A1/en
Publication of JPH04206198A publication Critical patent/JPH04206198A/en
Publication of JPH0711993B2 publication Critical patent/JPH0711993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To generate stable plasma by using a triple probe, whereby displaying the electron temperature as well as electron density of a plasma directly through an indicating instrument, and by controlling high frequency, microwave power and gas pressure through the output. CONSTITUTION:Three probes 3 of equal surface area are inserted in a plasma 2, and after a probe P2 is amplified at an electron temperature Te measurement circuit 8, the value of Te is directly indicated to an indicator 9. The negative voltage of, for example, 10 volts is added to a probe P3, from a fixed voltage Vd3 power source 13, while the voltage reduction generated at a very small resistor 12 of one ohm of current 1 that runs from probe P3 through P1, is calculated along with the output voltage of Te by an electron density Ne measurement circuit 10, so as to determine the voltage correspondent to the electron density Ne, and the amount of electron density Ne is indicated to an indicator 11. For the output voltage of a Te measurement device 8, an insulating amplifier 151 is used as an insulating coupling device, while control voltage is added to a next step gas control circuit 16, and the pressure of sample gas is controlled by adjusting an electromagnetic valve 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 近来プラズマの利用面は益々拡大しており、特にICの
製造設備などでは安定なプラズマ源が要望されている。
[Detailed Description of the Invention] [Industrial Field of Application] In recent years, the field of use of plasma has been expanding more and more, and a stable plasma source is particularly desired in IC manufacturing equipment.

本発明は、自動的に安定なプラズマを発生させるプラズ
マ安定化装置に関する。
The present invention relates to a plasma stabilization device that automatically generates stable plasma.

(従来の技術) 従来高周波プラズマ装置では、高周波またはマイクロ波
電力およびガス圧を手動によって調製していたので、変
動に対して自動的に追随することができなかった。
(Prior Art) In conventional high-frequency plasma apparatuses, high-frequency or microwave power and gas pressure were manually adjusted, so it was not possible to automatically follow fluctuations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、トリプル・プローブ法を用いて、プラズマの
電子温度および電子密度を直接指示計器に表示せしめ、
この出力を用いて高周波またはマイクロ波電力量および
ガス圧をそれぞれ単独もしくはそれらを同時二こ制御す
ることによって、安定なプラズマを発生せしめるプラズ
マ安定装置である。
The present invention uses a triple probe method to directly display plasma electron temperature and electron density on an indicator,
This is a plasma stabilizing device that generates stable plasma by controlling high frequency or microwave power and gas pressure individually or simultaneously using this output.

この際電子温度および電子密度の測定回路は、直流的に
浮動しているので対接地電圧として出力しなければなら
ない。この出力制御電圧によって高周波またはマイクロ
波電力およびガス圧を制御し、プラズマ炎を安定にする
At this time, since the electron temperature and electron density measurement circuits are floating in terms of direct current, they must be output as voltages relative to ground. This output control voltage controls high frequency or microwave power and gas pressure to stabilize the plasma flame.

すなわち、本発明は、トリプル・プローブによってプラ
ズマの電子温度および電子密度を測定する測定回路、電
子温度測定出力信号によってプラズマガス圧を制御する
ガス圧制御回路、電子密度制定出力信号によってプラズ
マ励振電力を制御する電力制御回路、該測定回路と該ガ
ス圧制御回路及び該電力制御回路とをそれぞれ結合する
絶縁結合素子とで構成され、プラズマガス圧、プラズマ
励振電力の少なくとも一方を制御して自動的に安定なプ
ラズマを発生させるプラズマ安定化装置である。又、絶
縁結合素子を用いない場合は、上記の測定回路から電子
温度測定出力信号および電子密度測定出力信号に相当す
る対接地電圧をそれぞれ取り出し、それらによってガス
圧制御回路、電子制御回路を制御してもよい。
That is, the present invention includes a measurement circuit that measures plasma electron temperature and electron density using a triple probe, a gas pressure control circuit that controls plasma gas pressure using an electron temperature measurement output signal, and a plasma excitation power that uses an electron density determination output signal. It is composed of a power control circuit to control, an insulating coupling element that couples the measuring circuit, the gas pressure control circuit, and the power control circuit, respectively, and automatically controls at least one of plasma gas pressure and plasma excitation power. This is a plasma stabilization device that generates stable plasma. In addition, when an insulating coupling element is not used, the voltage to ground corresponding to the electron temperature measurement output signal and the electron density measurement output signal are extracted from the above measurement circuit, respectively, and the gas pressure control circuit and the electronic control circuit are controlled using them. It's okay.

