JPH04204391A - Trouble point orienting method for high voltage distribution line - Google Patents

Trouble point orienting method for high voltage distribution line

Info

Publication number
JPH04204391A
JPH04204391A JP33994890A JP33994890A JPH04204391A JP H04204391 A JPH04204391 A JP H04204391A JP 33994890 A JP33994890 A JP 33994890A JP 33994890 A JP33994890 A JP 33994890A JP H04204391 A JPH04204391 A JP H04204391A
Authority
JP
Japan
Prior art keywords
current
line
voltage
distribution line
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33994890A
Other languages
Japanese (ja)
Other versions
JPH071297B2 (en
Inventor
Hisamichi Araki
荒木 久道
Teruo Nakasu
中須 暉雄
Masahito Akamatsu
赤松 雅人
Hideaki Tanaka
秀昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON RIYOKAKU TETSUDO KK
TSUDA DENKI KEIKI KK
West Japan Railway Co
Original Assignee
NISHI NIPPON RIYOKAKU TETSUDO KK
TSUDA DENKI KEIKI KK
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON RIYOKAKU TETSUDO KK, TSUDA DENKI KEIKI KK, West Japan Railway Co filed Critical NISHI NIPPON RIYOKAKU TETSUDO KK
Priority to JP33994890A priority Critical patent/JPH071297B2/en
Publication of JPH04204391A publication Critical patent/JPH04204391A/en
Publication of JPH071297B2 publication Critical patent/JPH071297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To effectively cancel an influence of an induction current, even when it is generated during orientation, so as to orient a trouble point of earth fault with no error by obtaining a vector difference between before and after inverting polarity of currents in a sound line and all the distribution lines. CONSTITUTION:Thyristors SCR1, SCR2 are a circuit for applying an orienting power supply polarity-inverted by the predetermined timing to high voltage distribution lines A, B, and the timing of polarity inversion is performed by a signal from a control relay part 6. When orientation is performed in a short time, a value of an induction current is not changed. On the other hand, a current, flowing in each distribution line from the orienting AC power supply, is inverted before and after the polarity inversion of the orienting AC power supply. In a vector difference between a current, measured by a current transformer inserted in a sound line, before the polarity inversion of the power supply and a current after the polarity inversion, the current is generated not containing the induction current. Even when assumed that the induction current is mixed in a current flowing in a common line to which the orienting AC power supply is connected, a component of the induction current can be removed from the current flowing in the common line when the vector difference between the currents before and after the polarity inversion is taken out.

Description

【発明の詳細な説明】 主粟上皇五■立! 本発明は、鉄道等における単相二線式高圧配電線路や三
相高圧配電線路において一線地絡事故を起した場合、送
電側から地絡点までの距離を標定するいわゆる地絡故障
点標定方法に関する。
[Detailed description of the invention] Main millet retired emperor five points! The present invention provides a so-called ground fault fault location method for locating the distance from the power transmission side to the ground fault point when a single-line ground fault occurs on a single-phase, two-wire high-voltage distribution line or three-phase high-voltage distribution line in a railway, etc. Regarding.

災米■肢蓋 従来の地絡故障点標定方法として本出願人は先に特開昭
59−230176号公報において提案した。この提案
方法は、高圧配電線路に地絡故障が起った際、高圧配電
線路の末端を短絡すると共に、線路の送電側と大地との
間に標定用交流電圧を印加し、この電圧と、この電圧印
加によって配電線各線に流れる電流とがら各線の有効電
力を測定し、全ての配電線の有効電力の和と、健全線だ
けの有効電力比から地絡故障点の標定を行うものである
。この場合、各配電線の有効電力は配電線に流れる電流
と比例関係にあるので、有効電力の比又は電流の比のい
ずれでも地絡故障点標定を行うことができる。
The present applicant previously proposed a conventional ground fault point locating method in Japanese Patent Application Laid-Open No. 59-230176. In this proposed method, when a ground fault occurs in a high-voltage distribution line, the ends of the high-voltage distribution line are short-circuited, and a locating AC voltage is applied between the power transmission side of the line and the ground, and this voltage and By applying this voltage, the current flowing through each line of the distribution line and the active power of each line are measured, and the ground fault point is located from the sum of the active power of all distribution lines and the active power ratio of only healthy lines. In this case, since the active power of each distribution line is in a proportional relationship with the current flowing through the distribution line, the ground fault point can be located using either the ratio of active power or the ratio of current.

