JPH04206134A - Capillary electrophoresis mass spectrometer and analyzing method - Google Patents

Capillary electrophoresis mass spectrometer and analyzing method

Info

Publication number
JPH04206134A
JPH04206134A JP2327667A JP32766790A JPH04206134A JP H04206134 A JPH04206134 A JP H04206134A JP 2327667 A JP2327667 A JP 2327667A JP 32766790 A JP32766790 A JP 32766790A JP H04206134 A JPH04206134 A JP H04206134A
Authority
JP
Japan
Prior art keywords
sample
voltage
capillary
capillary tube
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2327667A
Other languages
Japanese (ja)
Other versions
JP3031632B2 (en
Inventor
Toshimichi Taya
田谷 俊陸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2327667A priority Critical patent/JP3031632B2/en
Publication of JPH04206134A publication Critical patent/JPH04206134A/en
Application granted granted Critical
Publication of JP3031632B2 publication Critical patent/JP3031632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To improve an S/N ratio and analyze a mass accurately by detecting the moving speed of a separated sample by an ultraviolet ray absorber, control ling the voltage applied to the opposed ends of a capillary tube according to the detection signal, and thereby controlling the moving speed of the sample. CONSTITUTION:At the time point when ultraviolet rays are detected by ultraviolet ray detector 11 installed in front of an ion source 6 according to separation components which pass therethrough, a high voltage control circuit 12 is actuated to lower the output voltage V of a high voltage source 1. The electophoresis speed of a sample is thereby lowered to extend the measurement time for the alanalysis of mass. In this case, a mass analyzer 8 is set preliminarily to meet the ion mass number of sample components to be noted. While the background spectra of electolyte other than the sample components is zero (0) in the signal of the detector 11, from the time point when the sample components to be noted are separated and the signal starts to rise, the control circuit 12 is operated to decrease an application voltage V to thereby obtain the spectra of mass.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高分子の分析に用いられる毛管電気泳動質量
分析装置並びに分析法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a capillary electrophoresis mass spectrometer and an analysis method used for analyzing macromolecules.

[従来の技術] スミス(R,D、Sm1th)らの毛管電気泳動−質量
分析法(Capillary Zone Electr
ophoresis MassSpectrometr
y、 CZ E −M S )の構成を第2図に示す。
[Prior art] Capillary zone mass spectrometry method by Smith (R,D, Sm1th) et al.
ophoresis Mass Spectrometer
y, CZ E -M S ) is shown in FIG.

試料3と電解溶液4は高電圧電源lによって、+30k
V程度に印加されている。毛細管(キャピラリ)5を電
解溶液4中に浸すことにより、該電解溶液は毛細管現象
によって吸い上げられる。
Sample 3 and electrolyte 4 are heated to +30k by high voltage power supply l.
Approximately V is applied. By immersing the capillary 5 into the electrolytic solution 4, the electrolytic solution is sucked up by capillary action.

その後同様に試料3中に毛細管5を浸すことにより試料
を吸い上げる。吸い上げられた電解溶液と試料の混合成
分は正にイオン化され、管内の電界により低電圧側に泳
動するが、その泳動速度はそれぞれの成分の移動度によ
って異なる。
Thereafter, the sample is sucked up by immersing the capillary tube 5 into the sample 3 in the same manner. The mixed components of the electrolytic solution and sample that have been sucked up are positively ionized and migrate toward the lower voltage side due to the electric field within the tube, but the migration speed differs depending on the mobility of each component.

前記のようにして毛細管5内を泳動しイオン源6に到達
するまでに分析成分が分離され、イオン化されて質量分
析される。
As described above, the analytical components migrate within the capillary tube 5 and are separated before reaching the ion source 6, where they are ionized and subjected to mass spectrometry.

[発明が解決しようとする課題] 毛管電気泳動のみで分離されるCZEスペクトルはスミ
スらによると、第3図のように各成分毎に出現する1ビ
ークの時間は、質量分析に要する時間としては短く10
秒程度である。
[Problem to be solved by the invention] According to Smith et al., the time required for one peak to appear for each component as shown in Figure 3 is the time required for mass spectrometry in the CZE spectrum that is separated only by capillary electrophoresis. short 10
It is about seconds.

