JPH04205287A - Device and method for extracting feature of character - Google Patents
Device and method for extracting feature of characterInfo
- Publication number
- JPH04205287A JPH04205287A JP2329946A JP32994690A JPH04205287A JP H04205287 A JPH04205287 A JP H04205287A JP 2329946 A JP2329946 A JP 2329946A JP 32994690 A JP32994690 A JP 32994690A JP H04205287 A JPH04205287 A JP H04205287A
- Authority
- JP
- Japan
- Prior art keywords
- character
- stroke end
- end point
- contour
- recognized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 4
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000005452 bending Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Character Discrimination (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
認識対象文字を一方向に走査して輪郭図形を想定する走
査部と、輪郭について上記走査方向と交叉すると共に基
準幅以下の輪郭文字の輪郭端点を文字線の書き始め点で
あるストローク端点と決定するストローク端点決定部と
を有し、抽出した認識対象文字のストローク端点の分布
特徴により、文字認識部において文字認識を行なう文字
認識装置の文字特徴抽出装置に関し、
文字特徴の抽出において確実にストローク端点を抽出す
ることか゛できるようにすることを目的とし、
上述のような文字特徴抽出装置において各文字の平均太
さを計測する平均文字太さ計測部を設けると共に、該計
測した線幅に基づいて各文字についてのストローク端点
決定部の基準幅を定めるものとして構成する。[Detailed Description of the Invention] [Summary] A scanning unit that scans a character to be recognized in one direction to assume an outline figure; The present invention relates to a character feature extraction device for a character recognition device, which has a stroke end point that is a writing start point and a stroke end point determination unit that determines the stroke end point, and performs character recognition in the character recognition unit based on the distribution feature of the stroke end points of the extracted recognition target character. , In order to be able to reliably extract stroke end points when extracting character features, an average character thickness measuring unit is provided to measure the average thickness of each character in the character feature extraction device as described above. At the same time, the reference width of the stroke end point determining section for each character is determined based on the measured line width.
本発明は、文字特徴抽出装置に係り、特に認識対象文字
を一方向に走査して輪郭図形を想定する走査部と、輪郭
について上記走査方向と交叉すると共に基準幅以下の輪
郭文字の輪郭端点を文字線の書き始め点であるストロー
ク端点と決定するストローク端点決定部とを有し、抽出
した認識対象文字のストローク端点の分布特徴により、
文字認識部において文字認識を行なう文字認識装置の文
字特徴抽出装置に関する。The present invention relates to a character feature extraction device, and more particularly, a scanning unit that scans a character to be recognized in one direction to assume an outline figure, and an outline end point of an outline character that intersects the scanning direction and has a reference width or less. It has a stroke end point that is the writing start point of a character line and a stroke end point determination unit that determines the stroke end point, and based on the distribution characteristics of the stroke end points of the extracted character to be recognized,
The present invention relates to a character feature extraction device for a character recognition device that performs character recognition in a character recognition unit.
上述のような、文字特徴抽出装置として、第5図に示す
ように、認識対象文字11を一方向に走査して、文字の
輪郭図形を想定する走査部12と、輪郭について上記走
査方向と交叉すると共に基準幅13a以下の輪郭文字の
輪郭端点を文字線の書き始め点であるストローク端点と
決定するストローク端点決定部13とを有するものがあ
る。この決定されたストローク端点の位置の分布を認識
文字から抽出した特徴として文字認識部14において文
字認識を行なうものとしている。As shown in FIG. 5, the above-mentioned character feature extraction device includes a scanning unit 12 that scans the recognition target character 11 in one direction and assumes the outline figure of the character, and a scanning unit 12 that assumes the outline figure of the character by scanning the recognition target character 11 in one direction, and There is also a stroke end point determination unit 13 that determines the outline end point of an outline character having a width less than or equal to the reference width 13a as the stroke end point, which is the starting point of a character line. The character recognition section 14 performs character recognition using the distribution of the positions of the determined stroke end points as features extracted from the recognized characters.
これらの処理は、まず、走査部12において例えば第6
図に示すように一定の方向、例えば第6図中において左
から右に走査を行ない最初に白から黒に変化した点を捕
える。これにより第6図(1)に示した文字(第6図(
1)ではカタカナの「す」)を示している。)の第6図
(2)に示すようなその左側の輪郭が抽出される。そし
て第7図に示すように輪郭線の屈曲点の抽出をおこなう
。 ここで、この屈曲点には2種類あって第1の屈曲点
は、輪郭の内部に対して外方向に屈曲したものて第7図
においては白抜きの○印で示している。These processes are first performed in the scanning section 12, for example, at the sixth
As shown in the figure, scanning is performed in a certain direction, for example from left to right in FIG. 6, and the first point that changes from white to black is captured. As a result, the characters shown in Figure 6 (1) (Figure 6 (
1) shows the katakana ``su''. ) is extracted on the left side as shown in FIG. 6(2). Then, as shown in FIG. 7, the bending points of the contour line are extracted. Here, there are two types of bending points, and the first bending point is one bent outward from the inside of the contour, and is indicated by an open circle in FIG.
また、第2の屈曲点は輪郭内部に対して内方向に屈曲し
ているもので第7図においては、黒塗の・印で示した。Further, the second bending point is bent inward with respect to the inside of the contour, and is indicated by a black mark in FIG. 7.
そして、第8図(1)に示すように、走査方向と交叉す
る輪郭線で且つ両側の屈曲点が第1の屈曲点であり、ま
た、第8図(2)に示すように、予め定めた値より小さ
な寸法の個所を文字線(ストローク)の書き始め点であ
るストローク端点と決定する。即ち、第8図(2)の例
では、基準値をm(ドツト)として、測定した寸法をn
(ドツト)と比較して、m≧nであるとき、その個所を
ストローク端点であるとしている。ここで基準値mは過
去のデータから統計的に定めるものとしている。As shown in FIG. 8(1), the bending points on both sides of the contour intersecting the scanning direction are the first bending points, and as shown in FIG. 8(2), the bending points are the first bending points. A point with a dimension smaller than the specified value is determined as a stroke end point, which is the starting point of a character line (stroke). That is, in the example of FIG. 8 (2), the reference value is m (dot), and the measured dimension is n.
(dot), when m≧n, that point is considered to be a stroke end point. Here, the reference value m is determined statistically from past data.
ところで手書き文字の認識を行なうに際しては、手書き
文字は筆記用具の違いや、書き手の筆圧の違いにより同
一の文字であっても、第9図に示すように、様々な形や
線の太さとなっている。By the way, when recognizing handwritten characters, it is important to note that even the same character may have various shapes and line thicknesses due to differences in writing instruments and differences in the writing pressure of the writer, as shown in Figure 9. It has become.
このため、上述のような従来の文字特徴抽出装置にあっ
ては、手書き文字の抽出すべきストローク端点の一部が
抽出できない場合があり、文字の認識率を向上すること
ができないという問題がある。これは第9図(2)に示
すように太い文字のストローク端点の幅が基準値を越え
てしまい、ストローク端点と認識されない場合に発生す
る。For this reason, the conventional character feature extraction device described above may not be able to extract some of the stroke end points of handwritten characters that should be extracted, and there is a problem that the character recognition rate cannot be improved. . This occurs when the width of the stroke end point of a thick character exceeds a reference value and is not recognized as a stroke end point, as shown in FIG. 9(2).
そこで、本発明は文字特徴の抽出において確実にストロ
ーク端点を抽出することができる文字特徴抽出装置を提
供することを目的とする。Therefore, an object of the present invention is to provide a character feature extraction device that can reliably extract stroke end points in character feature extraction.
本発明にあって、上記の課題を解決するための手段は文
字特徴抽出装置に係り、第1図に示すように、認識対象
文字1を一方向に走査して輪郭図形を想定する走査部2
と、輪郭について上記走査方向と交叉すると共に基準幅
3a以下の輪郭文字の輪郭端点を文字線の書き始め点で
あるストローク端点と決定するストローク端点決定部3
とを宥し、抽出した認識対象文字のストローク端点の分
布特徴により、文字認識部4において文字認識を行なう
文字認識装置の文字特徴抽出装置において、各文字の平
均太さを計測する平均文字太さ計測部5を設けると共に
、該計測した線幅に基づいて各文字についてのストロー
ク端点決定部3における基準幅3aを定めることである
。In the present invention, means for solving the above-mentioned problems relate to a character feature extraction device, and as shown in FIG.
and a stroke end point determining unit 3 that determines the outline end point of the outline character that intersects the scanning direction and has a reference width 3a or less as the stroke end point that is the starting point of the character line.
In the character feature extraction device of the character recognition device that performs character recognition in the character recognition unit 4, the average thickness of each character is measured based on the distribution characteristics of the stroke end points of the extracted characters to be recognized. A measuring section 5 is provided, and a reference width 3a for each character is determined in the stroke end point determining section 3 based on the measured line width.
また本発明において、上記の課題を解決するための第2
の手段は、文字特徴抽出方法に係り、認識対象文字を一
方向に走査して輪郭図を想定し、輪郭について上記走査
方向と交叉すると共に基準幅以下の輪郭文字の輪郭端点
を文字線の書き始め点であるストローク端点と決定し、
抽出した認識対象文字のストローク端点の分布特徴によ
り、文字認識を行なう文字認識装置における文字特徴抽
出方法において、各文字の平均太さを計測して各文字に
ついてのストローク端点決定における基準幅を定めるこ
とである。In addition, in the present invention, a second method for solving the above problems is provided.
This means relates to a character feature extraction method, in which a character to be recognized is scanned in one direction to assume a contour map, and the contour end points of the contour character that intersects the scanning direction and have a reference width or less are drawn as character lines. Determine the starting point as the stroke end point,
In a character feature extraction method in a character recognition device that performs character recognition, the average thickness of each character is measured to determine a reference width for determining stroke end points for each character based on the distribution characteristics of stroke end points of extracted characters to be recognized. It is.
(作用〕
本発明によれば、平均文字太さ計測部により特徴抽出を
行なうべき文字の平均線幅を計測すると共に、計測した
値に基づいてストローク端点を抽出するための基準値を
定めるから、各文字の特徴にあわせて基準値を設定する
こととなり、ストローク端点の抽出を確実に行なうこと
かでき、ひいては文字の認識率を高めることができる。(Operation) According to the present invention, the average character thickness measurement unit measures the average line width of the character for which feature extraction is to be performed, and the reference value for extracting stroke end points is determined based on the measured value. By setting a reference value according to the characteristics of each character, it is possible to reliably extract stroke end points, and as a result, the recognition rate of characters can be increased.
以下本発明に係る文字特徴抽出装置の実施例を図面に基
づいて説明する。Embodiments of the character feature extraction device according to the present invention will be described below with reference to the drawings.
第2図乃至第4図は本発明に係る文字特徴抽出装置の実
施例を含む文字認識装置を示すものである。この文字認
識装置は、走査部として原稿を2値画像データとして読
み取るイメージスキャナ21と、読み取った原稿から認
識すべき文字を切りだす文字切り出し処理部22と、読
み取った2値画像データを格納する画像用格納メモリ2
3と、本発明が適用される文字特徴抽出処理部24と、
抽出された文字の特徴から文字認識を行なう認識処理部
25とを宥する。また、これらの各部はバス26により
接続されマイクロプロセッサ27により制御されている
。2 to 4 show a character recognition device including an embodiment of the character feature extraction device according to the present invention. This character recognition device includes an image scanner 21 serving as a scanning unit that reads a document as binary image data, a character extraction processing unit 22 that extracts characters to be recognized from the read document, and an image scanner 22 that stores the read binary image data. storage memory 2
3, a character feature extraction processing unit 24 to which the present invention is applied,
The recognition processing unit 25 performs character recognition based on the extracted character features. Further, each of these parts is connected by a bus 26 and controlled by a microprocessor 27.
そして、文字特徴抽出部24においては様々な種類の特
徴、例えばストローク端点り位置特徴を含む輪郭特徴の
他多元圧縮特徴、大分類特徴等が抽出される。本実施例
ではこの文字特徴抽出部24においては、ストローク端
点を文字の特徴として抽出するため、ストローク端点な
抽出するストローク端点決定部28と、認識する文字の
平均太さを測定する平均太さ測定部29とを有している
。また、ストローク端点決定部28にはストローク端点
を決定するための基準となる基準幅値を格納する基準幅
格納手段30を有し、各文字について上述した平均太さ
測定部29が測定した文字の平均太さをその基準幅とし
て格納してストローク端点の決定を行なう。The character feature extraction unit 24 extracts various types of features, such as contour features including stroke end position features, multidimensional compression features, and major classification features. In this embodiment, in order to extract stroke end points as character features, the character feature extraction unit 24 includes a stroke end point determination unit 28 that extracts stroke end points, and an average thickness measurement unit that measures the average thickness of characters to be recognized. 29. Further, the stroke end point determination section 28 has a reference width storage means 30 that stores a reference width value that is a reference for determining the stroke end point, and the stroke end point determination section 28 has a reference width storage means 30 that stores a reference width value that is a reference for determining the stroke end point. The stroke end points are determined by storing the average thickness as its reference width.
ここで平均太さ測定部においては第3図及び第4図に示
す手法により文字の平均太さの決定を行なう。Here, the average thickness measuring section determines the average thickness of the characters by the method shown in FIGS. 3 and 4.
即ち、先ず、文字を構成する縦ストロークの平均幅を計
測するため文字を横方向(X方向)に走査して1ストロ
一ク幅の平均のヒストグラム(ヒストグラム(1))を
作成する。この際、第3図に線Aに示す位置を走査中に
2木の縦ストローク31a、31bがある場合には、こ
の2木の縦ストロークの幅の平均をヒストグラムに記録
する。That is, first, in order to measure the average width of the vertical strokes constituting the character, the character is scanned in the horizontal direction (X direction) to create a histogram (histogram (1)) of the average width of one stroke. At this time, if there are two vertical strokes 31a and 31b while scanning the position shown by line A in FIG. 3, the average width of the two vertical strokes is recorded in a histogram.
また、線Bに示す位置を走査中に走査線に略平行の横ス
トローク32を横切るときにはその幅は大きく捕えられ
ヒストグラムの値も大きいものとなっている。Further, when the horizontal stroke 32 substantially parallel to the scanning line is crossed while scanning the position shown by line B, the width thereof is captured to be large, and the value of the histogram is also large.
つぎに、この作成したヒストグラムについて縦方向(y
方向)に走査をし、ヒストグラム(1)と同様のヒスト
グラム(ヒストグラム(2))を作成し、そのヒストグ
ラムにおいて最も下降傾向が犬きい個所の値を縦ストロ
ークの平均太さW□とする。Next, regarding this created histogram, we will examine the vertical direction (y
direction) to create a histogram (histogram (2)) similar to histogram (1), and in the histogram, the value at the point where the downward trend is the sharpest is set as the average thickness of the vertical stroke W□.
また、横ストロークについても縦ストロークの平均値の
測定と同様に、第4図に示すように、先す、文字を縦方
向(y方向)に走査して1ストロ一ク分の平均のヒスト
グラム(ヒストグラム(3))を作成し、このヒストグ
ラムに付いてのヒストグラム(ヒストグラム(4))を
作成し、そのヒストグラムにおいて最も下降傾向が大き
い個所を横ストロークの平均太さW2とする。Also, for horizontal strokes, in the same way as measuring the average value of vertical strokes, as shown in Fig. A histogram (3)) is created, a histogram (histogram (4)) is created for this histogram, and the portion of the histogram where the downward trend is greatest is determined as the average width W2 of the horizontal stroke.
そして、求めた縦ストロークの平均太さW□と横ストロ
ーク平均太さW2との平均値を文字の平均太さWとして
上記基準幅格納手段30に格納して、この値によりスト
ローク端点を決定するものとしている。Then, the average value of the obtained vertical stroke average thickness W□ and horizontal stroke average thickness W2 is stored in the reference width storage means 30 as the average character thickness W, and the stroke end point is determined by this value. I take it as a thing.
従って本実施例によれば、認識しようとする文字毎にそ
の文字に即した基準幅を用いてストローク端点を決定す
ることができるから、文字を構成する線の太さによるス
トローク端点検出への影響を押えて、ストローク端点の
抽出を確実に行なうことができ、ひいては文字の認識率
を高めることができる。Therefore, according to this embodiment, since the stroke end point can be determined for each character to be recognized using the reference width suitable for that character, the influence of the stroke end point detection by the thickness of the lines that make up the character By suppressing the stroke end points, it is possible to reliably extract the stroke end points, thereby increasing the character recognition rate.
以上説明したように、本発明によれば、文字認識装置に
おける文字特徴抽出に際して、各文字の平均太さを計測
して各文字についてのストローク端点決定における基準
幅を定めることとしたから、認識しようとする文字毎に
その文字に即した基準幅を用いてストローク端点を決定
することができるから、文字を構成する線の太さによる
ストローク端点検出への影響を押えて、ストローク端点
の抽出を確実に行なうことができ、文字の認識率を高め
ることができるという効果を奏する。As explained above, according to the present invention, when extracting character features in a character recognition device, the average thickness of each character is measured to determine the reference width for determining the stroke end point of each character, so that recognition is possible. Since the stroke end points can be determined for each character using the reference width that matches that character, stroke end points can be reliably extracted without affecting stroke end point detection due to the thickness of the lines that make up the character. This has the effect of increasing the character recognition rate.
第1図は本発明の原理図、第2図は本発明の実施例に係
る文字特徴抽出装置を適用した文字認識装置を示すブロ
ック図、第3図及び第4図は実施例に係る文字特徴抽出
装置の平均太さ測定部の作動を示す図、第5図は従来の
文字特徴抽出装置を示すブロック図、第6図(1)(2
)は文字特徴抽出装置における輪郭線の検出を示す図、
第7図は2種類の屈曲点を示す図、第8図(1)(2)
はストローク端点の決定条件を示す図、第9図(1)(
2)は認識すべき文字の太さの違いを示す図であるであ
る。
1・・・認識対象文字
2・・・走査部
3・・・ストローク端点決定部
3a・・・基準幅
4・・・文字認識部
5・・・平均文字太さ測定部FIG. 1 is a principle diagram of the present invention, FIG. 2 is a block diagram showing a character recognition device to which a character feature extraction device according to an embodiment of the present invention is applied, and FIGS. 3 and 4 are character features according to an embodiment. A diagram showing the operation of the average thickness measuring section of the extraction device, FIG. 5 is a block diagram showing a conventional character feature extraction device, and FIG. 6 (1) (2)
) is a diagram showing contour detection in the character feature extraction device,
Figure 7 shows two types of bending points, Figure 8 (1) (2)
is a diagram showing the conditions for determining the stroke end point, Figure 9 (1) (
2) is a diagram showing differences in the thickness of characters to be recognized. 1...Character to be recognized 2...Scanning section 3...Stroke end point determining section 3a...Reference width 4...Character recognition section 5...Average character thickness measuring section
Claims (1)
想定する走査部(2)と、輪郭について上記走査方向と
交叉すると共に基準幅(3a)以下の輪郭文字の輪郭端
点を文字線の書き始め点であるストローク端点と決定す
るストローク端点決定部(3)とを有し、抽出した認識
対象文字のストローク端点の分布特徴により、文字認識
部(4)において文字認識を行なう文字認識装置の文字
特徴抽出装置において、 各文字の平均太さを計測する平均文字太さ計測部(5)
を設けると共に、該計測した線幅に基づいて各文字につ
いてのストローク端点決定部(3)における基準幅(3
a)を定めることを特徴とする文字特徴抽出装置。 2)認識対象文字を一方向に走査して輪郭図を想定し、
輪郭について上記走査方向と交叉すると共に基準幅以下
の輪郭文字の輪郭端点を文字線の書き始め点であるスト
ローク端点と決定し、抽出した認識対象文字のストロー
ク端点の分布特徴により、文字認識を行なう文字認識装
置における文字特徴抽出方法において、 各文字の平均太さを計測して各文字についてのストロー
ク端点決定における基準幅を定めることを特徴とする文
字特徴抽出方法。[Claims] 1) A scanning unit (2) that scans the character to be recognized (1) in one direction to assume a contour figure, and a contour that intersects the scanning direction and has a reference width (3a) or less; It has a stroke end point determination unit (3) that determines the outline end point of the character as the stroke end point that is the starting point of the character line, and the character recognition unit (4) uses the distribution characteristics of the stroke end points of the extracted character to be recognized. In a character feature extraction device of a character recognition device that performs character recognition, an average character thickness measurement unit (5) that measures the average thickness of each character.
In addition, based on the measured line width, the stroke end point determination unit (3) determines the reference width (3) for each character.
A character feature extraction device characterized by determining (a). 2) Scan the character to be recognized in one direction and imagine a contour map,
Regarding the contour, the contour end point of the contour character that intersects the scanning direction and is less than the reference width is determined as the stroke end point, which is the starting point of the character line, and character recognition is performed based on the distribution characteristics of the stroke end points of the extracted character to be recognized. A character feature extraction method in a character recognition device, characterized in that the average thickness of each character is measured to determine a reference width for determining a stroke end point for each character.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329946A JPH04205287A (en) | 1990-11-30 | 1990-11-30 | Device and method for extracting feature of character |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329946A JPH04205287A (en) | 1990-11-30 | 1990-11-30 | Device and method for extracting feature of character |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04205287A true JPH04205287A (en) | 1992-07-27 |
Family
ID=18227034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2329946A Pending JPH04205287A (en) | 1990-11-30 | 1990-11-30 | Device and method for extracting feature of character |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04205287A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008293643A (en) * | 2008-07-15 | 2008-12-04 | Panasonic Corp | Head slider |
-
1990
- 1990-11-30 JP JP2329946A patent/JPH04205287A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008293643A (en) * | 2008-07-15 | 2008-12-04 | Panasonic Corp | Head slider |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2940936B2 (en) | Tablespace identification method | |
JP3904840B2 (en) | Ruled line extraction device for extracting ruled lines from multi-valued images | |
US5075895A (en) | Method and apparatus for recognizing table area formed in binary image of document | |
US6947596B2 (en) | Character recognition method, program and recording medium | |
US20040218790A1 (en) | Print segmentation system and method | |
JP4348702B2 (en) | Plane four-finger image determination apparatus, plane four-finger image determination method, and plane four-finger image determination program | |
EP0456192B1 (en) | Image processing method and apparatus therefor | |
JPH0418351B2 (en) | ||
JP2002109521A (en) | Device and method for processing document | |
JPH04205287A (en) | Device and method for extracting feature of character | |
US20230144689A1 (en) | Stripe pattern image collating device, stripe pattern collating method, and computer-readable medium storing program thereof | |
JP3299873B2 (en) | Image processing apparatus and image processing method | |
JP4847378B2 (en) | Image processing apparatus, image processing method, program, and computer-readable recording medium | |
JP2785747B2 (en) | Character reader | |
JP4254008B2 (en) | Pattern detection apparatus and method | |
JP2894111B2 (en) | Comprehensive judgment method of recognition result in optical type character recognition device | |
JP3711186B2 (en) | Size identification method and apparatus | |
JPH0797390B2 (en) | Character recognition device | |
JP2004334448A (en) | Data processing method and device | |
JPH05135204A (en) | Character recognition device | |
KR100776011B1 (en) | Resolution Transformation Method for Fingerprint Interoperable Recognition between Disparate Fingerprint Sensors | |
JP2872757B2 (en) | Line direction determination device | |
JP4218179B2 (en) | Pattern detection apparatus and method | |
JP3127413B2 (en) | Character recognition device | |
JPH0991384A (en) | Character recognition system |