第5図は単相二線式高圧配電線路において、地絡故障を
起した場合の標定原理を示す図である。
FIG. 5 is a diagram showing the principle of location when a ground fault occurs in a single-phase, two-wire high-voltage distribution line.

図においては、配電、%1ASBのうちの一方BのX点
で地絡が起ったとし、配電線の末端を短絡すると共に、
送電側に標定用交流電源を接続している。
In the figure, it is assumed that a ground fault has occurred at point X of one of the power distribution lines, %1ASB, and the end of the power distribution line is short-circuited, and
An AC power source for orientation is connected to the power transmission side.

今、配電線路の全長をD、送電側から地絡点までの距離
をl、全ての配電線に流れる電流をi。
Now, the total length of the distribution line is D, the distance from the power transmission side to the ground fault point is l, and the current flowing through all distribution lines is i.

(”iA+il)、健全線Aの電流をiAとすると、次
式が成り立つ。
("iA+il), and if the current of the healthy line A is iA, the following equation holds true.

to        D この式において、Dは既知数なので、1A−i。to D In this formula, D is a known number, so 1A-i.

、を測定することにより、送電側からの地絡点Xまでの
距離を標定することができる。
By measuring , it is possible to locate the distance from the power transmission side to the ground fault point X.

B <”° しよ゛と る” ところで、上記標定方法によれば、単に五〇とiAを検
出するだけで、簡単な計算により地絡故障点の標定か行
える等多くのメリットをもたらすものであるが、反面、
配電線A、Hのいずれかに並行して他系統の配電線(不
図示)があって、そこから標定用交流電源と同−周波数
又は整数倍の周波数の誘導電流が、前記配電線に流れた
場合には、上記従来方法では標定点に誤差を生じるとい
う課題がある。
By the way, according to the above-mentioned locating method, simply detecting 50 and iA brings many advantages such as locating the ground fault point with simple calculations. Yes, but on the other hand,
There is a distribution line (not shown) of another system in parallel with either distribution line A or H, from which an induced current with the same frequency as the locating AC power supply or an integral multiple of the frequency flows into the distribution line. In this case, the conventional method described above has a problem in that an error occurs in the control point.

第6゛図はそのことを示す図である。図中、i、、1は
他の配電線からの誘導電流が、2つの配電線A、Bにわ
たってループ状に流れている。このループ電流i、のた
めに健全線への変流器CTで検出される電流はi71 
 ’  (=iA ”is )となる。その結果、標定
動作は、 2ia’    l’ □=□〉  □ ・・(2) ioD      D となり、真の地絡故障点とは異なる点を地絡故障点と標
定することとなる。この標定誤差は、誘導電流i、1の
値が大きくなればそれに応じて大きくなる。
FIG. 6 is a diagram showing this. In the figure, at i, 1, an induced current from another distribution line flows in a loop across two distribution lines A and B. Due to this loop current i, the current detected by the current transformer CT to the healthy line is i71
' (=iA "is").As a result, the orientation operation becomes 2ia'l' □=□〉 □...(2) ioD D, and a point different from the true ground fault point is regarded as the ground fault point. This orientation error increases as the value of the induced current i,1 increases.

尚、図では誘導電流iHが健全線Aにおいてi、と加算
される方向に流れるよう描いているが、誘導電流によっ
ては逆方向に流れるものもあり、その場合の誤差は真の
地絡故障点より近距離のところで地絡したように生じる
こととなる。
In the figure, the induced current iH is drawn to flow in the direction in which it is added to i at the healthy line A, but some induced currents may flow in the opposite direction, and in that case, the error will be at the true ground fault point. This will occur at a closer distance, similar to a ground fault.

更に、交流き電回路と併架する場合においては誘導電流
が標定用電源側にも流れることもあり、その場合にも標
定誤差を生しるものである。
Furthermore, when installed in parallel with an AC feeding circuit, induced current may also flow to the location power supply side, which also causes location errors.

本発明は以上の点に鑑み、たとえ標定中に誘導電流が生
じたとしてもその影響を効果的に相殺し、誤差なく地絡
故障点の標定を行うことのできる新規な標定方法を提供
することを目的としている。
In view of the above points, it is an object of the present invention to provide a new location method that can effectively offset the influence of induced current even if it occurs during location and locate a ground fault point without error. It is an object.

!     ”か  の 上記目的を達成するため本発明は高圧配置線路に地絡故
障が起った際、高圧配電kIIABの末端を短絡すると
共に、線路の送電側を一括して大地との間に標定用交流
電圧を印加し、この電圧によって各配電線路に流れる電
流の総和と健全線に流れる電流の値から地絡故障点の標
定を行う高圧配電線路の地絡故障点標定方法において、
前記標定用交流電圧の極性を反転する手段を設け、各配
電線路に流れる電流の総和及び健全線に流れる電流とし
て、前記交流電圧の極性反転前の電流と極性反転後の電
流のベクトル差を用いることを特徴としている。
! In order to achieve the above-mentioned object, the present invention short-circuits the terminals of the high-voltage distribution kIIAB when a ground fault occurs in the high-voltage distribution line, and also connects the power transmission side of the line to the ground for orientation purposes. In a method for locating a ground fault fault point on a high-voltage distribution line, the ground fault fault point is located by applying an alternating current voltage and locating the ground fault fault point from the sum of the currents flowing through each distribution line due to this voltage and the value of the current flowing through healthy lines.
A means for reversing the polarity of the locating AC voltage is provided, and a vector difference between the current before polarity reversal and the current after polarity reversal of the AC voltage is used as the sum of the currents flowing through each distribution line and the current flowing through the sound lines. It is characterized by

又、本発明は高圧配電線に地絡故障が起った際、高圧配
電線の末端を短絡すると共に、配電線の送電側を一括し
て大地間に標定用交流電圧を印加し、この電圧と、この
電圧の印加によって配電線各線に流れる電流とから各線
の有効電力を測定し、全ての配電線の有効電力の和と健
全線の有効電力の比から地絡故障点標定を行う標定方法
において、前記標定用交流電圧の極性を反転する手段を
設けると共に、各配電線に流れる電流の総和として及び
健全線に流れる電流として、前記交流電圧の極性反転前
の電流と極性反転後の電流のベクトル差を用いることを
特徴としている。
Furthermore, when a ground fault occurs in a high-voltage distribution line, the present invention short-circuits the ends of the high-voltage distribution line, applies an alternating current voltage for orientation between the ground on the power transmission side of the distribution line, and A location method in which the active power of each line is measured from the current flowing through each distribution line due to the application of this voltage, and the ground fault point is located from the ratio of the sum of the active power of all distribution lines and the active power of a healthy line. In addition to providing means for reversing the polarity of the locating AC voltage, the current before polarity reversal and the current after polarity reversal of the AC voltage are calculated as the sum of the currents flowing through each distribution line and as the current flowing through the sound lines. It is characterized by the use of vector differences.

作−一一里 短時間に標定を行うと、誘導電流iHO値は変化しない
。一方、標定用交流電源から各配電線に流れる電流は、
標定用交流電源の極性反転前後で極性が反転する。今、
誘導電流をi、4、標定用交流電源から配電1(健全線
)に流入する電流をi、とすると、電源の極性反転前に
健全線に挿入した変流器で測定される電流i、iは(i
g+ix)であり、極性反転後の電流iA ″は(−i
A+i、4)である。この2つの電流のベクトル差(1
1i、’、lZ)は、(ia+i+<)   (iA”
iM)=2iAとなり、誘導電流i、4を含まない電流
となる。
If orientation is performed in a short time, the induced current iHO value will not change. On the other hand, the current flowing from the locating AC power source to each distribution line is
The polarity is reversed before and after reversing the polarity of the locating AC power supply. now,
If the induced current is i, 4, and the current flowing from the locating AC power supply to power distribution 1 (healthy line) is i, the current measured by the current transformer inserted into the sound line before the polarity reversal of the power supply is i, i. is (i
g+ix), and the current iA'' after polarity reversal is (-i
A+i, 4). Vector difference between these two currents (1
1i,', lZ) is (ia+i+<) (iA”
iM)=2iA, which is a current that does not include the induced current i,4.

第4図はこのことを説明する波形図である。図(イ)は
i、が極性反転の前後で変化することを示している。図
(ロ)は誘導電流波形であり、この波形は極性反転の前
後で変化しない。図(A)は、健全vAAの変流器で測
定される電流であり、図(イ)のiAと図(ロ)のi4
を合成した電流である。図(ハ)から極性反転の前後で
合成電流は大きさ及び極性が変化しているのがわかる。
FIG. 4 is a waveform diagram illustrating this. Figure (A) shows that i changes before and after polarity reversal. Figure (b) shows the induced current waveform, and this waveform does not change before and after polarity reversal. Figure (A) shows the current measured in a current transformer with a healthy vAA, iA in Figure (A) and i4 in Figure (B).
This is the current that is a composite of the From the figure (c), it can be seen that the magnitude and polarity of the composite current change before and after polarity reversal.

図(ニ)は、図(ハ)の極性反転後のi、″を180°
シフトした状態を示している。図(ホ)は図(ハ)のi
A Lと図(ニ)の−iA 11を合成(iA ’  
ia”)Lzた電流である。この図かられかるように、
iA ′ ° ″は図(イ)の−l ^ iAの2倍の波高値をもつ電流となっている。この場合
、誘導電流iHはiA 1.i、llの演算処理によっ
て相殺されるので、図(ホ)の電流には誘導電流は含ま
れていない。
Figure (d) shows i,'' after polarity reversal in figure (c) by 180°.
It shows a shifted state. Figure (E) is i in Figure (C).
Synthesize A L and -iA 11 in Figure (d) (iA'
ia”) Lz current.As can be seen from this figure,
iA ′ ° ″ is a current with a peak value twice that of -l ^ iA in figure (A). In this case, the induced current iH is canceled out by the calculation process of iA 1.i, ll, so The current in Figure (e) does not include induced current.

同様に、標定用交流電源が接続された共通線に流れる電
流(全ての配電線に流れる電流の総和に等しい)に誘導
電流が混入していたとしても極性反転前後の電流のベク
トル差をとれば、共通線に流れる電流から誘導電流分を
除去することができる。
Similarly, even if an induced current is mixed in the current flowing in the common line to which the locating AC power supply is connected (equal to the sum of the currents flowing in all distribution lines), if we take the vector difference of the current before and after polarity reversal, then , the induced current can be removed from the current flowing through the common line.

従って、健全線の電流及び全ての配電線の電流の、極性
反転前後におけるベクトル差を求めて、各ベクトル差の
比を取ることにより、誘導電流成分を含まない形態で地
絡故障点の標定を行うことができる。
Therefore, by finding the vector differences before and after polarity reversal between the current in the healthy line and the current in all distribution lines, and taking the ratio of each vector difference, the ground fault point can be located in a form that does not include the induced current component. It can be carried out.

又、前記電流のベクトル差と標定電源の電圧の内積によ
って得られる有効電力の比においても誘導電流の影響を
除去して正確な地絡故障点標定か行える。
Furthermore, the influence of induced current can be removed from the ratio of active power obtained by the inner product of the vector difference of the currents and the voltage of the locating power source, and accurate ground fault point locating can be performed.

裏−一施一一貫 第1図は本発明方法を単相二線式高圧配電線に適用した
例を示している。図中、A、Bは高圧配電線で、送電側
は交流遮断器1が直列に挿入され、末端側は短絡スイッ
チ2(真空開閉器42s)が線路間に接続されている。
FIG. 1 shows an example in which the method of the present invention is applied to a single-phase, two-wire high-voltage distribution line. In the figure, A and B are high-voltage distribution lines, and AC circuit breakers 1 are inserted in series on the power transmission side, and a short circuit switch 2 (vacuum switch 42s) is connected between the lines on the terminal side.

交流遮断器1は、地絡事故が発生するとそれを検出する
図示しない接地保護継電器からのトリップ信号によって
遮断される。短絡スイッチ2は地絡事故発生後に適当な
手段によって閉路され、末端の配電′4IAA、Bを短
絡する。
When a ground fault occurs, the AC circuit breaker 1 is interrupted by a trip signal from a ground protection relay (not shown) that detects the fault. The shorting switch 2 is closed by suitable means after the occurrence of a ground fault, shorting the terminal distributions '4IAA, B.

前記交流遮断器1の近くの高圧配電線A、Bには、標定
電流供給′41A3.4が接続されている。この供給線
3.4の途中には真空開閉器42Dが挿入され、供給線
3.4の他端は一本の共通線5に接続されている。前記
真空開閉器42Dは制御リレ一部6からの指示によって
オン動作するし、真空開閉器42Dと423は時間を同
じにして制御される。
A locating current supply '41A3.4 is connected to the high voltage distribution lines A and B near the AC circuit breaker 1. A vacuum switch 42D is inserted in the middle of this supply line 3.4, and the other end of the supply line 3.4 is connected to one common line 5. The vacuum switch 42D is turned on by an instruction from the control relay part 6, and the vacuum switches 42D and 423 are controlled at the same time.

前記共通線5には対地との間に標定用電源回路7が接続
されている。
A locating power supply circuit 7 is connected to the common line 5 and the ground.

標定用電源回路7は、AC200Vの交流電源(図外)
と、電磁開閉器MS、制限抵抗R、サイリスタ5CRI
、2及び昇圧トランスTから成っている。電磁開閉器M
Sは制御Jレ一部6からの信号によって投入される。制
限抵抗Rは、標定時に高圧配電線A、Bに定電流を供給
するための抵抗である。サイリスタ5CRI、2は標定
用電源AC200Vを高圧配電線A、Bに所定のタイミ
ングで極性反転して印加するための回路で、極性反転の
タイミングは制御リレ一部6からの信号によってなされ
る。昇圧トランスTは、高圧配電線に対して標定時も通
常の送電時と同じ高さの電圧を印加するために用いられ
る。この昇圧トランスTの2次側は共通線5と大地間に
接続されている。
The locating power supply circuit 7 is an AC 200V AC power supply (not shown)
, electromagnetic switch MS, limiting resistor R, thyristor 5CRI
, 2 and a step-up transformer T. Electromagnetic switch M
S is turned on by a signal from the control section 6. The limiting resistor R is a resistor for supplying a constant current to the high voltage distribution lines A and B during location. The thyristors 5CRI, 2 are circuits for applying the locating power supply AC 200 V to the high voltage distribution lines A, B with the polarity reversed at a predetermined timing, and the timing of the polarity reversal is determined by a signal from the control relay part 6. The step-up transformer T is used to apply the same voltage to the high-voltage distribution line during orientation as during normal power transmission. The secondary side of this step-up transformer T is connected between the common line 5 and the ground.

共通線5と標定電流供給線3.4とに夫々変流器8.9
.10が設けられ、標定時に流れる電流を検出している
。又、昇圧トランスTの2次側には標定用電圧E、を検
出する計器用トランス11が設けられている。これらの
変流器8.9.10計器用トランス11の検出する電流
、電圧及び制御リレ一部6から発される標定指令は計測
部12に入力されている。
Current transformers 8.9 are installed on the common line 5 and the oriented current supply line 3.4, respectively.
.. 10 is provided to detect the current flowing during orientation. Further, on the secondary side of the step-up transformer T, there is provided an instrument transformer 11 for detecting the locating voltage E. The currents and voltages detected by these current transformers 8, 9, 10 and the instrument transformer 11 and the orientation command issued from the control relay section 6 are input to the measuring section 12.

制御リレ一部6は、地絡故障が生じた際、図示しない公
知の検出装置からの指示に基づき作動し、所定のシーケ
ンスで第2図に示すように真空開閉器42D作動信号(
図(ロ))、電磁開閉器MS作動信号(同(ハ))、5
CRI、2ゲ一ト信号(同(ニ)、(ホ))、標定指令
(同(へ))を出力する。
When a ground fault occurs, the control relay part 6 operates based on an instruction from a known detection device (not shown), and outputs a vacuum switch 42D activation signal (
Figure (b)), electromagnetic switch MS activation signal (same (c)), 5
Outputs CRI, 2 gate signals (d), (e), and orientation command (d).

第2図においては、例えば真空開閉器42D作動信号及
び電磁開閉器MS作動信号は5秒間オン状態を保持する
。5CRIのゲート信号は前記各作動信号と同時にオン
し、その後2秒後にオフに転する。他方、5CR2のゲ
ート信号は、5CR1のゲート信号のオフエツジと同時
にオンし、真空開閉器42D作動信号のオフと同期して
オフする。標定指令は5CRIのゲート信号のオフエツ
ジと同時にトリガー状のパルスを発する。第2図(へ)
の演算データのシーケンスは計測部12のものである。
In FIG. 2, for example, the vacuum switch 42D activation signal and the electromagnetic switch MS activation signal remain on for 5 seconds. The gate signal of 5CRI turns on at the same time as each activation signal, and then turns off two seconds later. On the other hand, the gate signal of 5CR2 turns on at the same time as the off edge of the gate signal of 5CR1, and turns off in synchronization with the off edge of the vacuum switch 42D actuation signal. The orientation command issues a trigger-like pulse simultaneously with the off-edge of the 5CRI gate signal. Figure 2 (to)
The sequence of calculation data is that of the measurement unit 12.

尚、図示はしないが、交流遮断器1のオフ動作は真空開
閉器42D作動信号がオンに転する前に完了している。
Although not shown, the off operation of the AC circuit breaker 1 is completed before the vacuum switch 42D activation signal is turned on.

計測部12はCPUとROM、RAM及び入出力インタ
ーフェイスを用いたハード構成をしており、第3図に示
す手順で計測動作を行う。
The measurement unit 12 has a hardware configuration using a CPU, ROM, RAM, and input/output interface, and performs measurement operations according to the procedure shown in FIG. 3.

次に第3図に基づき計測部12の動作を説明する。先ず
、計測部12は、変流器8.9.10、計測用トランス
11を通して常時、電流、電圧をモニターしている(#
1)。この場合、各電流、電圧は各瞬時においてその時
点から少なくとも5サイクル分過去まで一時的に記憶さ
れている。
Next, the operation of the measuring section 12 will be explained based on FIG. First, the measurement unit 12 constantly monitors current and voltage through the current transformers 8.9.10 and the measurement transformer 11 (#
1). In this case, each current and voltage is temporarily stored at each instant up to at least five cycles past that point in time.

このような状態において、制御リレ一部6から標定指令
が入力されると(#2) 、CPUは標定指令が入力さ
れる前5サイクル分の標定用電流、電圧を取込む(#3
)。続いて、標定指令が入力された後の5サイクル分の
標定用電流、電圧を取込み(#4) 、#3で取込んだ
電流、電圧と共に所定の演算を行う(#5)。演算結果
は標定結果として出力される(#6)。
In this state, when the orientation command is input from the control relay part 6 (#2), the CPU takes in the orientation current and voltage for 5 cycles before the orientation command is input (#3).
). Next, the locating current and voltage for five cycles after the input of the locating command are fetched (#4), and predetermined calculations are performed together with the current and voltage fetched in #3 (#5). The calculation result is output as the orientation result (#6).

#5の演算は、次のようにして行われる。Operation #5 is performed as follows.

先ず、下記2式の演算を行う。First, the following two equations are calculated.

iA l−i、17  ・・・(3) i、′−1.//  ・・・(4) 地絡事故を起した配電線の電流が健全線の電流に比べて
大きいところから、上記2式の演算値の大きさを比較し
小さい値を選ぶことにより健全線の電流を選択する。
iA l-i, 17...(3) i,'-1. // ...(4) Since the current in the distribution line that caused the ground fault is larger than the current in the healthy line, compare the magnitudes of the calculated values of the above two equations and select the smaller value to determine whether the line is healthy. Select current.

次に、上記の演算で選択した電流(例えば健全線をAと
する)を分子にして下記の演算を行ない標定演算を終了
する。
Next, the following calculation is performed using the current selected in the above calculation (for example, the healthy line is taken as A) as a numerator, and the orientation calculation is completed.

(io ’  to  ”)       16=□・
・・(5) ここで、i、r、iA ′、ill ′は極性反転前の
共通線5、高圧配電線A、Bに流れる電流、i。″、i
A ′J、i、″は極性反転後の共通15、高圧配電線
A、Bに流れる電流である。
(io 'to'') 16=□・
...(5) Here, i, r, iA', ill' are currents flowing through the common line 5 and high-voltage distribution lines A and B before polarity reversal, and i. ″,i
A′J,i,″ is the current flowing through the common 15 high-voltage distribution lines A and B after polarity reversal.

上記(2)式のうち、地絡故障を生している配電線(例
えばBとする)に流れる電流i、′、i、″を分子にも
っている式は演算値がほぼ2であり、一方健全線(例え
ばAとする)に流れる電流iA J、゛え ″を分子に
もっている式の演算値は2よりも小さな値である。従っ
て、上記(2)式の演算値の大きさを比較し、小さな値
を選択することにより、正しい標定を行うことができる
Among the above equations (2), the equation whose numerator is the current i,′,i,″ flowing through the distribution line that is experiencing the ground fault (say, B) has a calculated value of approximately 2; The calculated value of the equation whose numerator is the current iAJ, ゛e'' flowing through a healthy line (for example, A) is a value smaller than 2. Therefore, correct orientation can be performed by comparing the magnitudes of the calculated values of equation (2) above and selecting the smaller value.

尚、上記演算を実行することによって、標定値が誘導電
流の影響を受けないことは作用の項で説明したのでここ
での説明は省略する。
It should be noted that by executing the above calculation, the orientation value is not affected by the induced current, as explained in the operation section, so the explanation here will be omitted.

上記実施例では、共1Ilil#l、高圧配電線A、B
に流れる電流を用いて地絡故障点の標定を行なっている
が、各線で消費される有効電力の比から地絡故障点の標
定を行うこともできる。この場合は下記演算式によって
行う。
In the above embodiment, both 1Ilil#l, high voltage distribution lines A and B
Although the ground fault point is located using the current flowing in each line, it is also possible to locate the ground fault point from the ratio of active power consumed in each line. In this case, the following calculation formula is used.

2Ee  ・ (iA ′−1A ″)E、・ (io
 1−io  / /)Wo ’−W0 ”     
 D 上式においてEcは計器用トランスの検出する電圧であ
る。
2Ee ・(iA ′-1A ″)E, ・(io
1-io//)Wo'-W0”
D In the above equation, Ec is the voltage detected by the instrument transformer.

各線の有効電力の比を用いて地絡故障点の標定を行う方
法であると、地絡抵抗(地絡点と大地間の抵抗)が零で
なく、有限の抵抗値をもつ場合でも正確に標定できると
いうより大きな効果がある。
Using the method of locating the ground fault point using the ratio of the active power of each line, it is possible to locate the ground fault point accurately even if the ground fault resistance (resistance between the ground fault point and the earth) is not zero and has a finite resistance value. This has a greater effect than being able to locate the target.

尚、実施例では二線式高圧配電線の地絡標定に本発明方
法を適用しているが、三線式高圧配電線の地絡標定に本
発明方法を適用できることは勿論である。
In the embodiment, the method of the present invention is applied to ground fault location on a two-wire high-voltage distribution line, but it goes without saying that the method of the present invention can also be applied to ground fault location on a three-wire high-voltage distribution line.

発、1υ九果 以上説明したように本発明標定方法によれば、標定用電
圧を極性反転して印加し、極性反転前後の健全線に流れ
る電流のベクトル差と全ての配電線に流れる電流のベク
トル差の比、又は前記電流のベクトル差と標定電源電圧
の内積で与えられる有効電力の比から地絡故障点標定を
行うものであるから、他系統の配電線から誘導される電
流の影響を有効に除去し、正確に地絡点の標定を行うこ
とができる。
As explained above, according to the locating method of the present invention, the locating voltage is applied with the polarity reversed, and the vector difference of the current flowing through the sound line before and after the polarity reversal is calculated, as well as the vector difference of the current flowing through all the distribution lines. Since the ground fault fault point is located from the ratio of the vector difference or the ratio of the active power given by the inner product of the vector difference of the current and the specified power supply voltage, the influence of the current induced from the distribution lines of other systems can be ignored. It is possible to effectively remove the ground fault and accurately locate the ground fault point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一適用である高圧配電線標定装置
を示す図、第2図は各部の動作シーケンスを示す図、第
3図は計測部の行う動作を示すフローチャート、第4図
は本発明方法の原理を示す波形図、第5図は従来の標定
方法を説明する図、第6図はその問題点を説明する図で
ある。 特許出願人 : 津田電気計器株式会社西日本旅客鉄道
株式会社 第2図 (イ)42S 第3図
Fig. 1 is a diagram showing a high-voltage distribution line locating device to which the method of the present invention is applied, Fig. 2 is a diagram showing the operation sequence of each part, Fig. 3 is a flowchart showing the operation performed by the measuring section, and Fig. 4 is FIG. 5 is a waveform diagram showing the principle of the method of the present invention, FIG. 5 is a diagram explaining the conventional orientation method, and FIG. 6 is a diagram explaining the problems thereof. Patent applicant: Tsuda Electric Meter Co., Ltd. West Japan Railway Company Figure 2 (A) 42S Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高圧配電線路に地絡故障が起った際、高圧配電線
路の末端を短絡すると共に、線路の送電側と大地との間
に標定用交流電圧を印加し、この電圧によって各配電線
路に流れる電流の総和と健全線に流れる電流の値から地
絡点の標定を行う高圧配電線路の地絡故障点標定方法に
おいて、 前記標定用交流電圧の極性を反転する手段を設け、各配
電線路に流れる電流の総和として及び健全線に流れる電
流として、前記交流電圧の極性反転前の電流と極性反転
後の電流のベクトル差を用いることを特徴とする高圧配
電線路の地絡故障点標定方法。
(1) When a ground fault occurs on a high-voltage distribution line, short-circuit the ends of the high-voltage distribution line, apply an AC voltage for orientation between the power transmission side of the line and the ground, and apply this voltage to each distribution line. In a method for locating a ground fault point on a high-voltage distribution line, which locates a ground fault point from the sum of currents flowing in the line and the value of the current flowing in a sound line, a means for reversing the polarity of the locating AC voltage is provided, and each distribution line A method for locating a ground fault point in a high-voltage power distribution line, characterized in that the vector difference between the current before polarity reversal and the current after polarity reversal of the alternating current voltage is used as the sum of the currents flowing in the line and as the current flowing in the sound line.
(2)高圧配電線に地絡故障が起った際、高圧配電線の
末端を短絡すると共に、配電線の送電側と大地間に標定
用交流電圧を印加し、この電圧と、この電圧の印加によ
って配電線各線に流れる電流とから各線の有効電力を測
定し、全ての配電線の有効電力の和と健全線の有効電力
の比から地絡故障点標定を行う標定方法において、 前記標定用交流電圧の極性を反転する手段を設けると共
に、各配電線に流れる電流の総和として及び健全線に流
れる電流として、前記交流電圧の極性反転前の電流と極
性反転後の電流のベクトル差を用いることを特徴とする
高圧配電線の地絡故障点標定方法。
(2) When a ground fault occurs in a high-voltage distribution line, short-circuit the ends of the high-voltage distribution line, apply an AC voltage for orientation between the power transmission side of the distribution line and the ground, and In the location method, the active power of each line is measured from the current flowing through each line of the distribution line due to the applied current, and the ground fault fault point is located from the sum of the active power of all the distribution lines and the ratio of the active power of the healthy line. Providing a means for reversing the polarity of the alternating current voltage, and using the vector difference between the current before and after the polarity reversal of the alternating current voltage as the sum of the currents flowing through each distribution line and the current flowing through the healthy lines. A method for locating the ground fault point of a high-voltage distribution line.
JP33994890A 1990-11-30 1990-11-30 Fault location method for high voltage distribution lines Expired - Lifetime JPH071297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33994890A JPH071297B2 (en) 1990-11-30 1990-11-30 Fault location method for high voltage distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33994890A JPH071297B2 (en) 1990-11-30 1990-11-30 Fault location method for high voltage distribution lines

Publications (2)

Publication Number Publication Date
JPH04204391A true JPH04204391A (en) 1992-07-24
JPH071297B2 JPH071297B2 (en) 1995-01-11

Family

ID=18332277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33994890A Expired - Lifetime JPH071297B2 (en) 1990-11-30 1990-11-30 Fault location method for high voltage distribution lines

Country Status (1)

Country Link
JP (1) JPH071297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056203A (en) * 2019-09-30 2021-04-08 株式会社和田電業社 Fault point distance detector
JP2021196334A (en) * 2020-06-12 2021-12-27 希望 田中 High-speed and high-precision exploration system for cable leakage point

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2014694A3 (en) 2014-10-10 2016-06-22 Vysoká Škola Báňská - Technická Univerzita Ostrava Mobile device for cooling cutting tools with exhaustion and filtration of oil mist

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056203A (en) * 2019-09-30 2021-04-08 株式会社和田電業社 Fault point distance detector
JP2021196334A (en) * 2020-06-12 2021-12-27 希望 田中 High-speed and high-precision exploration system for cable leakage point

Also Published As

Publication number Publication date
JPH071297B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
CN101609983B (en) Restrain device and control method for excitation inrush current of transformer
KR102050255B1 (en) Method and test device for testing wiring of transducers
BR112013011931B1 (en) Method and system for detecting failures in a power distribution system
CN103238197A (en) Magnetizing inrush current suppression device
US10191102B2 (en) Automatic current transformer polarity correction
US4091433A (en) Protective relay circuit for interphase faults
CN108469573A (en) A kind of method that small current neutral grounding system utilizes error component phase selection
JP2018004596A (en) Ground fault detector
US20190296543A1 (en) Method for detecting fault in power transmission line and protection system using the same
JPS5893422A (en) Protecting device for high voltage transmission line
JP2001201519A (en) Testing device and test method of current measuring circuit
EP4136725A1 (en) Fault detection in a power transmission system
JPH04204391A (en) Trouble point orienting method for high voltage distribution line
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
EP4270702A1 (en) A method of detecting a fault in a transmission line of a power transmission system
Dzienis et al. Novel impedance determination method for phase-to-phase loops
JPS59218970A (en) Method for ranging earthing point in high voltage distribution line of ac voltage superposing type
JPS5810667A (en) Measuring method for earthing resistance in place where induced voltage is large
JPH0473755B2 (en)
JPS61189119A (en) Disconnection detector
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
Holbach et al. Loop selective direction measurement for distance protection
Muchayi PERFORMANCE OF DIGITAL DISTANCE RELAY ALGORITHMS FOR PROTECTING TRANSFORMER TERMINATED LINES
JP3640474B2 (en) Uninterruptible insulation resistance measuring device
JPH03279873A (en) Method and device for phase sequence detection of power distribution line

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 16

EXPY Cancellation because of completion of term