JPH04205589A - Carried object counting system for multi-row parallel carrying conveyer device - Google Patents

Carried object counting system for multi-row parallel carrying conveyer device

Info

Publication number
JPH04205589A
JPH04205589A JP34011390A JP34011390A JPH04205589A JP H04205589 A JPH04205589 A JP H04205589A JP 34011390 A JP34011390 A JP 34011390A JP 34011390 A JP34011390 A JP 34011390A JP H04205589 A JPH04205589 A JP H04205589A
Authority
JP
Japan
Prior art keywords
conveyance
row parallel
guides
interval
parallel conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34011390A
Other languages
Japanese (ja)
Inventor
Masami Tagao
田顔 正美
Tatsuya Hanabusa
達也 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP34011390A priority Critical patent/JPH04205589A/en
Publication of JPH04205589A publication Critical patent/JPH04205589A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To precisely calculate the number of objects carried by a device even when the processing capacity of an upstream side processor is changed extremely by counting the number of carried objects passing between guides from the carrying speed of a multi-row parallel carrying conveyer device read with a carrying speed reading means and a guide interval adjusted with a carrying number adjusting means. CONSTITUTION:A counting means 3 counts the number of carried objects passing between guides from the carrying speed of a multi-row parallel carrying conveyer device and the interval of the guides. Then, a the guide interval to be reference is stored by a making proper means 5 and the propriety of the guide interval is judged based on increasing tendency or decreasing tendency judged by a carried object monitoring means 4. Accordingly, even when the processing capacity of an upstream side processor is decreased extremely, since a carrying number adjusting means 1 adjusts the guide interval and specifies the number of the carried objects passing between the guides, the number of the carried objects per unit time passing between the guides becomes constant. Thus, a carried object counting system can calculate the number of the carried objects carried by the multi-row parallel carrying conveyer device precisely.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば食品用缶等の多列並送コンベア装置に
設けられた搬送物計数システム、特に搬送物の計数を正
確に行うことができる多列並送コンベア装置の搬送物計
数システムに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a conveyed object counting system installed in a multi-row parallel conveyor device for, for example, food cans, and in particular to a conveyed object counting system that is capable of accurately counting conveyed objects. This invention relates to a conveyed object counting system for a multi-row parallel conveyor device.

〈従来の技術〉 従来から製缶工場における多列並送コンベア装置では、
搬送物が多列並送コンベアベルト上からこぼれ落ちて多
列並送コンベア装置が停止する等のトラブルを防ぐため
に、多列並送コンベア装置の搬送能力は上流側装置の処
理能力より大きくしている。
<Conventional technology> Conventionally, multi-row parallel conveyor equipment in can manufacturing plants has been used.
In order to prevent problems such as the multi-row parallel conveyor device stopping due to objects falling off the multi-row parallel conveyor belt, the conveyance capacity of the multi-row parallel conveyor device is made larger than the processing capacity of the upstream device. .

また、製缶ラインでは、多列並送コンベア装置で搬送さ
れる搬送物の数を正確に計数して、製缶ラインの制御に
役立てたいとの要請もある。よって、多列並送コンベア
装置には、搬送物計数システムが付加されている。
In addition, there is also a demand for accurate counting of the number of objects conveyed by a multi-row parallel conveyor device in a can manufacturing line for use in controlling the can manufacturing line. Therefore, a conveyed object counting system is added to the multi-row parallel conveyor device.

かかる搬送物計数システムの付加された従来の多列並送
コンベア装置は、第4図に示すように、複数のコンベア
21.23で構成されている。
A conventional multi-row parallel conveyor device to which such a conveyed object counting system is added is composed of a plurality of conveyors 21, 23, as shown in FIG.

そして、上流側処理装置(図中省略)に接続されている
コンヘア21の搬送速度は、下流側処理装置22に接続
されているコンベア23の搬送速度より速く設定されて
いる。
The conveyance speed of the conveyor 21 connected to the upstream processing device (not shown) is set higher than the conveyance speed of the conveyor 23 connected to the downstream processing device 22.

また、下流側処理装置22の入口付近のコンベア23に
は、搬送物(缶胴)24をコンベア23の中央部に寄せ
るための一対の固定ガイド25.25が設けられていた
Furthermore, a pair of fixed guides 25 and 25 were provided on the conveyor 23 near the entrance of the downstream processing device 22 to bring the conveyed object (can body) 24 closer to the center of the conveyor 23.

かかる構成の多列並送コンヘア装置は、上流側装置から
排出された缶胴24をコンベア21でコンベア23に送
る。コンベア21の搬送能力は非常に大きいので、缶胴
24は、第4図に示されているように、疎らに運ばれて
くる。
In the multi-row parallel conveying conveyor device having such a configuration, the can bodies 24 discharged from the upstream device are conveyed by the conveyor 21 to the conveyor 23. Since the carrying capacity of the conveyor 21 is very large, the can bodies 24 are carried sparsely, as shown in FIG.

しかしながら、このように疎らに運ばれてきた缶胴24
を正確に計数することは困難なので、搬送速度の遅いコ
ンベア23上で缶胴24を集合させる。そのうえ、固定
ガイド25.25がコンベア23上の搬送物を搭載可能
な間隔を狭めている。
However, the can bodies 24 that were sparsely transported in this way
Since it is difficult to accurately count the can bodies 24, the can bodies 24 are collected on the conveyor 23, which has a slow conveyance speed. Moreover, the fixed guides 25.25 reduce the distance at which the objects to be transported on the conveyor 23 can be mounted.

このため、コンベア23の出口付近では、缶胴24は更
にその中央部付近に集められ、固定ガイド25.25の
出ロ付近A−A線では、第5図の断面図に示すように、
上記コンベア23は隣接する缶胴24の間に隙間を生じ
させることなく缶胴24を搬送することができる。すな
わち、固定ガイド25.25の出口を通過する缶胴24
の数が常に一定となる。
Therefore, near the exit of the conveyor 23, the can bodies 24 are further gathered near the center thereof, and near the exit of the fixed guide 25.25 along line A-A, as shown in the cross-sectional view of FIG.
The conveyor 23 can convey can bodies 24 without creating gaps between adjacent can bodies 24. That is, the can body 24 passing through the outlet of the fixed guide 25.25
The number of is always constant.

このため、オペレータは上記コンベア23の稼動時間を
測定しておくだけで、コンベア23の搬送速度とA−A
iI上に並ぶ缶胴の数(固定ガイド25が固定なので、
缶胴数は常に一定である)からコンベア23が搬送した
缶胴24の数を算出することができる。
Therefore, the operator only needs to measure the operating time of the conveyor 23, and the conveyance speed of the conveyor 23 and the A-A
The number of can bodies lined up on iI (because the fixed guide 25 is fixed,
(The number of can bodies is always constant), the number of can bodies 24 conveyed by the conveyor 23 can be calculated.

〈発明が解決しようとする課題〉 しかしながら、このような従来の多列並送コンベア装置
の搬送物計数システムにあっては、固定ガイド25.2
5は一定の間隔をもって多列並送コンベア装置に付設さ
れている。したがって、上流側処理装置の処理能力が極
端に減少すると、固定ガイド25.25の出口では搬送
される複数の缶胴24同士の間に隙間が生じる。
<Problems to be Solved by the Invention> However, in such a conventional conveyance object counting system for a multi-row parallel conveyor device, the fixed guide 25.2
5 are attached to the multi-row parallel conveyor device at regular intervals. Therefore, if the processing capacity of the upstream processing device is extremely reduced, a gap will be created between the plurality of can bodies 24 being transported at the exit of the fixed guide 25.25.

この結果、固定ガイド25.25の出口を通過する単位
時間当りの缶胴24の数が異なるようになるため、コン
ベア23が搬送する缶胴24の数を正確に算出すること
ができなかった。
As a result, the number of can bodies 24 passing through the exits of the fixed guides 25, 25 per unit time varies, making it impossible to accurately calculate the number of can bodies 24 conveyed by the conveyor 23.

そこで、本発明は、上流側処理装置の処理能力が極端に
変化しても多列並送コンヘア装置が搬送した缶胴(搬送
物)の数を正確に算出することができる多列並送コンベ
ア装置の搬送物計数システムを提供することを、その目
的としている。
Therefore, the present invention provides a multi-row parallel conveyor that can accurately calculate the number of can bodies (carried objects) conveyed by the multi-row parallel conveyor even if the processing capacity of the upstream processing device changes drastically. Its purpose is to provide a conveyance counting system for equipment.

〈課題を解決するための手段〉 本発明は、第1図に示すように、上流側処理装置と下流
側処理装置との間に配設された多列並送コンベア装置に
おいて、上記多列並送コンベア装置に互いに接近離隔動
自在な一対のガイドを設け、該ガイド間隔を調節し、こ
の間隔を通過する搬送物の数を規定する搬送数調整手段
1と、上記多列並送コンベア装置の搬送速度を読み取る
搬送速度読み取り手段2と、該搬送速度読み取り手段2
て読み取られた多列並送コンベア装置の搬送速度と上記
搬送数調整手段1で調節されたガイド間隔とからこのガ
イドの間を通過する搬送物を計数する計数手段3と、を
備えた多列並送コンベア装置の搬送物計数システムであ
る。
<Means for Solving the Problem> As shown in FIG. 1, the present invention provides a multi-row parallel conveyor device disposed between an upstream processing device and a downstream processing device. A feeding conveyor device is provided with a pair of guides that can move toward and away from each other, and a conveyance number adjusting means 1 that adjusts the guide interval and defines the number of conveyed objects passing through this interval, and a conveyance speed of the multi-row parallel conveyor device. conveyance speed reading means 2 for reading the conveyance speed reading means 2;
a counting means 3 for counting the conveyed objects passing between the guides based on the conveyance speed of the multi-row parallel conveyor device read by the conveyance speed and the guide interval adjusted by the conveyance number adjusting means 1; This is a conveyed object counting system for parallel conveyor equipment.

また、上記搬送数調整手段1は、多列並送コンベア装置
に供給される搬送物を監視し、搬送物の増加傾向、およ
び減少傾向を判断する搬送物監視手段4と、上記ガイド
間隔を記憶しており、上記搬送物監視手段4が判断した
増加傾向、または減少傾向に基づきガイド間隔の適正を
判断する適正化手段5と、該適正化手段5がカイト間隔
を不適正と判断した場合は、搬送物の増加傾向、または
減少傾向に応じたガイド間隔を算出する適正間隔算出手
段6とを設けた多列並送コンベア装置の搬送物計数シス
テムである。
Further, the conveyance number adjustment means 1 includes a conveyance object monitoring means 4 that monitors the conveyance objects supplied to the multi-row parallel conveyor device and determines an increasing tendency or a decreasing tendency of the conveyance objects, and a conveyance object monitoring means 4 that stores the guide interval. and an optimization means 5 that determines whether the guide spacing is appropriate based on the increasing or decreasing tendency determined by the transported object monitoring means 4, and if the optimization means 5 determines that the kite spacing is inappropriate, This is a conveyance object counting system for a multi-row parallel conveyor apparatus, which is provided with an appropriate interval calculating means 6 for calculating a guide interval according to an increasing tendency or a decreasing tendency of conveyed objects.

〈作用および効果〉 本発明に係る多列並送コンベア装置の搬送物計数システ
ムでは、搬送数調整手段1が、ガイドの間隔を調節する
。その結果、このガイドの間を通過する搬送物の数が規
定される。
<Operations and Effects> In the conveyance object counting system for the multi-row parallel conveyor device according to the present invention, the conveyance number adjusting means 1 adjusts the interval between the guides. As a result, the number of conveyed objects passing between these guides is defined.

また、搬送速度読み取り手段2が上記多列並送コンベア
装置の搬送速度を読み取る。
Further, the conveyance speed reading means 2 reads the conveyance speed of the multi-row parallel conveyor device.

そして、計数手段3が、多列並送コンベア装置の搬送速
度と、ガイドの間隔と、からこのガイドの間を通過する
搬送物を計数する。
Then, the counting means 3 counts the number of objects passing between the guides based on the conveyance speed of the multi-row parallel conveyor device and the interval between the guides.

ここで、搬送物監視手段4が多列並送コンベアに供給さ
れる搬送物を監視し、搬送物の増加傾向、および減少傾
向を判断する。
Here, the transported object monitoring means 4 monitors the transported objects supplied to the multi-row parallel conveyor, and determines whether the transported objects are increasing or decreasing.

そして、適正化手段5が基準となるガイド間隔を記憶し
ており、上記搬送物監視手段4が判断した増加傾向、ま
たは減少傾向に基づきガイド間隔の適正を判断する。次
に、適正間隔算出手段6が該適正化手段5がガイド間隔
を不適正と判断した場合は、搬送物の増加傾向、または
減少傾向に応じたガイド間隔を算出する。
The optimization means 5 stores the reference guide interval, and determines the appropriateness of the guide interval based on the increasing tendency or decreasing tendency determined by the transported object monitoring means 4. Next, when the optimization means 5 determines that the guide interval is inappropriate, the appropriate interval calculation means 6 calculates the guide interval according to the increasing tendency or decreasing tendency of the conveyed objects.

したがって、例えば上流側処理装置の処理能力が極端に
減少しても、搬送数調整手段1がガイド間隔を調節し、
このガイドの間を通過する搬送物の数を規定するので、
ガイドの間では隣接する搬送物の間に隙間が生じること
がない。
Therefore, for example, even if the processing capacity of the upstream processing device is extremely reduced, the conveyance number adjusting means 1 adjusts the guide interval,
This defines the number of objects to be transported between the guides, so
There are no gaps between adjacent conveyed objects between the guides.

このように、ガイドの間を通過する単位時間当りの搬送
物の数が一定になるため、搬送物計数システムは多列並
送コンベア装置が搬送する搬送物の数を正確に算出する
ことができる。
In this way, since the number of conveyed objects passing between the guides per unit time is constant, the conveyed object counting system can accurately calculate the number of conveyed objects conveyed by the multi-row parallel conveyor device.

〈実施例〉 以下、本発明に係る搬送物計数システムを下流側缶胴処
理装置の入口近傍の多列並送コンベアに設け、缶胴処理
装置で処理する缶胴の数を計数するときに用いた一実施
例を説明する。
<Example> Hereinafter, a conveyed object counting system according to the present invention will be installed on a multi-row parallel conveyor near the entrance of a downstream can body processing device, and will be used when counting the number of can bodies processed by the can body processing device. An example will be described below.

なお、上述した従来例と同一の部分には同一の符号を付
し、重複する説明は省略する。
Note that the same parts as in the conventional example described above are given the same reference numerals, and redundant explanation will be omitted.

この図にあって、31は製缶ライン中に設けられたトリ
マー装置である。このトリマー装置31には、多列並送
コンベア23が接続されており、この多列並送コンベア
23は図示していない上流側多列並送コンベアを介して
同じく製缶ライン中に設けられた深絞り装置t(図中省
略)から缶胴の供給を受けている。
In this figure, 31 is a trimmer device installed in the can manufacturing line. A multi-row parallel conveyor 23 is connected to this trimmer device 31, and this multi-row parallel conveyor 23 is also provided in the can manufacturing line via an upstream multi-row parallel conveyor (not shown). Can bodies are supplied from a deep drawing device t (not shown).

この多列並送コンベア23はコンベ°ア駆動モータ32
によって無限軌道を走行移動させているが、この移動動
作はモータ駆動回路33を介してスレーブコンピュータ
34によって制御されている。
This multi-row parallel conveyor 23 is driven by a conveyor drive motor 32.
This moving operation is controlled by a slave computer 34 via a motor drive circuit 33.

すなわち、スレーブコンピュータ34はモータ駆動回路
33にコンベア搬送速度信号を送信し、モータ駆動回路
33からの応答信号を受信することにより、多列並送コ
ンベア23の実際の搬送速度Vを知ることができる。な
お、このスレーブコンピュータ34はホストコンピュー
タの管理下にあり、その動作はホストコンピュータによ
って制御されている。
That is, the slave computer 34 can know the actual conveyance speed V of the multi-row parallel conveyor 23 by transmitting a conveyor conveyance speed signal to the motor drive circuit 33 and receiving a response signal from the motor drive circuit 33. . Note that this slave computer 34 is under the control of the host computer, and its operations are controlled by the host computer.

また、スレーブコンピュータは、周知の構成であって、
CPU、ROM、RAMを有している。
Further, the slave computer has a well-known configuration,
It has a CPU, ROM, and RAM.

また、上記トリマー装置31の入口付近の多列並送コン
ベア23には、缶胴24を多列並送コンベア23の中央
部に寄せるための一対の可変ガイド27.27が設けら
れている。この一対の可変ガイド27.27はガイド開
閉モータ35によって、その間隔Wを変更することがで
きる。また、この可変ガイド27.270間隔変更動作
はモータ駆動回路33を介してスレーブコンピュータ3
4によって制御されている。
Further, the multi-row parallel conveyor 23 near the entrance of the trimmer device 31 is provided with a pair of variable guides 27, 27 for moving the can bodies 24 toward the center of the multi-row parallel conveyor 23. The distance W between the pair of variable guides 27, 27 can be changed by the guide opening/closing motor 35. Further, this variable guide 27, 270 interval changing operation is performed by the slave computer 3 via the motor drive circuit 33.
4.

ところで、可変ガイド27.27の出口において、缶胴
が隙間なく並べられるには、深絞り機の単位時間当りの
処理数と可変ガイドの出口における缶胴の単位時間当り
の通過数とがほぼ均衡していることが必要である。そこ
で、本実施例は深絞り機の処理数の変化をセンサにより
把握している。
By the way, in order for the can bodies to be lined up without gaps at the exit of the variable guide 27.27, the number of processing per unit time of the deep drawing machine and the number of can bodies passing per unit time at the exit of the variable guide must be approximately balanced. It is necessary to do so. Therefore, in this embodiment, changes in the processing number of the deep drawing machine are grasped by a sensor.

すなわち、上記可変ガイド27.27の上流側には、所
定の面積を有する缶胴算出エリア36が設けられており
、缶胴算出エリア36は多列並送コンベア23上に規定
されている。この缶胴算出エリア36の上方には、缶胴
算出エリア36内での缶胴24の有無を検知するための
複数のセンサ(図中省略)がマトリックス状に配設され
ている。
That is, a can body calculation area 36 having a predetermined area is provided upstream of the variable guide 27.27, and the can body calculation area 36 is defined on the multi-row parallel conveyor 23. Above the can body calculation area 36, a plurality of sensors (not shown) are arranged in a matrix to detect the presence or absence of the can body 24 within the can body calculation area 36.

なお、これらのセンサの出力線はスレーブコンピュータ
34にそれぞれ接続されている。したがって、スレーブ
コンピュータ34はこれらのセンサの検出信号を計数す
ることにより、缶胴算出エリア36内で缶胴24の占め
る面積を算出することができ、深絞り機の処理数を正確
に把握することができる。
Note that the output lines of these sensors are respectively connected to the slave computer 34. Therefore, by counting the detection signals of these sensors, the slave computer 34 can calculate the area occupied by the can body 24 within the can body calculation area 36, and can accurately grasp the processing number of the deep drawing machine. I can do it.

したがフて、スレーブコンピュータ34は缶胴算出エリ
ア36ての缶胴24の占める面積が過多であれば、モー
タ駆動回路33に可変カイト27.27の間隔を広げる
指示を行ない、缶f11L出エリア36での缶胴24の
占める面積を適正値にする。
Therefore, if the area occupied by the can body 24 in the can body calculation area 36 is too large, the slave computer 34 instructs the motor drive circuit 33 to widen the interval between the variable kites 27 and 27, and increases the can f11L output area. The area occupied by the can body 24 at 36 is set to an appropriate value.

一方、スレーブコンピュータ34は缶胴算出エリア36
ての缶胴24の占める面積が過少であれば、モータ駆動
回路33に可変ガイド27.27の間隔を狭める指示を
行ない、缶胴算出エリア36ての缶胴24の占める面積
を適正値にする。
On the other hand, the slave computer 34 has a can body calculation area 36.
If the area occupied by all the can bodies 24 is too small, the motor drive circuit 33 is instructed to narrow the interval between the variable guides 27, 27, and the can body calculation area 36 sets the area occupied by all the can bodies 24 to an appropriate value. .

以上の構成の多列並送コンヘアの搬送物計数システムの
搬送物計数ルーチンの動作手順を第2図のフローチャー
トを用いて説明する。
The operating procedure of the article counting routine of the article counting system for the multi-row parallel conveyor conveyor having the above configuration will be explained using the flowchart shown in FIG.

ここで、このフローチャートで使用する変数を説明する
。Wは可変ガイド27.27の適正間隔、nは自然数(
オペレータが任意に設定できる)、dは缶胴の直径、■
は多列並送コンベア23の搬送速度、Tはトリマー装置
に供給される缶胴の数、fは上記VとWとからTを求め
るときの間数である。
Here, the variables used in this flowchart will be explained. W is the appropriate interval of the variable guide 27.27, n is a natural number (
(can be set arbitrarily by the operator), d is the diameter of the can body, ■
is the conveyance speed of the multi-row parallel conveyor 23, T is the number of can bodies supplied to the trimmer device, and f is the number of intervals when T is determined from the above-mentioned V and W.

以下、フローチャートの説明を行なう。The flowchart will be explained below.

まず、スレーブコンピュータ34はセンサの検出信号を
読み取り(ステップSl)、計数することにより、缶胴
算出エリア36で缶胴24の占める面積を算出する(S
2)。
First, the slave computer 34 reads the sensor detection signal (Step Sl) and counts it to calculate the area occupied by the can body 24 in the can body calculation area 36 (S
2).

次に、スレーブコンピュータ34は缶胴算出エリア36
で缶胴24の占める面積が適正範囲内にあるか否かを判
断する(S3)。
Next, the slave computer 34 uses the can body calculation area 36.
It is determined whether the area occupied by the can body 24 is within an appropriate range (S3).

その判断結果がNoならば、スレーブコンピュータ34
は缶胴算出エリア36で缶胴24の占める面積が適正範
囲外なので、缶胴算出エリア36で缶胴24の占める面
積が過多か否かを判断する(S4)。
If the judgment result is No, the slave computer 34
Since the area occupied by the can body 24 in the can body calculation area 36 is outside the appropriate range, it is determined whether the area occupied by the can body 24 in the can body calculation area 36 is excessive (S4).

その判断結果がYESならば、深絞り機の処理数が増え
たので、スレーブコンピュータ34はWにndを加算し
て可変ガイド27.27の適正間隔Wを求める。
If the determination result is YES, the number of processing operations of the deep drawing machine has increased, so the slave computer 34 adds nd to W to find the appropriate interval W between the variable guides 27 and 27.

そして、スレーブコンピュータ34はこの適正間隔Wに
基づいて、モータ駆動回路33に可変ガイド27.27
間隔を広げる指示を行ない、この可変ガイド27.27
の出口を通過する缶胴24の数を規定通りの数(可変ガ
イド27.27の出口において缶胴が隙間なく通過する
ことができる数)にする(S5)。スレーブコンピュー
タ34は、その後、ステップS7に進む。
Then, the slave computer 34 connects the motor drive circuit 33 to the variable guides 27, 27 based on this appropriate interval W.
This variable guide 27.27
The number of can bodies 24 passing through the outlet of the variable guide 27.27 is set to a prescribed number (a number that allows can bodies to pass through the outlet of the variable guide 27.27 without any gaps) (S5). The slave computer 34 then proceeds to step S7.

一方、ステップS4の判断結果がNoならば、缶胴算出
エリア36で缶胴24の占める面積が過少であるので、
スレーブコンピュータ34はWからndを減算して可変
ガイド27.27の適正間隔Wを求める。そして、スレ
ーブコンピュータ34はこの適正間隔Wに基づいて、モ
ータ駆動回路33に可変ガイド27.27間隔を狭める
指示を行ない、このガイド27.27の出口を通過する
缶胴24の数を規定通りにする(S6)。スレーブコン
ピュータ34は、その後、ステップs7に進む。
On the other hand, if the determination result in step S4 is No, the area occupied by the can body 24 in the can body calculation area 36 is too small;
The slave computer 34 subtracts nd from W to find the appropriate interval W between the variable guides 27.27. Based on this appropriate interval W, the slave computer 34 instructs the motor drive circuit 33 to narrow the interval between the variable guides 27.27, so that the number of can bodies 24 passing through the outlet of this guide 27.27 is controlled as specified. (S6). The slave computer 34 then proceeds to step s7.

ステップS7では、スレーブコンピュータ34は多列並
送コンベア23の搬送速度Vを読み取る(ステップS7
)。そして、スレーブコンピュータ34は多列並送コン
ベア23の搬送速度Vと、可変ガイド27.27の間隔
Wとに基づき、間数fによって、トリマー装置31に搬
送した缶胴の数を算出する(S8)。
In step S7, the slave computer 34 reads the conveyance speed V of the multi-row parallel conveyor 23 (step S7
). Then, the slave computer 34 calculates the number of can bodies conveyed to the trimmer device 31 based on the conveyance speed V of the multi-row parallel conveyor 23 and the interval W between the variable guides 27.27 and the interval f (S8 ).

以上説明したように、本発明に係る多列並送コンベア装
置の搬送物計数システムでは、例えば深絞り機の処理能
力が極端に変化した場合でも、スレーブコンピュータ3
4は可変ガイド27.27間隔を狭める、または広げる
指示を行ない、このガイド27.27の出口を通過する
缶胴24の数を規定通りにする。
As explained above, in the conveyed object counting system for a multi-row parallel conveyor device according to the present invention, even when the throughput of a deep drawing machine changes drastically, for example, the slave computer 3
4 instructs to narrow or widen the interval between the variable guides 27.27, so that the number of can bodies 24 passing through the outlet of this guide 27.27 is set to a specified value.

したがって、ガイド27.27の出口では隣接する缶胴
24の間に隙間が生じることがない。
Therefore, there is no gap between adjacent can bodies 24 at the exits of the guides 27.27.

この結果、可変ガイド27.27の出口を通過する単位
時間当りの缶JIPJ24の数が一定になるため、搬送
物計数システムは多列並送コンベア装置23が搬送する
搬送物の数を正確に算出することができる。
As a result, the number of cans JIPJ24 passing through the outlet of the variable guide 27.27 per unit time becomes constant, so that the conveyed object counting system can accurately calculate the number of conveyed objects conveyed by the multi-row parallel conveyor device 23. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多列並送コンベア装置の搬送物計
数システムを機能実現手段によって示すブロック図、第
2図は本発明の一実施例に係る多列並送コンベア装置の
搬送物計数システムのブロック図、第3図は本発明の一
実施例に係る多列並送コンヘア装置の搬送物計数システ
ムの搬送物計数ルーチンの動作手順を示すフローチャー
ト、第4図は従来の多列並送コンベア装置を示す平面図
、第5図は第4図のA−A線の断面図である。 1・・・・・搬送数調整手段、 2・・・・・搬送速度読み取り手段、 3・・・・・計数手段、 4・・・・・搬送物監視手段、 5・・・・・適正化手段、 6・・・・・適正間隔算出手段、 22・・・・下流側処理装置、 23・・・・多列並送コンベア装置、 24・・・・搬送物、 27・・・・可変ガイド。
FIG. 1 is a block diagram showing a conveyed object counting system of a multi-row parallel conveyor device according to the present invention by means of functional implementation means, and FIG. 2 is a block diagram showing a conveyed object counting system of a multi-row parallel conveyor device according to an embodiment of the present invention. A block diagram of the system, FIG. 3 is a flowchart showing the operation procedure of the object counting routine of the object counting system of the multi-row parallel conveying device according to an embodiment of the present invention, and FIG. A plan view showing the conveyor device, and FIG. 5 is a sectional view taken along the line A-A in FIG. 4. 1... Conveyance number adjusting means, 2... Conveyance speed reading means, 3... Counting means, 4... Conveyed object monitoring means, 5... Optimization Means, 6... Appropriate interval calculation means, 22... Downstream processing device, 23... Multi-row parallel conveyor device, 24... Conveyed object, 27... Variable guide .

Claims (2)

【特許請求の範囲】[Claims] (1)上流側処理装置と下流側処理装置との間に配設さ
れた多列並送コンベア装置において、上記多列並送コン
ベア装置に互いに接近離隔動自在な一対のガイドを設け
、 該ガイド間隔を調節し、この間隔を通過する搬送物の数
を規定する搬送数調整手段と、 上記多列並送コンベア装置の搬送速度を読み取る搬送速
度読み取り手段と、 該搬送速度読み取り手段で読み取られた多列並送コンベ
ア装置の搬送速度と上記搬送数調整手段で調節されたガ
イド間隔とからこのガイドの間を通過する搬送物を計数
する計数手段と、を備えたことを特徴とする多列並送コ
ンベア装置の搬送物計数システム。
(1) In a multi-row parallel conveyor device disposed between an upstream processing device and a downstream processing device, the multi-row parallel conveyor device is provided with a pair of guides that can freely move toward and away from each other, and the guides a conveyance number adjustment means for adjusting the interval and prescribing the number of conveyed objects passing through the interval; a conveyance speed reading means for reading the conveyance speed of the multi-row parallel conveyor device; and a multi-row read by the conveyance speed reading means. A multi-row parallel conveyor, comprising: a counting means for counting conveyance items passing between the guides based on the conveyance speed of the parallel conveyor device and the guide interval adjusted by the conveyance number adjusting means. Conveyance counting system for equipment.
(2)上記搬送数調整手段は、 多列並送コンベア装置に供給される搬送物を監視し、搬
送物の増加傾向、および減少傾向を判断する搬送物監視
手段と、 上記ガイド間隔を記憶しており、上記搬送物監視手段が
判断した増加傾向、または減少傾向に基づきガイド間隔
の適正を判断する適正化手段と、該適正化手段がガイド
間隔を不適正と判断した場合は、搬送物の増加傾向、ま
たは減少傾向に応じたガイド間隔を算出する適正間隔算
出手段とを設けた請求項1に記載の多列並送コンベア装
置の搬送物計数システム。
(2) The conveyance number adjusting means includes a conveyance object monitoring means that monitors the conveyance objects supplied to the multi-row parallel conveyor device and determines an increasing tendency and a decreasing tendency of the conveyance objects, and a conveyance object monitoring means that stores the above-mentioned guide interval. There is an optimization means that determines whether the guide interval is appropriate based on the increasing or decreasing tendency determined by the conveyed object monitoring means, and if the optimization means determines that the guide interval is inappropriate, the conveyed object is 2. The conveyance object counting system for a multi-row parallel conveyor apparatus according to claim 1, further comprising an appropriate interval calculation means for calculating a guide interval according to an increasing tendency or a decreasing tendency.
JP34011390A 1990-11-30 1990-11-30 Carried object counting system for multi-row parallel carrying conveyer device Pending JPH04205589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34011390A JPH04205589A (en) 1990-11-30 1990-11-30 Carried object counting system for multi-row parallel carrying conveyer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34011390A JPH04205589A (en) 1990-11-30 1990-11-30 Carried object counting system for multi-row parallel carrying conveyer device

Publications (1)

Publication Number Publication Date
JPH04205589A true JPH04205589A (en) 1992-07-27

Family

ID=18333846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34011390A Pending JPH04205589A (en) 1990-11-30 1990-11-30 Carried object counting system for multi-row parallel carrying conveyer device

Country Status (1)

Country Link
JP (1) JPH04205589A (en)

Similar Documents

Publication Publication Date Title
US6433288B1 (en) Method and apparatus for weighing
US7631747B2 (en) Conveyor induct system
CN103979285B (en) For the control device of birds, beasts and eggs conveyer belt
US6907978B2 (en) Methods and apparatuses for inducting articles onto a conveyor
EP2558388B1 (en) Apparatus for conveying eggs
JP2720374B2 (en) Bread dough quality measurement method and production quantity quantification method
ATE184816T1 (en) DEVICE FOR INTEGRATED SORTING AND ANALYZING FOOD
KR930011823A (en) Uniform strip feeding device and method
US11459188B2 (en) Range sensing conveyor package management system for measuring and controlling density of parcels on a conveyor
FI905761A (en) Device and method of cutting food
JPH04205589A (en) Carried object counting system for multi-row parallel carrying conveyer device
WO2020121340A1 (en) Volume distribution for grading systems
JPH10227865A (en) Radioactive surface contamination monitor equipment
GB1517511A (en) Conveyor handling apparatus
CN213737282U (en) Facial mask automatic weighing equipment
US3944078A (en) Counter controlled product conveyor distribution system
WO2021011833A4 (en) Range sensing conveyor package management system for measuring and controlling density of parcels on a conveyor
JPS61162413A (en) Carrierless conveyor system for plating tank
EP1328781A2 (en) Method and apparatus for weighing
CN209504210U (en) Automatic material cutting device of three-section type rice noodle metering system
JP2000302232A (en) Carrying device
JPH08198440A (en) Introducing method and sorting device for article
WO1999036752A1 (en) Method and apparatus for weighing
JPH065177B2 (en) Device for setting objects to be weighed on the weighing conveyor
JPH03297718A (en) Supply control for selection device