CZEで分離されたアミノ酸の各成分を質量分析する場
合、理想的には質量分析する間は分離成分の濃度が一定
であることが望ましい。
When performing mass spectrometry on each amino acid component separated by CZE, it is ideal that the concentration of the separated components remains constant during mass spectrometry.

J 、 W、  Jorgenesonら(Anal、
Chew、  1981 。
J, W, Jorgeneson et al. (Anal,
Chew, 1981.

53.1298−1302)によると、毛管内を泳動す
る速度νは、印加された電位勾配に比例して ν=μE=μV/L        ・・(1)μ:電
気移動度 ■・印加電圧 り9毛細管の長さ で表わされる。
53.1298-1302), the velocity ν of migration in a capillary is proportional to the applied potential gradient, ν=μE=μV/L... (1) μ: Electrical mobility■・Applied voltage 9 It is expressed as the length of the capillary tube.

また、電気泳動の分離能を表わす理論段数Nは、次式に
まとめられている。
Further, the number of theoretical plates N, which represents the separation power of electrophoresis, is summarized by the following formula.

N=μV/2D        ・・(2)D=各成分
の毛細管内での拡散係数 上記の理論式(2)から毛管電気泳動法で高速。
N=μV/2D...(2) D=diffusion coefficient of each component in the capillary From the above theoretical formula (2), high speed by capillary electrophoresis.

高分解能の分析を行なうためには、印加電圧Vを高くす
ればよいことになる。
In order to perform high-resolution analysis, it is sufficient to increase the applied voltage V.

CZEとしての分解能を上げるためには、印加電圧Vを
大きくした方がよく、一方質量分析装置として分離成分
のピークの時間変化率を小さ(するにはVを低(する必
要がある。
In order to increase the resolution as a CZE, it is better to increase the applied voltage V. On the other hand, as a mass spectrometer, in order to decrease the time rate of change of the peak of the separated components, it is necessary to decrease V.

本発明の目的は、上記相反する二つの要求を満たすこと
のできる毛管電気泳動質量分析装置を提供する(こある
An object of the present invention is to provide a capillary electrophoresis mass spectrometer that can satisfy the above two contradictory demands.

[課題を解決するための手段] 本発明者らは、第3図に示すスミスらのCZEスペクl
−ルは、イオン源の手前に紫外線吸収検知器を用いるこ
とにより得られるが、この信号がノイズレベルの2倍以
上に立ち上った瞬間に、印加電圧を下げて泳動速度νを
遅くする、すなわち、前記式(1)より、印加電圧をV
/nに下げればピークの幅をn倍にすることができるこ
とに気付いた。本発明は上記に基づいてなされたもので
、その要旨は次のとおりである。
[Means for Solving the Problems] The present inventors have developed the CZE spectrum of Smith et al. shown in FIG.
This signal can be obtained by using an ultraviolet absorption detector in front of the ion source, but at the moment this signal rises to more than twice the noise level, the applied voltage is lowered to slow down the migration speed ν. From the above formula (1), the applied voltage is V
I realized that the width of the peak can be increased by n times by lowering the value to /n. The present invention has been made based on the above, and the gist thereof is as follows.

(1)試料溶液と電解溶液に高電圧を印加する電圧印加
手段と、前記試料溶液と前記電解溶液を移動させる毛細
管と、該毛細管の両端に電位差を付与する電界印加手段
と、前記試料溶液と前記電解溶液が前記毛細管中を移動
中に分離された成分をイオン化するイオン源と、該イオ
ンの検知手段を備えた毛管電気泳動質量分析装置におい
て、 前記イオン源の手前に紫外線吸収検知器を設け前記分離
試料の移動速度を検知し、該検知信号により前記毛細管
の両端に印加する電圧を制御し、前記分離試料の移動速
度を制御する制御手段を備えたことを特徴とする毛管電
気泳動質量分析装置。
(1) A voltage applying means for applying a high voltage to a sample solution and an electrolytic solution, a capillary for moving the sample solution and the electrolytic solution, an electric field applying means for applying a potential difference to both ends of the capillary, and a voltage applying means for applying a high voltage to the sample solution and the electrolyte. In a capillary electrophoresis mass spectrometer comprising an ion source that ionizes components separated while the electrolytic solution moves through the capillary tube, and a means for detecting the ions, an ultraviolet absorption detector is provided in front of the ion source. Capillary electrophoresis mass spectrometry characterized by comprising a control means for detecting the moving speed of the separated sample, controlling the voltage applied to both ends of the capillary tube based on the detection signal, and controlling the moving speed of the separated sample. Device.