トリプル・プローブ法によるプラズマ特性検出回路は、
出力が直流的に浮いているので、信号を外部に取り出す
ためには、直流的に絶縁して接続する必要がある。本発
明では、アイソレーション・アンプや電圧周波数変換回
路、光アイソレータ等による絶縁結合素子を使用して、
直流的には絶縁しても制御信号は外部回路に伝達させる
方式および電子回路によってそれらの出力電圧に相当す
る対接地電圧を取り出す方式を創作した。電子温度Te
出力信号をガス圧制御回路に導いて、ガス圧を制御し、
また電子密度Neの出力信号で高周波またはマイクロ波
出力電力を制御することによって、自動的にプラズマ炎
を安定にする。
The plasma characteristic detection circuit using the triple probe method is
Since the output is floating in terms of DC, in order to extract the signal to the outside, it is necessary to connect it with DC insulation. In the present invention, insulating coupling elements such as isolation amplifiers, voltage frequency conversion circuits, and optical isolators are used to
We created a system in which the control signal is transmitted to an external circuit even though it is isolated from a direct current perspective, and a system in which the voltage to ground corresponding to the output voltage is extracted using an electronic circuit. Electronic temperature Te
Control the gas pressure by guiding the output signal to the gas pressure control circuit,
Furthermore, by controlling the high frequency or microwave output power using the output signal of the electron density Ne, the plasma flame is automatically stabilized.

〔作用〕[Effect]

プラズマ内の電子密度は、単位時間内に電離によって生
ずる電子の数と、再結合によって消滅する電子の数の差
によって決まる。電子エネルギーの比較的に低い一般の
プラズマ領域では、電子エネルギーの増加即ち印加高周
波またはマイクロ波動振電力の増加によって電離確率が
増大する一方、再結合係数が減少するので、結果として
電子密度Neが増大する。
The electron density in plasma is determined by the difference between the number of electrons produced by ionization and the number of electrons annihilated by recombination within a unit time. In a general plasma region where electron energy is relatively low, an increase in electron energy, that is, an increase in applied high frequency or microwave oscillation power, increases the ionization probability, but the recombination coefficient decreases, resulting in an increase in electron density Ne. do.

電子は高周波電力励振によって運動エネルギーを得る一
方、原子または分子との衝突によってエネルギーを失い
、単位時間に得失するエネルギーの差によって電子温度
Teが決まる。
While electrons gain kinetic energy through high-frequency power excitation, they lose energy through collisions with atoms or molecules, and the electron temperature Te is determined by the difference in energy gained and lost per unit time.

これらの電子密度Neと電子温度Teは印加高周波また
はマイクロ波動振電力およびガス圧によって共に変化す
るが、トリプル・プローブ法によって電子密度Neと電
子温度Teとを直読しつつ実験したところ、励振電力の
増加によって電子密度Neの指示は大きな増加を見せた
が、電子温度Teの指示はわずかな増加にすぎなかった
。またガス圧の増加に対しては、電子温度Teの指示が
著しい減少を示し、電子密度Neの変化は微小であった
These electron density Ne and electron temperature Te both change depending on the applied high frequency or microwave oscillation power and gas pressure, but when we conducted an experiment while directly reading the electron density Ne and electron temperature Te using the triple probe method, we found that the excitation power Due to the increase, the indication of the electron density Ne showed a large increase, but the indication of the electron temperature Te showed only a slight increase. Furthermore, as the gas pressure increased, the indication of the electron temperature Te showed a significant decrease, and the change in the electron density Ne was minute.

そこで本発明では、電子温度Teの指示電圧出力に相当
する電圧をガス制御回路に導き、電磁バルブを調整して
ガス圧を制御し、また電子密度Neの出力電圧に相当す
る電圧を電力制御回路に入れ、高周波またはマイクロ波
出力電力を制御して、プラズマ炎を安定にした。
Therefore, in the present invention, a voltage corresponding to the command voltage output of the electron temperature Te is guided to the gas control circuit, a solenoid valve is adjusted to control the gas pressure, and a voltage corresponding to the output voltage of the electron density Ne is guided to the power control circuit. The plasma flame was stabilized by controlling the radio frequency or microwave output power.

これらのガス圧による自動制御や励振高周波またはマイ
クロ波電力による自動制御は単独で実施しても効果があ
るが、同時に両者による制御を行えば、安定効果が著し
く上昇する。
Although automatic control using gas pressure, excitation high frequency, or microwave power is effective when performed alone, the stabilizing effect is significantly increased when both are performed at the same time.

トリプル・プローブ法の測定原理と測定法については、
内田老鶴圃版、堤井信力書「プラズマ基礎工学J168
乃至183頁に詳述されているが、NeとTeとを直読
で読み取るには、プラズマ内に表面積が等しい3個のプ
ローブP1.P2、P3を接近させて挿入し、第3図の
ようにP2の負荷に入力インピーダンスの高い電圧計(
Te測定回路)を接続して、プローブを浮動状態にする
と、P2に流れる電流はゼロとなる。この時電子の電荷
をe、kをポルツマン定数、プローブP、とP2の間に
発生する差電圧を■4□、プローブP、に加える一定電
圧をVd3とし、プローブP3からPiに流れる電流I
の低抵抗8両端に生ずる電圧降下を電子密度Ne測定回
路で求めるようにすると 次式のような関係になる。
Regarding the measurement principle and measurement method of the triple probe method, please refer to
Rōkaku Uchida edition, Shinriki Tsutsui's book "Fundamental Plasma Engineering J168"
As detailed in pages 183 to 183, in order to directly read Ne and Te, three probes P1. Insert P2 and P3 close together, and connect a voltmeter (with high input impedance) to the load of P2 as shown in Figure 3.
When a Te measurement circuit (Te measurement circuit) is connected and the probe is placed in a floating state, the current flowing through P2 becomes zero. At this time, the electric charge of the electron is e, k is Portzmann's constant, the differential voltage generated between probe P and P2 is 4□, the constant voltage applied to probe P is Vd3, and the current I flowing from probe P3 to Pi is
If the voltage drop that occurs across the low resistance 8 is determined using an electron density Ne measurement circuit, the following relationship will be obtained.

(1−exp(−φaz) )/ (1exp (−φ
dx) l = 1 / 2 上式中 φaz−e Vaz/ k T e φa3= e Vax/ k T e である。従って■4.を一定値とすると、■6、を測定
することによりTeが求められる。
(1-exp (-φaz) )/ (1exp (-φ
dx) l = 1/2 In the above formula, φaz-e Vaz/k Te φa3= e Vax/k Te. Therefore ■4. Assuming that is a constant value, Te can be found by measuring (6).

この式は測定範囲でのイオン電流の変化が小さいとして
いるが、無衝突プラズマ中における円筒プローブのイオ
ン電流は、理論的にプローブ電圧の(1/2)乗に比例
して増加するので、浮動電圧V、におけるイオン電流■
、(vf)を基準として、定数βを使って電圧■におけ
るイオン電流1、(V)を表すと、次のようになる。
This formula assumes that the change in the ion current in the measurement range is small, but the ion current of a cylindrical probe in a collisionless plasma theoretically increases in proportion to the (1/2) power of the probe voltage, so the floating Ionic current at voltage V,■
, (vf) as a reference, the ion current 1, (V) at voltage ■ is expressed using a constant β as follows.

(L  (V))2=flt  (Vr)12 (1+
β△■) この様にイオン電流が変化するとして、Vi:+=10
ボルド一定のとき、種々のβに対して電子温度Teを求
めると第4図のようになる。
(L (V))2=flt (Vr)12 (1+
β△■) Assuming that the ion current changes like this, Vi: +=10
When Bord is constant, the electron temperature Te obtained for various β values is as shown in FIG.

実験によれば、β−1,05とすると一般のプラズマ測
定でTeの誤差が数%以内に収まっていることが判った
According to experiments, it has been found that when β-1.05 is used, the error in Te is within several percent in general plasma measurements.

電子密度Neについては、同書(172頁)で次のよう
に与えられている。
The electron density Ne is given as follows in the same book (page 172).

)”Je−(M”2/S)−1−f+  (Vaz)f
+  (L2)−1,05xlO” x (Te)1″
/(eXp(−φ6□)−1) 用いられている単位は、Ne (crrr3) 、ブロ
ーイの表面積(mm2)、  I  (μA) 、  
Te (eV) 。
)"Je-(M"2/S)-1-f+ (Vaz)f
+ (L2)-1,05xlO" x (Te)1"
/(eXp(-φ6□)-1) The units used are Ne (crrr3), Broglie surface area (mm2), I (μA),
Te (eV).

M(イオンの原子量または分子量) 、Vd2 (v)
である。以上の両式からMとSを与えれば、プローブ電
流■とTeおよびVd2から電子密度Neが求められ、
出力計器でこの値が直読できる。
M (atomic weight or molecular weight of ion), Vd2 (v)
It is. If M and S are given from the above equations, the electron density Ne can be found from the probe current ■, Te and Vd2,
This value can be read directly on the output meter.

以上の原理で求められた電子温度丁eに相当する出力電
圧で計器を指示させると共に、絶縁結合素子を介して直
流を遮断するか、あるいは電子回路によって接地点に対
する出力相当電圧を求め、この出力電圧をガス制御回路
で増幅し、電磁バルブを制御してガス圧を増減する。即
ちTeが高過ぎれば、ガス圧を増加させてTeを低下さ
せ、反対にTeが低過ぎれば、ガス圧を減少させてTe
を上昇させる。
Instruct the meter with an output voltage corresponding to the electronic temperature calculated using the above principle, and either cut off the direct current through an insulating coupling element, or use an electronic circuit to determine the output voltage equivalent to the ground point, and then output this output. The voltage is amplified by the gas control circuit and the electromagnetic valve is controlled to increase or decrease the gas pressure. That is, if Te is too high, the gas pressure is increased to lower Te; on the other hand, if Te is too low, the gas pressure is decreased to lower Te.
to rise.

一方、電子密度Neの計器出力電圧も同様に接地点に対
する出力相当電圧を求め、これを励振電力制御回路に導
き、高周波またはマイクロ波発生源の出力電力を増減し
て、プラズマの励振電力を制御する。即ち電子密度Ne
が過大ならば、励振電力を低下させて密度を下げ、逆な
らば励振電力を増加させて電子密度を上昇させる。この
様にしてプラズマ炎を自動的に安定に保つ事ができる。
On the other hand, for the meter output voltage of the electron density Ne, the output equivalent voltage with respect to the ground point is similarly determined, and this is led to the excitation power control circuit, which increases or decreases the output power of the high frequency or microwave generation source to control the excitation power of the plasma. do. That is, the electron density Ne
If is too large, the excitation power is lowered to lower the density, and vice versa, the excitation power is increased to increase the electron density. In this way, the plasma flame can be automatically kept stable.

〔実施例〕〔Example〕

第1図は本発明の実施例の系統図を示している。 FIG. 1 shows a system diagram of an embodiment of the invention.

プラズマ・チェンバー1には試料ガスがNNバルブ5を
経由して供給され、マイクロ波電力が結合孔6から導入
されてプラズマ2が発生している。
A sample gas is supplied to the plasma chamber 1 via an NN valve 5, and microwave power is introduced from a coupling hole 6 to generate plasma 2.

このプラズマ内に表面積の等しい3個のプローブ3が挿
入され、第3図のトリプル・プローブ法原理説明図に示
されているまうにプローブP2は電子温度Te測定回路
8で増幅後、指示計9にTeの値を指示している。プロ
ーブP、には固定定電圧Vd3電′rX13から10ボ
ルトの負電圧が加えられていて、プローブP3がらP、
に流れる電IIの1オームの微小抵抗器12に生ずる電
圧降下をNe測定回路10で、Teの出力電圧と共に計
算して、電子密度Neに相当する電圧を求め、指示計1
1にNeの量を示す。
Three probes 3 having the same surface area are inserted into this plasma, and the probe P2 is amplified by the electron temperature Te measurement circuit 8, and then the indicator 9 Indicates the value of Te. A negative voltage of 10 volts is applied to probe P from a fixed constant voltage Vd3'rX13, and from probe P3 to P,
The Ne measurement circuit 10 calculates the voltage drop that occurs across the 1-ohm microresistor 12 of the electric current II flowing through the electrode, together with the output voltage of Te, to obtain the voltage corresponding to the electron density Ne.
1 shows the amount of Ne.

Te測定回路8の出力電圧は直流的に浮かさなければな
らないので、絶縁結合素子として絶縁増幅器151を使
い、次段のガス制御回路16に制御電圧を加えて、電磁
バルブ5を調節して試料ガスの圧力を制御する。
Since the output voltage of the Te measurement circuit 8 must be floated in direct current, an insulation amplifier 151 is used as an insulation coupling element, a control voltage is applied to the next stage gas control circuit 16, and the electromagnetic valve 5 is adjusted to adjust the sample gas. Control the pressure.

絶縁結合素子としては、絶縁増幅151のほが光アイソ
レータや電圧周波数変換器を使用する絶縁法や、直流電
圧を交流に変換後絶縁変成器を使って結合させてから、
再び直流に戻す方法などが使用できる。
As an insulating coupling element, an insulating method using an optical isolator or a voltage frequency converter of the insulating amplifier 151, or converting a DC voltage to an alternating current and then coupling it using an isolation transformer,
A method such as returning the current to direct current can be used.

Ne測定回路10の出力電圧も同様の絶縁結合素子とし
て絶縁増幅器152を使って、その出力を励振電力制御
回路17に加え、2.45GHzマイクロ波電源7の電
力を調整してプラズマに加えられる励振電力を制御して
、プラズマ炎2を安定にする。これらに必要な交流電力
は、絶縁変圧器14を経て加えられる。
The output voltage of the Ne measuring circuit 10 is also determined by using an isolation amplifier 152 as a similar insulating coupling element, and applying the output to the excitation power control circuit 17 to adjust the power of the 2.45 GHz microwave power source 7 to generate the excitation applied to the plasma. Control the power to stabilize the plasma flame 2. The AC power necessary for these is applied via an isolation transformer 14.

本発明の他の実施例として、第1図の絶縁結合素子に代
わる部分を第2図に抽出して示す。Te測定回路8の出
力電位をVl、Ne測定回路10の出力電位をV2.V
、3定電圧電源13の十端子電位を■3とすると、第1
図と同様にTe出力指示計は■1と■3の差電圧に比例
して振れ、またNe出力指示計は■2と■3の差電圧に
比例して振れている。
As another embodiment of the present invention, a portion replacing the insulating coupling element shown in FIG. 1 is extracted and shown in FIG. The output potential of the Te measurement circuit 8 is set to V1, and the output potential of the Ne measurement circuit 10 is set to V2. V
, 3 If the ten-terminal potential of the constant voltage power supply 13 is 3, then the first
Similarly to the figure, the Te output indicator swings in proportion to the voltage difference between ■1 and ■3, and the Ne output indicator swings in proportion to the voltage difference between ■2 and ■3.

■1電位は差動増幅器211の正極入力端子に接続され
この出力は2段のインバータ221・231で増幅され
、その出力が差動増幅器211の負極入力端子に戻され
ているので、インバータ231の出力電位■1゛が■1
に等しくなったところで平衡状態になる。
■1 potential is connected to the positive input terminal of the differential amplifier 211, and this output is amplified by the two-stage inverters 221 and 231, and the output is returned to the negative input terminal of the differential amplifier 211. Output potential ■1゛ is ■1
Equilibrium is reached when it becomes equal to .

電位■2と■3も同様の差動増幅器212・213およ
びインバータ222・232・223・233で増幅さ
れ、それらの出力■2”と■3゛は入力電位■2と■3
に等しくなっている。
Potentials ■2 and ■3 are also amplified by similar differential amplifiers 212 and 213 and inverters 222, 232, 223, and 233, and their outputs ■2'' and ■3'' are equal to the input potentials ■2 and ■3.
is equal to

次段の差動増幅器241にはVl’ とV3’ の電位
が加えられるので、その出力は■1゛とV3’の差電圧
即ちTe指示電圧に相当する対接地点電圧になり、絶縁
結合素子を使用しなくともTe測定回路から絶縁した出
力電圧が得られる。そこでこのTe相当制御電圧をガス
制御回路16に加えて電磁バルブ5を調整して、試料ガ
スの圧力を制御してプラズマ炎を安定にする。
Since the potentials Vl' and V3' are applied to the differential amplifier 241 in the next stage, its output becomes the difference voltage between 1' and V3', that is, the voltage to the ground corresponding to the Te indicated voltage, and the insulating coupling element An isolated output voltage can be obtained from the Te measurement circuit without using the Te measurement circuit. Therefore, this Te-equivalent control voltage is applied to the gas control circuit 16 to adjust the electromagnetic valve 5 to control the pressure of the sample gas and stabilize the plasma flame.

差動増幅器242にはv2’ と■3″の電位を加える
ので、出力は■2° とv3’ の差電圧即ちNe指示
電圧に相当する対接地点電圧になり、絶縁結合素子を使
用しなくともNe測定回路から絶縁された出力電圧が得
られる。このNe相当制御電圧を励振電力制御回路17
に加えて、マイクロ波を源の出力電力を調整し、プラズ
マの励振電力を制御してプラズマ炎を安定にする。
Since the potentials v2' and ■3'' are applied to the differential amplifier 242, the output becomes the difference voltage between ■2° and v3', that is, the voltage to the ground corresponding to the Ne indicated voltage, and an insulating coupling element is not used. An isolated output voltage is obtained from the Ne measuring circuit.This Ne equivalent control voltage is applied to the excitation power control circuit 17.
In addition, the output power of the microwave source is adjusted to control the excitation power of the plasma to stabilize the plasma flame.

第2図中、191・192および193はいずれも短絡
防止用の抵抗器で、差動増幅器回路が平衡に達するまで
の間、入力負荷インピーダンスの低下による悪影響が前
段に及ぶことを防いでいるが、平衡時には入力負荷イン
ピーダンスが高くなるので、この抵抗器による電圧降下
は問題にならない。 また201.202および203
は入力端子抵抗器である。
In Figure 2, 191, 192, and 193 are all short-circuit prevention resistors, which prevent the negative effects of the drop in input load impedance from reaching the previous stage until the differential amplifier circuit reaches equilibrium. , the input load impedance is high when balanced, so the voltage drop across this resistor is not a problem. Also 201, 202 and 203
is the input terminal resistor.

〔発明の効果〕〔Effect of the invention〕

プラズマの不安定要素は非常に多岐に亘っていて、その
全部を除くことは出来ないが、本発明を実施することに
よって大いに改善できる。ガス圧力や高周波励振電力の
みを単独に本発明による自動制御を実施しても相当の効
果があげられるが、両者を同時に行えば、安定度を一桁
改善できた。
There are a wide variety of plasma instability factors, and although it is not possible to eliminate all of them, they can be greatly improved by implementing the present invention. Even if the automatic control according to the present invention is applied to only the gas pressure and the high-frequency excitation power alone, a considerable effect can be obtained, but if both are performed simultaneously, the stability can be improved by an order of magnitude.

実験では、水素ガス中に10%のメタンガスを混入させ
た試料を0.2Torrの気圧として使い、2.45G
Hz300Wのマイクロ波動振電力を加えて、プラズマ
を発生させて4時間の連続運転を試みたが、この間非常
に安定に動作を継続した。
In the experiment, a sample of hydrogen gas mixed with 10% methane gas was used at an atmospheric pressure of 0.2 Torr, and a pressure of 2.45 G was used.
We attempted continuous operation for 4 hours by applying microwave oscillation power of 300 W of Hz to generate plasma, and the operation continued very stably during this period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例系統図、第2図は他の実施例の
系統図、第3図はトリプル・プローブ法の原理説明図、
第4図は■4□電圧対電子温度Te特性図である。 1はプラズマ・チェンバー、2はプラズマ炎、3はプロ
ーブ、4はガス流入口、5は電磁バルブ、6は励振電力
結合孔、7は高周波またはマイクロ波電源、8はTe測
定回路、9はTe出力指示計、10はNe測定回路、1
1はNe出力指示計、12は微小抵抗器、13はVd3
定電圧電源、14は絶縁変圧器、151・152は絶縁
増幅器、16はガス制御回路、17は励振電力制御回路
、191・192・193は短絡防止用抵抗器、201
・202・203は入力端子抵抗器、211・212・
213および241・242は差動増幅器、221・2
22・223・231・232・233はインバータ。
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of another embodiment, and Fig. 3 is a diagram explaining the principle of the triple probe method.
FIG. 4 is a ■4□ voltage versus electron temperature Te characteristic diagram. 1 is a plasma chamber, 2 is a plasma flame, 3 is a probe, 4 is a gas inlet, 5 is an electromagnetic valve, 6 is an excitation power coupling hole, 7 is a high frequency or microwave power source, 8 is a Te measurement circuit, 9 is Te Output indicator, 10 is Ne measurement circuit, 1
1 is Ne output indicator, 12 is micro resistor, 13 is Vd3
Constant voltage power supply, 14 is an isolation transformer, 151 and 152 are isolation amplifiers, 16 is a gas control circuit, 17 is an excitation power control circuit, 191, 192, and 193 are short-circuit prevention resistors, 201
・202 and 203 are input terminal resistors, 211 and 212.
213 and 241/242 are differential amplifiers, 221/2
22, 223, 231, 232, and 233 are inverters.

Claims (2)

【特許請求の範囲】[Claims] (1)トリプル・プローブによってプラズマの電子温度
および電子密度を測定する測定回路、電子温度測定出力
信号によってプラズマガス圧を制御するガス圧制御回路
、電子密度制定出力信号によってプラズマ励振電力を制
御する電力制御回路、該測定回路と該ガス圧制御回路及
び該電力制御回路とをそれぞれ結合する絶縁結合素子と
で構成され、プラズマガス圧、プラズマ励振電力の少な
くとも一方を制御して自動的に安定なプラズマを発生さ
せるプラズマ安定化装置。
(1) A measurement circuit that measures plasma electron temperature and electron density using a triple probe, a gas pressure control circuit that controls plasma gas pressure using an electron temperature measurement output signal, and an electric power that controls plasma excitation power using an electron density establishment output signal. It is composed of a control circuit, an insulating coupling element that couples the measurement circuit, the gas pressure control circuit, and the power control circuit, respectively, and automatically stabilizes plasma by controlling at least one of plasma gas pressure and plasma excitation power. A plasma stabilizing device that generates
(2)トリプル・プローブによってプラズマの電子温度
および電子密度を測定する測定回路、電子温度測定出力
信号および電子密度測定出力信号にそれぞれ相当する対
接地電圧を取り出す回路、該回路からの信号によってプ
ラズマガス圧、プラズマ励振電力をそれぞれ制御するガ
ス圧制御回路、電力制御回路とで構成され、プラズマガ
ス圧、プラズマ励振電力の少なくとも一方を制御して自
動的に安定なプラズマを発生させるプラズマ安定装置。
(2) A measurement circuit that measures the electron temperature and electron density of the plasma using a triple probe, a circuit that extracts the voltage to ground corresponding to the electron temperature measurement output signal and the electron density measurement output signal, and a plasma gas A plasma stabilizing device is comprised of a gas pressure control circuit and a power control circuit that respectively control pressure and plasma excitation power, and automatically generates stable plasma by controlling at least one of plasma gas pressure and plasma excitation power.
JP2328262A 1990-11-28 1990-11-28 Plasma stabilizer Expired - Fee Related JPH0711993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2328262A JPH0711993B2 (en) 1990-11-28 1990-11-28 Plasma stabilizer
US07/915,809 US5365147A (en) 1990-11-28 1991-11-26 Plasma stabilizing apparatus employing feedback controls
PCT/JP1991/001617 WO1992010076A1 (en) 1990-11-28 1991-11-26 Plasma stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328262A JPH0711993B2 (en) 1990-11-28 1990-11-28 Plasma stabilizer

Publications (2)

Publication Number Publication Date
JPH04206198A true JPH04206198A (en) 1992-07-28
JPH0711993B2 JPH0711993B2 (en) 1995-02-08

Family

ID=18208260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328262A Expired - Fee Related JPH0711993B2 (en) 1990-11-28 1990-11-28 Plasma stabilizer

Country Status (2)

Country Link
JP (1) JPH0711993B2 (en)
WO (1) WO1992010076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744711A (en) * 2016-04-15 2016-07-06 中国人民解放军装甲兵工程学院 Thermal ionization plasma generation test device and density test and control methods
CN108766881A (en) * 2017-04-14 2018-11-06 东京毅力科创株式会社 Plasma processing apparatus and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135574A (en) * 1978-03-23 1979-10-20 Japan Synthetic Rubber Co Ltd Probe for measuring characteristics of plasma* and method and device employing said probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744711A (en) * 2016-04-15 2016-07-06 中国人民解放军装甲兵工程学院 Thermal ionization plasma generation test device and density test and control methods
CN105744711B (en) * 2016-04-15 2018-01-23 中国人民解放军装甲兵工程学院 A kind of thermal ionization plasma generation test device and its density measurement and control method
CN108766881A (en) * 2017-04-14 2018-11-06 东京毅力科创株式会社 Plasma processing apparatus and control method
JP2018181634A (en) * 2017-04-14 2018-11-15 東京エレクトロン株式会社 Plasma processing apparatus and control method
CN108766881B (en) * 2017-04-14 2023-04-07 东京毅力科创株式会社 Plasma processing apparatus and control method

Also Published As

Publication number Publication date
WO1992010076A1 (en) 1992-06-11
JPH0711993B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
Braithwaite et al. An electrostatic probe technique for RF plasma
Demidov et al. Probe measurements of electron energy distributions in a strongly magnetized low-pressure helium plasma
Belenguer et al. Numerical and experimental diagnostics of rf discharges in pure and dusty argon
US5365147A (en) Plasma stabilizing apparatus employing feedback controls
CN1007538B (en) Emitting current control system of multi-hollow cathodes
Plihon et al. Periodic formation and propagation of double layers in the expanding chamber of an inductive discharge operating in Ar∕ SF6 mixtures
He et al. Experiments and analysis of corona inception voltage under combined AC-DC voltages at various air pressure and humidity in rod to plane electrodes
JPH04206198A (en) Plasma stabilizer
Sikora Dual application of a biasing system to an electron source with a hot cathode
Overbeck et al. Grid Current Control for the Ionization Gauge
Benson et al. Influence of argon content on the characteristics of glow-discharge tubes
Olson et al. Automatic Plotting of Langmuir‐Probe Susceptance‐and Conductance‐Voltage Curves
US2788490A (en) Output power measurement of a pulsed magnetron oscillator
Chen Temperature Effect on Langmuir Probe Measurement
Duncan et al. Low‐Frequency Waves and Instabilities on the Positive Column in a Magnetic Field. III. Experiments on the m= 1 Azimuthal Mode
Hargus et al. A study of a low power hall thruster transient behavior
Zuo et al. Research on Calibration System of Low Frequency Electric Field Measuring Instrument
Earhart et al. Effect of a Longitudinal Magnetic Field upon Glow-Discharge
Labergue et al. A parametric study of surface corona discharge along an insulating flat plate in atmospheric pressure
Nation et al. A measurement of the effective thickness of the plasma sheath at a cold electrode
Zhu-Wen et al. Review of relaxation oscillations in plasma processing discharges
Schmidt et al. Device for producing and investigating an electron beam plasma discharge
Takacs Investigation into the liner stabilizer for the Oxford injector
US2488811A (en) Electronic control device
Matsumura et al. Improved circuit for potential fluctuation compensation in the plasma during the electron energy distribution function measurement by a probe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees