JPH04204508A - Tapered star coupler - Google Patents
Tapered star couplerInfo
- Publication number
- JPH04204508A JPH04204508A JP33075990A JP33075990A JPH04204508A JP H04204508 A JPH04204508 A JP H04204508A JP 33075990 A JP33075990 A JP 33075990A JP 33075990 A JP33075990 A JP 33075990A JP H04204508 A JPH04204508 A JP H04204508A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- guide passage
- light guide
- input
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims description 122
- 238000009826 distribution Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000005094 computer simulation Methods 0.000 description 3
- 239000012792 core layer Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、大容量L A N (Local Aera
Network)システム或いは光交換システム等にお
ける光信号分配に必須の光部品であるNXNスターカッ
プラに関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to large-capacity LAN (Local Aero
This invention relates to an NXN star coupler, which is an essential optical component for optical signal distribution in network systems, optical switching systems, and the like.
〈従来の技術〉
N本の入力光導波路中の任意の一本に入射した光パワー
をN本の出力光導波路に均一に分岐するNXNスターカ
ップラとしては、従来、第6図に示す構造のものが知ら
れている。同図に示すスターカップラは、N二8とした
ものである。即ち、8本の入力光導波路11と、8本の
出力光導波路12とを有しており、これらの入力光導波
路11から出力光導波路12まて3dB方向性結合器1
3を介して三段階にわたって結合している。<Prior art> Conventionally, an NXN star coupler that uniformly branches the optical power incident on any one of N input optical waveguides to N output optical waveguides has the structure shown in Fig. 6. It has been known. The star coupler shown in the figure is of N28. That is, it has eight input optical waveguides 11 and eight output optical waveguides 12, and from these input optical waveguides 11 to output optical waveguides 12, there is a 3 dB directional coupler 1.
They are connected in three stages via 3.
従って、8本の入力光導波路11の任意の1本に入射し
た光パワーは、3dB方向性結合器13により、段階的
に1/2.1/4.1/8に均等に分岐されて、全ての
8本の出力光導波路12に分岐されることになる。この
為、この例では12個の3dB方向性結合器13を必要
としている。Therefore, the optical power incident on any one of the eight input optical waveguides 11 is divided stepwise and equally into 1/2.1/4.1/8 by the 3 dB directional coupler 13. It is branched into all eight output optical waveguides 12. Therefore, in this example, twelve 3 dB directional couplers 13 are required.
〈発明が解決しようとする課題〉
上述した従来の構造のスターカップラでは、任意の入力
光導波路1■に入射した光パワーを複数の出力光導波路
12に均等に分岐することか出来るものの、下式に示す
ように多数の3dB方向性結合器13を必要とする問題
がある。<Problems to be Solved by the Invention> In the star coupler of the conventional structure described above, although it is possible to equally split the optical power incident on any input optical waveguide 1 to a plurality of output optical waveguides 12, the following equation There is a problem in that a large number of 3 dB directional couplers 13 are required as shown in FIG.
M = (N / 2 ) A o g 2N ・・
・(1)但し、Mは必要な3clB方向性結合器13の
数である。M = (N / 2) A o g 2N...
-(1) However, M is the number of necessary 3clB directional couplers 13.
例えば、N=128の大容量LANシステムの場合には
、M = 448という膨大な数になってしまう。For example, in the case of a large-capacity LAN system with N=128, the number will be an enormous number of M=448.
従って、スターカップラのサイズが非常に大きくなるこ
とは勿論、作製の歩留りか悪く高価になる欠点がある。Therefore, not only does the size of the star coupler become very large, but also the production yield is poor and it becomes expensive.
本発明は、上記従来技術に鑑みて成されたものであり、
入力或いは出力光導波路とスラブ光導波路との接合部分
及びその近傍において入力及び出力光導波路のコア幅を
緩やかなテーパ状に縮小することにより、光を均一に分
布させることのてきる大規模に適したスターカップラを
提供することを目的とするものである。The present invention has been made in view of the above-mentioned prior art,
By reducing the core width of the input and output optical waveguides to a gentle taper at and near the junction between the input or output optical waveguide and the slab optical waveguide, it is suitable for large scale applications where light can be distributed uniformly. The purpose of the present invention is to provide a star coupler that has the following characteristics.
〈課題を解決するための手段〉
斯かる目的を達成する本発明の構成は一又は二以上の入
力光導波路中の任意の一本に入射した光パワーを二以上
の出力光導波路に均一に分岐するスターカップラにおい
て、前記入力光導波路を扇形に配置してなる入力光導波
路アレイと、前記出力光導波路を扇形に配置してなる出
力光導波路アレイとを相対向して設置すると共に前記入
力光導波路アレイと前記出力光導波路アレイとを横方向
には光閉じ込め構造を有しないスラブ先導波路により結
合し、前記入力光導波路酸いは出力光導波路と前記スラ
ブ先導波路との接合部分及びその近傍において入力光導
波路及び出力光導波路のコア幅か緩やかなテーパ状に縮
小していることを特徴とする。<Means for Solving the Problems> The configuration of the present invention to achieve the above object uniformly branches the optical power incident on any one of one or more input optical waveguides to two or more output optical waveguides. In the star coupler, an input optical waveguide array in which the input optical waveguides are arranged in a fan shape and an output optical waveguide array in which the output optical waveguides are arranged in a fan shape are installed facing each other, and the input optical waveguide The array and the output optical waveguide array are laterally coupled by a slab guided waveguide having no optical confinement structure, and the input optical waveguide is connected to the input optical waveguide or at the junction between the output optical waveguide and the slab guided waveguide and in the vicinity thereof. A feature is that the core widths of the optical waveguide and the output optical waveguide are reduced in a gentle taper shape.
〈作用〉
任意の入力光導波路に入射した光は、スラブ光導波路に
おいて、光の進行方向に対して横方向に対して閉じ込め
られないので、横方向に広がる。その広がった光は、入
力光導波路アレイ、出力光導波路アレイが導波路を扇形
に配置しているので、均一に出力光導波路に分岐する。<Operation> The light incident on any input optical waveguide is not confined in the transverse direction with respect to the traveling direction of the light in the slab optical waveguide, and therefore spreads in the transverse direction. Since the waveguides of the input optical waveguide array and the output optical waveguide array are arranged in a fan shape, the spread light is uniformly branched to the output optical waveguide.
特に、入力光導波路或いは出力光導波路と前記スラブ光
導波路との接合部分及びその近傍において入力光導波路
及び出力光導波路のコア幅が緩やかなテーパ状に縮小す
ると、導波路間の光結合状態を最適に制御できるので、
光の分岐比の均−性向上及び過剰損失の低減に好適であ
る。In particular, when the core widths of the input optical waveguide and the output optical waveguide are reduced to a gentle taper at and near the junction between the input optical waveguide or the output optical waveguide and the slab optical waveguide, the optical coupling state between the waveguides is optimized. Since it can be controlled to
This is suitable for improving the uniformity of the light branching ratio and reducing excessive loss.
〈実施例〉
以下、本発明について、図面に示す実施例を参照して詳
細に説明する。<Examples> The present invention will be described in detail below with reference to examples shown in the drawings.
第1図に本発明の一実施例を示す。本実施例はNXNス
ターカップラに関するものである。FIG. 1 shows an embodiment of the present invention. This embodiment relates to an NXN star coupler.
即ち、同図に示すように本実施例のスターカップラは、
入力光導波路1、ダミー導波路2,3、スラブ光導波路
4、出力光導波路5及びダミー導波路6,7を有してい
る。入力光導波路1は、屈折率n1のコアを屈折率n。That is, as shown in the figure, the star coupler of this embodiment is
It has an input optical waveguide 1, dummy waveguides 2 and 3, a slab optical waveguide 4, an output optical waveguide 5, and dummy waveguides 6 and 7. The input optical waveguide 1 has a core having a refractive index n1 and a core having a refractive index n1.
のクラッドで覆って構成され、コアの幅2aと厚さ2t
は通常等しく設計されている。出力光導波路5、ダミー
導波路2,3,6.7も、入力光導波路1と同様な構成
である。The width of the core is 2a and the thickness is 2t.
are usually designed to be equal. The output optical waveguide 5 and the dummy waveguides 2, 3, 6.7 also have the same configuration as the input optical waveguide 1.
このような入力光導波路1、ダミー導波路2゜3は扇形
に配置して入力光導波路アレイ8を構成し、出力光導波
路5、ダミー導波路6,7も扇形に配列して出力光導波
路アレイ9を構成しており、これらの入力光導波路アレ
イ8、出力光導波路アレイ9は、相対向して配置され、
スラブ先導波路4を介して結合している。スラブ先導波
路4は、その拡大図を第2図に示すように、相対向して
扇形に配置した入力導波路アレイと出力導波路アレイの
中間部分にあって、光の進行方向に対して横方向には光
閉じ込め構造を有していないものである。入力光導波路
1、出力光導波路5とスラブ光導波路4との接合部分及
びその近傍においては、入力光導波路4、出力光導波路
5のコア幅か緩やかなテーパ状に縮小している。第2図
において、N 、、、、アは、入力光導波路アレイ8(
又は出力光導波路アレイ9)におけるダミー導波路2,
3(又は6゜7)を含めた導波路の総数、0は扇形に配
置された入力光導波路アレイ8の曲率中心、O′は扇形
に配置された出力光導波路アレイ9の曲率中心、Loは
曲率中心00′間の距離、RSはN a + r aア
本の光導波路を隙間無く並べたときの曲率半径、(Rs
十q+)は実際の扇形光導波路アレイの曲率半径であ
る。ここで、qI≧0である。尚、R3は均一幅の導波
路を隙間無く扇状に配列した場合の曲率半径である。The input optical waveguide 1 and dummy waveguides 2 and 3 are arranged in a fan shape to form an input optical waveguide array 8, and the output optical waveguide 5 and dummy waveguides 6 and 7 are also arranged in a fan shape to form an output optical waveguide array. The input optical waveguide array 8 and the output optical waveguide array 9 are arranged to face each other,
They are coupled via a slab leading waveguide 4. As shown in an enlarged view of FIG. 2, the slab leading waveguide 4 is located at an intermediate portion between an input waveguide array and an output waveguide array that are arranged in a fan shape facing each other, and is transverse to the direction of light propagation. It does not have an optical confinement structure in the direction. In the joint portions of the input optical waveguide 1, the output optical waveguide 5, and the slab optical waveguide 4, and in the vicinity thereof, the core widths of the input optical waveguide 4 and the output optical waveguide 5 are reduced in a gentle taper shape. In FIG. 2, N , , a is the input optical waveguide array 8 (
or the dummy waveguide 2 in the output optical waveguide array 9),
3 (or 6°7), 0 is the center of curvature of the input optical waveguide array 8 arranged in a fan shape, O' is the center of curvature of the output optical waveguide array 9 arranged in a fan shape, and Lo is the center of curvature of the output optical waveguide array 9 arranged in a fan shape. The distance between the centers of curvature 00', RS is the radius of curvature when N a + r a optical waveguides are lined up without any gaps, (Rs
1q+) is the radius of curvature of the actual fan-shaped optical waveguide array. Here, qI≧0. Note that R3 is the radius of curvature when waveguides of uniform width are arranged in a fan shape without gaps.
テーパ付きスターカップラの設計は、ビーム伝搬法を用
いて行った(M、 D、 Fe1t他、r Light
propagation in graded−ind
ex opticalf 1bers」、 Appl、
Opt、 、 Vol、 17. no、 24.
pp3990〜3998(1978乃。第3図は、次数
N=8のスターカップラに対する光伝搬のシミュレーシ
ョン結果を示すものである。スターカップラのパラメー
タは、N、、、、アー14(ダミー導波路か左右に各々
3本) 、L c” 1690μm、 R5〜890μ
m、 qI= 390μm、 Y s= 870μm、
光の波長λ=1.55μmである。第3図(a)は、中
心の入力光導波路l(左から、数えて7番目)に光が入
射された場合、同図(b)は、左端の入力光導波路1
(左から、数えて4番目)に光か入射された場合の光伝
搬強度分布である。同図に示すように、任意の入力光導
波路1から入力された光は、スラブ光導波路4において
横方向に広がって均等に分散し、入射光位置に依らず、
8本の出力光導波路5に均一に光パワーが分岐されてい
ることが判る。The tapered star coupler was designed using the beam propagation method (M, D, Felt et al., Light
propagation in graded-ind.
ex opticalf 1bers”, Appl,
Opt, Vol. 17. no, 24.
pp. 3990-3998 (1978). Figure 3 shows the simulation results of light propagation for a star coupler of order N = 8. The parameters of the star coupler are N, . (3 each), L c” 1690 μm, R5 ~ 890 μm
m, qI=390μm, Ys=870μm,
The wavelength of light λ=1.55 μm. FIG. 3(a) shows that when light is incident on the center input optical waveguide l (seventh from the left), and FIG. 3(b) shows that the leftmost input optical waveguide 1
This is the light propagation intensity distribution when the light is incident (fourth from the left). As shown in the figure, light input from an arbitrary input optical waveguide 1 spreads laterally in the slab optical waveguide 4 and is evenly dispersed, regardless of the position of the incident light.
It can be seen that the optical power is uniformly branched to the eight output optical waveguides 5.
第4図は、第3図のシミュレーション結果を光伝搬波形
として示したものである。同図(a)は、中心の入力光
導波路(左から、数えて7番目)に光が入射された場合
、同図(b)は、左端の入力光導波路(左から、数えて
4番目)に光が入射された場合の光の伝搬波形である。FIG. 4 shows the simulation results of FIG. 3 as optical propagation waveforms. Figure (a) shows when light is incident on the central input optical waveguide (seventh from the left), and Figure (b) shows the leftmost input optical waveguide (fourth from the left). This is the propagation waveform of light when light is incident on .
入射光導波路アレイ8とスラブ光導波路4との境界にお
ける光波形を見ると、光は隣接する数本の導波路に結合
しており、このサイドローブがスラブ光導波路4と出力
光導波路アレイ9との境界て均−な光の分布を実現する
うえで非常に重要なことが確認される。Looking at the optical waveform at the boundary between the input optical waveguide array 8 and the slab optical waveguide 4, the light is coupled to several adjacent waveguides, and this side lobe is coupled between the slab optical waveguide 4 and the output optical waveguide array 9. It is confirmed that the boundaries between the two areas are extremely important in achieving an even distribution of light.
そこで、本発明では、このサイドローブを効果的に活用
するため、スラブ光導波路4の両側に相対向して配置し
た入力導波路アレイ8、出力導波路アレイ9を扇形に形
成するだけでなく、入力光導波路5、出力光導波路6の
コア幅を緩やかなテーパ状に形成したのである。Therefore, in the present invention, in order to effectively utilize this side lobe, the input waveguide array 8 and the output waveguide array 9, which are arranged opposite to each other on both sides of the slab optical waveguide 4, are not only formed in a fan shape, but also The core widths of the input optical waveguide 5 and the output optical waveguide 6 are formed into a gentle taper shape.
また、これにより、左端(或いは右端)の入力光導波路
lに対しては、他の入射位置におけるの同様のサイドロ
ーブを形成する為に、その左(或いは、右)側にダミー
導波路2(3)を設ける必要かあることが判る。Furthermore, with respect to the input optical waveguide l at the left end (or right end), a dummy waveguide 2 (or It turns out that it is necessary to provide 3).
上記のスターカップラの計算機シュミレーションを基に
、石英形光導波路を用いてテーパ付きスターカップラを
作製した′。Based on the computer simulation of the star coupler described above, a tapered star coupler was fabricated using a quartz optical waveguide.
先ず、Si基板上に火炎堆積法によって8102下部ク
ラッド層を堆積させ、次にTlO2或いはG e O2
をドーパントとして添加したSiO。First, an 8102 lower cladding layer was deposited on the Si substrate by flame deposition method, and then TlO2 or G e O2
SiO added as a dopant.
ガラスのコア層を堆積させ、その後に、電気= 8 =
炉で透明ガラス化した。次いで、計算機シュミレーショ
ンを基に作製したマスクパターンを用いてコア層をエツ
チングして、所定の入出力導波路アレイ及びスラブ光導
波路領域を形成し、最後にSiO□上部クラッり層を堆
積した。A core layer of glass was deposited, followed by clear vitrification in an electric=8=furnace. Next, the core layer was etched using a mask pattern prepared based on computer simulation to form a predetermined input/output waveguide array and slab optical waveguide region, and finally a SiO□ upper clutter layer was deposited.
第5図は、N=8、Δ=0.3%、2a= 7μmL
c=1690μm、 R,=890μm、 q+=39
0μm、 N。Figure 5 shows N=8, Δ=0.3%, 2a=7μmL
c=1690μm, R,=890μm, q+=39
0 μm, N.
22.アー14(ダミー導波路が左右に各々3本)のス
ターカップラの光分岐特性を波長λ−1,55μmの光
を用いて測定した結果を示すものである。横軸は、アレ
イ先導波路への光入射位置mであり、ダミー導波路か左
右に3本ずつあるので、m=4〜11である。縦軸は、
規格化分岐出力P。てあり、下式のように入力パワーを
Plゎ、n番目の出力導波路(n−4〜11)の出力パ
ワーをPo。1oとして定義されるものである。22. This figure shows the results of measuring the optical branching characteristics of the star coupler Ar14 (three dummy waveguides on each side) using light with a wavelength of λ-1 and 55 μm. The horizontal axis is the light incident position m to the array leading waveguide, and since there are three dummy waveguides on each side, m=4 to 11. The vertical axis is
Normalized branch output P. As shown in the equation below, the input power is Plゎ, and the output power of the n-th output waveguide (n-4 to 11) is Po. 1o.
この図から明らかなように、波長1.3μm〜1.55
μmの広い波長域にわたって光分布か略−定の、テーパ
付きスターカップラか実現できることか確認できる。尚
、P 、= 1 (for all n)のとき、挿入
損失上口の均一な光分布か得られる。As is clear from this figure, the wavelength is 1.3 μm to 1.55 μm.
It can be confirmed that it is possible to realize a tapered star coupler with a substantially constant light distribution over a wide wavelength range of μm. Note that when P = 1 (for all n), a uniform light distribution with an upper insertion loss can be obtained.
これら第3図及び第4図より、計算機シュミレーション
によるテーパ付きスターカップラの設計(第5図〜第7
図、及び式(4)〜(7))の妥当性か確認された。From these Figures 3 and 4, the design of the tapered star coupler by computer simulation (Figures 5 to 7)
The validity of the figures and equations (4) to (7)) was confirmed.
〈発明の効果〉
以上、実施例に基づいて具体的に説明したように、本発
明のスターカップラは、任意の一本導波路に均一に分岐
し、且つ光パワーの分岐比か波長に依らず略一定である
ので、大規模LANシステムや波長多重方式等における
信号分配において大きな利点を存する。また、スラブ光
導波路との接合部分及びその近傍において入力光導波路
、出力光導波路のコア幅をテーパ状に縮小したので、ア
レイ導波路間の光結合状態を最適に制御して、光の分岐
比の均−性向上及び過剰損失の低減に対して有効である
。<Effects of the Invention> As explained above in detail based on the embodiments, the star coupler of the present invention can uniformly branch into any single waveguide, and the branching ratio of optical power can be uniformly branched regardless of the wavelength. Since it is substantially constant, it has a great advantage in signal distribution in large-scale LAN systems, wavelength multiplexing systems, etc. In addition, the core widths of the input and output optical waveguides are reduced in a tapered manner at the junction with the slab optical waveguide and in the vicinity thereof, so the optical coupling state between the arrayed waveguides can be optimally controlled and the optical branching ratio This is effective for improving uniformity and reducing excess loss.
第1図は本発明の一実施例に係るテーパ付きスターカッ
プラの構成図、第2図はスラブ光導波路の拡大図、第3
図(a) (b)はそれぞれN=8のスターカップラに
対し、入射位置を変えた光伝搬のシミュレーション結果
を示す説明図、第4図(a) (blはそれぞれN=8
のスターカップラに対し、入射位置を変えた光伝搬波形
のシミュレーション結果を示す説明図、第5Vは、N=
8、△=0.3%、2a= 7μm、 L c= 16
90μmSR、=890μm、 q +=390μm、
N、、、、、=14 (ダミー導波路か左右に各々3
本)のスターカップラの光分岐特性を波長λ−】、55
μmの光を用いて測定した結果を示すグラフ、第6図は
従来のNXNスターカップラの構造を示す説明図である
。
図面中、
1.11は入力光導波路、
2.3,6.7はダミー導波路、
4はスラブ先導波路、
5.12は出力光導波路、
− I I =
8は入力光導波路アレイ、
9は出力光導波路アレイ、
13は3dB方向性結合器である。FIG. 1 is a configuration diagram of a tapered star coupler according to an embodiment of the present invention, FIG. 2 is an enlarged view of a slab optical waveguide, and FIG.
Figures (a) and (b) are explanatory diagrams showing the simulation results of light propagation by changing the incident position for a star coupler with N = 8, respectively, and Figure 4 (a) (bl is each with N = 8
An explanatory diagram showing the simulation results of the optical propagation waveform with different incident positions for the star coupler, 5th V is N=
8, △=0.3%, 2a=7μm, Lc=16
90 μm SR, = 890 μm, q + = 390 μm,
N, , , , = 14 (3 dummy waveguides each on the left and right
The optical branching characteristics of the star coupler of
A graph showing the results of measurement using μm light and FIG. 6 are explanatory diagrams showing the structure of a conventional NXN star coupler. In the drawing, 1.11 is an input optical waveguide, 2.3, 6.7 are dummy waveguides, 4 is a slab guiding waveguide, 5.12 is an output optical waveguide, - I I = 8 is an input optical waveguide array, 9 is an input optical waveguide Output optical waveguide array 13 is a 3 dB directional coupler.
Claims (1)
光パワーを二以上の出力光導波路に均一に分岐するスタ
ーカップラにおいて、前記入力光導波路を扇形に配置し
てなる入力光導波路アレイと、前記出力光導波路を扇形
に配置してなる出力光導波路アレイとを相対向して設置
すると共に前記入力光導波路アレイと前記出力光導波路
アレイとを横方向には光閉じ込め構造を有しないスラブ
光導波路により結合し、前記入力光導波路或いは出力光
導波路と前記スラブ光導波路との接合部分及びその近傍
において入力光導波路及び出力光導波路のコア幅が緩や
かなテーパ状に縮小していることを特徴とするテーパ付
きスターカップラ。In a star coupler that uniformly branches optical power incident on any one of one or more input optical waveguides into two or more output optical waveguides, the input optical waveguide array is formed by arranging the input optical waveguides in a fan shape. and an output optical waveguide array formed by arranging the output optical waveguides in a fan shape, are installed facing each other, and the input optical waveguide array and the output optical waveguide array are arranged in a slab having no optical confinement structure in the lateral direction. The input optical waveguide and the output optical waveguide are coupled by an optical waveguide, and the core widths of the input optical waveguide and the output optical waveguide are reduced in a gentle taper shape at and in the vicinity of the joint between the input optical waveguide or the output optical waveguide and the slab optical waveguide. Tapered star coupler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33075990A JP2804367B2 (en) | 1990-11-30 | 1990-11-30 | Star coupler with taper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33075990A JP2804367B2 (en) | 1990-11-30 | 1990-11-30 | Star coupler with taper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04204508A true JPH04204508A (en) | 1992-07-24 |
JP2804367B2 JP2804367B2 (en) | 1998-09-24 |
Family
ID=18236230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33075990A Expired - Lifetime JP2804367B2 (en) | 1990-11-30 | 1990-11-30 | Star coupler with taper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2804367B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06273629A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Cable Ltd | Optical star coupler |
US8752821B2 (en) | 2009-09-03 | 2014-06-17 | Ricoh Company, Limited | Image forming apparatus |
WO2022066658A1 (en) * | 2020-09-25 | 2022-03-31 | Apple Inc. | Achromatic light splitting device with a high v number and a low v number waveguide |
US11500154B1 (en) | 2019-10-18 | 2022-11-15 | Apple Inc. | Asymmetric optical power splitting system and method |
US11506535B1 (en) | 2019-09-09 | 2022-11-22 | Apple Inc. | Diffraction grating design |
US11561346B2 (en) | 2020-09-24 | 2023-01-24 | Apple Inc. | Tunable echelle grating |
US11971574B2 (en) | 2021-09-24 | 2024-04-30 | Apple Inc. | Multi-mode devices for multiplexing and de-multiplexing |
-
1990
- 1990-11-30 JP JP33075990A patent/JP2804367B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06273629A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Cable Ltd | Optical star coupler |
US8752821B2 (en) | 2009-09-03 | 2014-06-17 | Ricoh Company, Limited | Image forming apparatus |
US11506535B1 (en) | 2019-09-09 | 2022-11-22 | Apple Inc. | Diffraction grating design |
US11500154B1 (en) | 2019-10-18 | 2022-11-15 | Apple Inc. | Asymmetric optical power splitting system and method |
US11886007B2 (en) | 2019-10-18 | 2024-01-30 | Apple Inc. | Asymmetric optical power splitting system and method |
US11561346B2 (en) | 2020-09-24 | 2023-01-24 | Apple Inc. | Tunable echelle grating |
WO2022066658A1 (en) * | 2020-09-25 | 2022-03-31 | Apple Inc. | Achromatic light splitting device with a high v number and a low v number waveguide |
US11906778B2 (en) | 2020-09-25 | 2024-02-20 | Apple Inc. | Achromatic light splitting device with a high V number and a low V number waveguide |
US11971574B2 (en) | 2021-09-24 | 2024-04-30 | Apple Inc. | Multi-mode devices for multiplexing and de-multiplexing |
Also Published As
Publication number | Publication date |
---|---|
JP2804367B2 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2870499B2 (en) | Optical wavelength multiplexer / demultiplexer | |
US6411765B1 (en) | Optical waveguide element and method for manufacturing optical waveguide element | |
US7151873B2 (en) | Waveguide type optical splitter and waveguide type optical module comprising the same | |
US6625371B1 (en) | Planar optical waveguides with double grooves | |
JPH06160652A (en) | High-polymer optical waveguide type optical star coupler | |
JPH03156407A (en) | Optical branching unit | |
JPH09297228A (en) | Array waveguide grating | |
US6553164B1 (en) | Y-branch waveguide | |
JPH04204508A (en) | Tapered star coupler | |
JP2004029073A (en) | Optical waveguide circuit and its manufacturing method | |
Okamoto et al. | Fabrication of large scale integrated-optic N* N star couplers | |
AU686318B2 (en) | Integrated optical branching arrangement | |
JP2538099B2 (en) | Waveguide type optical star coupler | |
EP1239311A1 (en) | Integrated optical device comprising an adiabatic junction | |
JP2843466B2 (en) | Optical power splitter | |
Sakamaki et al. | Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method | |
JP2967428B2 (en) | Wavelength independent star coupler | |
KR19990038490A (en) | Optical power divider and its manufacturing method | |
JP2817565B2 (en) | Light star coupler | |
JPH1164657A (en) | Branching waveguide and production therefor | |
JP2000231026A (en) | Optical waveguide type optical demultiplexing multiplexing circuit | |
JPH07230014A (en) | Optical integrated device for proximity junction between two waveguides | |
JP2798308B2 (en) | Crossed star coupler | |
JP3543137B2 (en) | Optical branch circuit | |
JP3937218B2 (en) | Programmable optical circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070717 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090717 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090717 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100717 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100717 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110717 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110717 Year of fee payment: 13 |