(2)高電圧電源により電圧印加された試料溶液と  
 。
(2) Sample solution to which a voltage is applied by a high-voltage power supply and
.

電解溶液が、毛細管の両端の電位差に基づく電界により
該毛細管中を移動中に分離された成分を、イオン源でイ
オン化し、該イオンを検出することにより質量分析する
毛管電気泳動質量分析法において、 前記毛管電気泳動装置の毛細管の出口に設けた紫外線吸
収検知器が試料成分のピークを検知し、該試料成分が前
記イオン源に到達する前に、高電圧電源を制御して印加
電圧を下げ、前記試料成分の泳動速度を下げて、質量分
析のための測定時間を長くすることを特徴とする毛管電
気泳動質量分析法。
In capillary electrophoresis mass spectrometry, components separated while an electrolytic solution is moving through a capillary by an electric field based on a potential difference between both ends of the capillary are ionized using an ion source, and mass spectrometry is performed by detecting the ions. An ultraviolet absorption detector provided at the exit of the capillary tube of the capillary electrophoresis device detects the peak of the sample component, and before the sample component reaches the ion source, the high voltage power source is controlled to lower the applied voltage, A capillary electrophoresis mass spectrometry method characterized in that the migration speed of the sample components is lowered to lengthen the measurement time for mass spectrometry.

本発明の構成の一例を第1図に示す。An example of the configuration of the present invention is shown in FIG.

前記従来例である第2図の構成と異なる点は、イオン源
の手前に紫外線吸収検知器11を設け、通過する分離成
分による紫外線の吸収が検知された時点で高圧電源制御
回路12が作動して、高圧電源lの出力電圧Vを下げる
ようにしたことにある。
The difference from the conventional configuration shown in FIG. 2 is that an ultraviolet absorption detector 11 is provided in front of the ion source, and a high-voltage power supply control circuit 12 is activated when absorption of ultraviolet rays by the passing separated components is detected. Therefore, the output voltage V of the high-voltage power supply 1 is lowered.

また、前記の毛管電気泳動質量分析装置において、注目
する試料のイオンが、質量分析装置のイオン検知器によ
り検知され始めた時点で、高電圧制御回路を作動させ、
印加電圧を下げて電気泳動の速度を遅くし、質量分析の
時間を長くして試料イオンの変動を緩やかにし、スペク
トル・パターンの変動率を小さ(してもよい。
Further, in the capillary electrophoresis mass spectrometer, when ions of the sample of interest begin to be detected by the ion detector of the mass spectrometer, the high voltage control circuit is activated;
The rate of variation in the spectral pattern may be reduced by lowering the applied voltage to slow the electrophoresis speed and lengthening the mass spectrometry time to slow the variation in sample ions.

[作用] 本発明の前記印加電圧と、紫外線吸収検知器11による
CZEスペクトルの関係を第4図で説明する。
[Function] The relationship between the applied voltage of the present invention and the CZE spectrum measured by the ultraviolet absorption detector 11 will be explained with reference to FIG.

検知器の信号がノイズレベルの間は、試料3や電解溶液
4に電圧Vを印加しておき、紫外線吸収検知器11の信
号が所定のレベル以上になった時に、前記印加電圧をV
/nに低下させる。
While the signal from the detector is at the noise level, a voltage V is applied to the sample 3 and the electrolytic solution 4, and when the signal from the ultraviolet absorption detector 11 reaches a predetermined level or higher, the applied voltage is increased to V.
/n.

CZEスペクトルは、本来、第3図のように鋭いピーク
を示すが、毛管内の移動速度νが前記式(1)により、
ν/nに低下すると第4図に示すような幅の広い三角波
となる。
The CZE spectrum originally shows a sharp peak as shown in Fig. 3, but the moving speed ν in the capillary tube is
When it decreases to ν/n, it becomes a wide triangular wave as shown in FIG.

このようにCZEで分離された成分のピーク幅が、加速
電圧をV/nに低下したことでn倍に拡がり、その後、
イオン(エレクトロンスプレーイオン)源6でイオン化
されて、4電極質量分析計8での分析時間を長くとるこ
とができる。これによって質量分析中における試料のピ
ーク毎の時間変化率を従来より小さくすることができ、
当該定量分析の信頬性を向上することができる。
In this way, the peak width of the components separated by CZE expands by n times by lowering the accelerating voltage to V/n, and then
The ions are ionized by the ion (electron spray ion) source 6, and the analysis time in the four-electrode mass spectrometer 8 can be extended. As a result, the time rate of change for each peak of the sample during mass spectrometry can be made smaller than before.
The credibility of the quantitative analysis can be improved.

[実施例] イオン源6の手前に設けた紫外線吸収検知器11からの
信号により、高電圧電源1の出力電圧Vを制御する当該
分析装置について第1図に述べたが、これとは別の実施
例を第5図に示す。
[Example] The analysis device that controls the output voltage V of the high voltage power supply 1 by the signal from the ultraviolet absorption detector 11 provided in front of the ion source 6 was described in FIG. An example is shown in FIG.

本実施例では、4電極質量分析計8の後にイオン検知器
10を設け、その出力信号によって高圧電源制御回路1
2を駆動し、高電圧電源1を制御するようにしたもので
ある。
In this embodiment, an ion detector 10 is provided after the four-electrode mass spectrometer 8, and the high-voltage power supply control circuit 10 receives the output signal from the ion detector 10.
2 to control the high voltage power supply 1.

この場合の測定方法は、あらかじめ試料成分のイオンの
注目する質量数に質量分析計8を合わせておく。試料成
分以外の電解溶液のバックグラウンドスペクトルはイオ
ン検知器の信号がOであるが、注目している試料成分が
分離され信号が立ち上り始めた時点で、高圧電源制御回
路12が動作して、印加電圧Vを低下させ、質量分析ス
ペクトルを得る。
In this measurement method, the mass spectrometer 8 is adjusted in advance to the mass number of interest of the ions of the sample components. The background spectrum of the electrolytic solution other than the sample components has a signal of O from the ion detector, but when the sample component of interest is separated and the signal begins to rise, the high-voltage power supply control circuit 12 operates to apply The voltage V is lowered and a mass spectrometry spectrum is obtained.

この方法が前記第1図の場合より優れている点は、紫外
線吸収検知器11とイオン検知器10の間の時間の遅れ
が少ない点にある。
The advantage of this method over the case of FIG. 1 is that there is less time delay between the ultraviolet absorption detector 11 and the ion detector 10.

なお、第1図および第5図において、質量分析計8は従
来と同様に4電極質量分析計を用いたが、磁場と電場を
組合せた2重収束形質量分析計でもよい。
In FIGS. 1 and 5, a four-electrode mass spectrometer is used as the mass spectrometer 8 as in the conventional case, but a double convergence type mass spectrometer that combines a magnetic field and an electric field may be used.

なお、本発明の毛管電気泳動−質量スペクトルと従来の
ものとの比較を第6図に示す。
Incidentally, FIG. 6 shows a comparison between the capillary electrophoresis-mass spectrum of the present invention and the conventional one.

[発明の効果] 従来は質量分析の時間内に分離された試料のビ一りは第
3図のように急激に増減し、ピークパターンが大きく変
動し、特に第6図Aで示すように分離速度の遅い分子イ
オンMはピーク強度が小さく、検出されない場合があっ
た。
[Effects of the Invention] Conventionally, the number of samples separated during mass spectrometry increases and decreases rapidly as shown in Figure 3, and the peak pattern fluctuates greatly, especially as shown in Figure 6A. The molecular ion M having a slow velocity had a small peak intensity and was not detected in some cases.

本発明では試料成分が出現する時点で印加電圧Vを下げ
るので、第4図に示すようにピーク強度の時間変化が少
なく、第6図Bで示すように分子イオンMのピーク強度
も十分得られ、ピークパターンの変化(減少)も少ない
In the present invention, since the applied voltage V is lowered at the point at which sample components appear, there is little change in the peak intensity over time as shown in Figure 4, and sufficient peak intensity of the molecular ion M can be obtained as shown in Figure 6B. , there is also little change (decrease) in the peak pattern.

また、S/N比がよ(、正確な質量の決定ができる。In addition, the S/N ratio is high, allowing accurate mass determination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の毛管電気泳動質量分析装置の構成図、
第2図は従来の毛管電気泳動質量分析装置の構成図、第
3図は従来の毛管電気泳動(CZE)スペクトル、第4
図は本発明の印加電圧とCZEスペクトルの関係図、第
5図は本発明の他の実施例の毛管電気泳動質量分析装置
の構成図、第6図は従来と本発明とのCZE−MSスペ
クトルの比較図である。 1・・・高電圧電源、2・・・高電圧印加部分、3・・
・試料、4・・・電解溶液、5・・・毛細管、6・・・
イオン源、7・・差動排気系、8・・・4電極質量分析
計、9・・・主排気系、10・・イオン検知器、11・
・・紫外線吸収検知器、12・・・高圧電源制御回路。 代理人 弁理士 高欄 明夫 :、 (ほか1名)―)゛ 第3図 第4図 ’I” I hI E
FIG. 1 is a configuration diagram of a capillary electrophoresis mass spectrometer of the present invention,
Figure 2 is a configuration diagram of a conventional capillary electrophoresis mass spectrometer, Figure 3 is a conventional capillary electrophoresis (CZE) spectrum, and Figure 4 is a diagram of a conventional capillary electrophoresis mass spectrometer.
The figure is a diagram showing the relationship between applied voltage and CZE spectrum of the present invention, Figure 5 is a block diagram of a capillary electrophoresis mass spectrometer according to another embodiment of the present invention, and Figure 6 is a CZE-MS spectrum of the conventional and present invention. FIG. 1... High voltage power supply, 2... High voltage application part, 3...
・Sample, 4... Electrolyte solution, 5... Capillary tube, 6...
Ion source, 7... Differential pumping system, 8... 4-electrode mass spectrometer, 9... Main pumping system, 10... Ion detector, 11...
...Ultraviolet absorption detector, 12...High voltage power supply control circuit. Agent Patent attorney Akio Takaran:, (1 other person) -) Figure 3 Figure 4 'I' I hI E

Claims (1)

【特許請求の範囲】 1、試料溶液と電解溶液に高電圧を印加する電圧印加手
段と、前記試料溶液と前記電解溶液を移動させる毛細管
と、該毛細管の両端に電位差を付与する電界印加手段と
、前記試料溶液と前記電解溶液が前記毛細管中を移動中
に分離された成分をイオン化するイオン源と、該イオン
の検知手段を備えた毛管電気泳動質量分析装置において
、 前記イオン源の手前に紫外線吸収検知器を設け前記分離
試料の移動速度を検知し、該検知信号により前記毛細管
の両端に印加する電圧を制御し、前記分離試料の移動速
度を制御する制御手段を備えたことを特徴とする毛管電
気泳動質量分析装置。 2、試料溶液と電解溶液に高電圧を印加する電圧印加手
段と、前記試料溶液と前記電解溶液を移動させる毛細管
と、該毛細管の両端に電位差を付与する電界印加手段と
、前記試料溶液と前記電解溶液が前記毛細管中を移動中
に分離された成分をイオン化するイオン源と、該イオン
の検知手段を備えた毛管電気泳動質量分析装置において
、 前記イオン源の手前に紫外線吸収検知器を設け前記分離
試料の移動速度を検知し、該検知信号により前記毛細管
の両端に印加する電圧を下げ、前記分離試料の移動速度
を低下させる制御手段を備えたことを特徴とする毛管電
気泳動質量分析装置。 3、試料溶液と電解溶液に高電圧を印加する電圧印加手
段と、前記試料溶液と前記電解溶液を移動させる毛細管
と、該毛細管の両端に電位差を付与する電界印加手段と
、前記試料溶液と前記電解溶液が前記毛細管中を移動中
に分離された成分をイオン化するイオン源と、該イオン
の検知手段を備えた毛管電気泳動質量分析装置において
、 前記イオン検知手段の出力信号によって前記毛細管の両
端に印加する電圧を制御し、前記分離試料の移動速度を
制御する制御手段を備えたことを特徴とする毛管電気泳
動質量分析装置。 4、高電圧電源により電圧印加された試料溶液と電解溶
液が、毛細管の両端の電位差に基づく電界により該毛細
管中を移動中に分離された成分を、イオン源でイオン化
し、該イオンを検出することにより質量分析する毛管電
気泳動質量分析法において、 前記毛管電気泳動装置の毛細管の出口に設けた紫外線吸
収検知器が試料成分のピークを検知し、該試料成分が前
記イオン源に到達する前に、高電圧電源を制御して印加
電圧を下げ、前記試料成分の泳動速度を下げて、質量分
析のための測定時間を長くすることを特徴とする毛管電
気泳動質量分析法。 5、高電圧電源により電圧印加された試料溶液と電解溶
液が、毛細管の両端の電位差に基づく電界により該毛細
管中を移動中に分離された成分を、イオン源でイオン化
し、該イオンを検出することにより質量分析する毛管電
気泳動質量分析法において、 注目する試料のイオンが、イオン検知器で検出され始め
た時に前記高電圧電源の制御して印加電圧を下げて電気
泳動速度を遅くし、イオンの移動を緩やかにすることに
より質量スペクトルパターンの時間変動率を小さくする
ことを特徴とする毛管電気泳動質量分析法。
[Scope of Claims] 1. Voltage application means for applying a high voltage to a sample solution and an electrolyte solution, a capillary tube for moving the sample solution and the electrolyte solution, and an electric field application means for applying a potential difference to both ends of the capillary tube. , a capillary electrophoresis mass spectrometer comprising an ion source that ionizes components separated while the sample solution and the electrolytic solution are moving through the capillary tube, and a means for detecting the ions, wherein an ultraviolet ray is provided in front of the ion source. It is characterized by comprising a control means that includes an absorption detector to detect the moving speed of the separated sample, controls the voltage applied to both ends of the capillary tube based on the detection signal, and controls the moving speed of the separated sample. Capillary electrophoresis mass spectrometer. 2. Voltage application means for applying a high voltage to the sample solution and the electrolytic solution, a capillary tube for moving the sample solution and the electrolytic solution, an electric field application means for applying a potential difference to both ends of the capillary tube, and In a capillary electrophoresis mass spectrometer comprising an ion source that ionizes components separated while an electrolytic solution is moving through the capillary tube, and means for detecting the ions, an ultraviolet absorption detector is provided in front of the ion source. A capillary electrophoresis mass spectrometer, comprising: a control means that detects the moving speed of the separated sample, and uses the detection signal to lower the voltage applied to both ends of the capillary to reduce the moving speed of the separated sample. 3. Voltage applying means for applying a high voltage to the sample solution and the electrolytic solution; a capillary tube for moving the sample solution and the electrolytic solution; an electric field applying means for applying a potential difference to both ends of the capillary; In a capillary electrophoresis mass spectrometer comprising an ion source that ionizes components separated while an electrolytic solution is moving through the capillary tube, and a means for detecting the ions, an output signal from the ion detecting means is used to ionize components at both ends of the capillary tube. A capillary electrophoresis mass spectrometer characterized by comprising a control means for controlling an applied voltage and controlling a moving speed of the separated sample. 4. An ion source ionizes the separated components while the sample solution and electrolytic solution, to which a voltage is applied by a high-voltage power supply, moves through the capillary tube by an electric field based on the potential difference between the two ends of the capillary tube, and detects the ions. In capillary electrophoresis mass spectrometry, which performs mass spectrometry, an ultraviolet absorption detector installed at the outlet of a capillary tube of the capillary electrophoresis device detects a peak of a sample component, and the peak of the sample component is detected before the sample component reaches the ion source. . A capillary electrophoresis mass spectrometry method, characterized in that the high voltage power source is controlled to lower the applied voltage, the migration speed of the sample components is lowered, and the measurement time for mass spectrometry is lengthened. 5. An ion source ionizes the separated components while the sample solution and electrolytic solution, to which a voltage is applied by a high-voltage power supply, moves through the capillary tube by an electric field based on the potential difference between the two ends of the capillary tube, and detects the ions. In capillary electrophoresis mass spectrometry, which performs mass spectrometry, when ions of interest in a sample begin to be detected by an ion detector, the high-voltage power supply is controlled to lower the applied voltage to slow down the electrophoresis speed and detect ions. A capillary electrophoresis mass spectrometry method characterized by reducing the temporal fluctuation rate of mass spectral patterns by slowing down the movement of .
JP2327667A 1990-11-28 1990-11-28 Capillary electrophoresis mass spectrometer and analytical method Expired - Fee Related JP3031632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327667A JP3031632B2 (en) 1990-11-28 1990-11-28 Capillary electrophoresis mass spectrometer and analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327667A JP3031632B2 (en) 1990-11-28 1990-11-28 Capillary electrophoresis mass spectrometer and analytical method

Publications (2)

Publication Number Publication Date
JPH04206134A true JPH04206134A (en) 1992-07-28
JP3031632B2 JP3031632B2 (en) 2000-04-10

Family

ID=18201627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327667A Expired - Fee Related JP3031632B2 (en) 1990-11-28 1990-11-28 Capillary electrophoresis mass spectrometer and analytical method

Country Status (1)

Country Link
JP (1) JP3031632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388434A (en) * 2002-03-26 2003-11-12 Bruker Daltonik Gmbh Coupling of capillary electrophoresis (CE) with mass spectrometry (MS)
KR100496977B1 (en) * 2002-07-10 2005-06-23 주식회사 옵트론-텍 Multifunction injectin system for a capillary electrophoresis microchip
CN110132870A (en) * 2019-04-30 2019-08-16 聊城鲁西聚碳酸酯有限公司 A kind of analysis method of polycarbonate middle-ultraviolet lamp absorbent type and content

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388434A (en) * 2002-03-26 2003-11-12 Bruker Daltonik Gmbh Coupling of capillary electrophoresis (CE) with mass spectrometry (MS)
KR100496977B1 (en) * 2002-07-10 2005-06-23 주식회사 옵트론-텍 Multifunction injectin system for a capillary electrophoresis microchip
CN110132870A (en) * 2019-04-30 2019-08-16 聊城鲁西聚碳酸酯有限公司 A kind of analysis method of polycarbonate middle-ultraviolet lamp absorbent type and content

Also Published As

Publication number Publication date
JP3031632B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
Tang et al. Capillary isoelectric focusing-electrospray mass spectrometry for protein analysis
Udseth et al. Capillary isotachophoresis/mass spectrometry
Purves et al. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer
EP1102985B1 (en) Method for separation and enrichment of isotopes in gaseous phase
Guevremont et al. High field asymmetric waveform ion mobility spectrometry-mass spectrometry: an investigation of leucine enkephalin ions produced by electrospray ionization
Wahl et al. Use of small‐diameter capillaries for increasing peptide and protein detection sensitivity in capillary electrophoresis‐mass spectrometry
Lin et al. Capillary electrophoretic analysis of inorganic cations: role of complexing agent and buffer pH
US20100207022A1 (en) Platform for field asymmetric waveform ion mobility spectrometry with ion propulsion modes employing gas flow and electric field
Wachs et al. Liquid chromatography-mass spectrometry and related techniques via atmospheric pressure ionization
Muddiman et al. Application of sequential paired covariance to capillary electrophoresis electrospray ionization time-of-flight mass spectrometry: Unraveling the signal from the noise in the electropherogram
US8368010B2 (en) Quadrupole mass spectrometer
Van der Vlis et al. Combined liquid-liquid electroextraction and isotachophoresis as a fast on-line focusing step in capillary electrophoresis
Hommerson et al. Capillary electrophoresis-atmospheric pressure chemical ionization-mass spectrometry using an orthogonal interface: set-up and system parameters
Martin-Girardeau et al. Optimization of a capillary electrophoresis–electrospray mass spectrometry method for the quantitation of the 20 natural amino acids in childrens blood
EP1415323B1 (en) Method for phosphorus quantitation
Smith et al. Sensitivity considerations for large molecule detection by capillary electrophoresis-electrospray ionization mass spectrometry
US20070278398A1 (en) Ion mobility spectrometry waveform
Kenndler et al. Nondependence of diffusion-controlled peak dispersion on diffusion coefficient and ionic mobility in capillary zone electrophoresis without electroosmotic flow
McComb et al. Sensitive high-resolution analysis of biological molecules by capillary zone electrophoresis coupled with reflecting time-of-flight mass spectrometry
Palmer et al. Exact mass determination of narrow electrophoretic peaks using an orthogonal acceleration time‐of‐flight mass spectrometer
J Brown et al. Field asymmetric waveform ion mobility spectrometry analysis of proteins and peptides: a review
Zhao et al. On‐line capillary electrophoresis‐electrospray ionization mass spectrometry of nucleotides
US8110793B2 (en) Tandem mass spectrometry with feedback control
JPH04206134A (en) Capillary electrophoresis mass spectrometer and analyzing method
Liang et al. Effects of experimental parameters on the signal intensity of capillary electrophoresis electrospray ionization mass spectrometry in protein analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees