JPH04204279A - Multi-channel squid magnetic flux meter - Google Patents

Multi-channel squid magnetic flux meter

Info

Publication number
JPH04204279A
JPH04204279A JP2337130A JP33713090A JPH04204279A JP H04204279 A JPH04204279 A JP H04204279A JP 2337130 A JP2337130 A JP 2337130A JP 33713090 A JP33713090 A JP 33713090A JP H04204279 A JPH04204279 A JP H04204279A
Authority
JP
Japan
Prior art keywords
squid
channel
current
current bias
magnetometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2337130A
Other languages
Japanese (ja)
Other versions
JP3058681B2 (en
Inventor
Keiko Makie
牧絵 恵子
Masao Hotta
正生 堀田
Matsuo Yamazaki
山崎 松夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2337130A priority Critical patent/JP3058681B2/en
Priority to DE19914139212 priority patent/DE4139212C2/en
Publication of JPH04204279A publication Critical patent/JPH04204279A/en
Application granted granted Critical
Publication of JP3058681B2 publication Critical patent/JP3058681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0356SQUIDS with flux feedback

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To prevent the increase of signal lines and reduce the scattering among many SQUID elements by connecting resistances in series in a cooling medium for current bias or SQUID elements driving SQUID and driving many SQUID magnetic flux meter with the use of the same current bias with the average value of the bias current of SQUID. CONSTITUTION:When a current bias 9 is set at a certain value, the output of a preamplifier 4 becomes a value indicating the sensitivity of a SQUID magnetic flux meter. Next channel changing-over is performed by a multiplexer 10 and a microcomputer 12 holds the output voltage of each channel and a current bias value with the use of an A/D convertor 11 to successively measure SQUID sensitivity as the current bias is changed so as to obtain a specified sensitivity curve. And the current value representing the optimum sensitivity each channel is calculated from the data of the output voltage and the bias by the use of the microcomputer 12 to find the average value of the current bias so as to set the output current of a current source 9 through a D/A convertor 13.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、生体磁場などの微小磁場の測定を多点で行う
多チャンネルSQUIDii束計に関する。 【従来の技tlfl SQUID磁束計は少なくとも1つのジョセフソン接合
を持ツS Q U I D (Superconduc
ting QUantum Interference
 Device)とインプットコイル、フィードバック
コイル、磁場を検出するピックアップコイル及び、電子
回路系などにより構成される。SQUID磁束計は、磁
束を電圧に変換する働きを持ち、通常磁束計の動作点を
固定するためにF L L (Flux−Locked
 Loop)とよばれる帰還回路の構成をなし、微弱磁
場の計測に用いられている9直流型SQUIDにおける
磁束計の感度は、SQUIDに与える電流バイアスを磁
束検出感度が最大になるように設定する。従来の多チャ
ンネルSQUID磁束計は、■チャネルSQUID磁束
計を多数配列して構成されている。その例はジャパニー
ズ・ジャーナル・オブ・アプライド・フィジックス(J
apanese Journal of Applie
d Physics)Vol、28. No、3.19
89. ppL456−L458に記載される。 【発明が解決しようとする課題】 1チャンネルSQUID磁束計を多数配列して多チャン
ネルSQUID磁束計を構成した場合、個々のSQUI
Dの磁束検出感度を最良の状態にするためにはチャネル
数と同数のバイアスを供給する電流源が必要となる。し
かしながら、この場合には信号線数が増加するため電子
回路系の構成が複雑となり、さらに冷却媒体への入力信
号線数も多くなり冷却媒体の蒸発を早めるという問題が
あった。 また、多チャンネルSQUID磁束計を同一電流バイア
スで駆動する場合、SQUID素子の特性のバラツキに
関して考慮がなされていないため。 正常に動作する素子から磁場検出に必・要な検出感度を
得ることのできないという問題があった。
[Industrial Application Field 1] The present invention relates to a multi-channel SQUIDii fluxmeter that measures micromagnetic fields such as biomagnetic fields at multiple points. [Conventional technology tlfl SQUID magnetometers have at least one Josephson junction.
ting QUantum Interference
It consists of an input coil, a feedback coil, a pickup coil that detects a magnetic field, and an electronic circuit system. A SQUID magnetometer has the function of converting magnetic flux into voltage, and usually uses FLL (Flux-Locked) to fix the operating point of the magnetometer.
The sensitivity of the magnetometer in the 9 DC type SQUID, which forms a feedback circuit called a loop) and is used to measure weak magnetic fields, is set so that the current bias applied to the SQUID is set to maximize the magnetic flux detection sensitivity. A conventional multi-channel SQUID magnetometer is constructed by arranging a large number of channel SQUID magnetometers. An example is the Japanese Journal of Applied Physics (J
apanese Journal of Applie
d Physics) Vol, 28. No, 3.19
89. It is described in ppL456-L458. [Problems to be Solved by the Invention] When a multi-channel SQUID magnetometer is constructed by arranging a large number of 1-channel SQUID magnetometers, each SQUID magnetometer is
In order to achieve the best magnetic flux detection sensitivity of D, current sources supplying the same number of biases as the number of channels are required. However, in this case, the number of signal lines increases, which complicates the configuration of the electronic circuit system.Furthermore, the number of input signal lines to the cooling medium also increases, causing the problem of hastening the evaporation of the cooling medium. Furthermore, when driving a multi-channel SQUID magnetometer with the same current bias, no consideration is given to variations in the characteristics of the SQUID elements. There has been a problem in that it is not possible to obtain the detection sensitivity required for magnetic field detection from elements that operate normally.

【課題を解決するための手段l このような問題点を解決するため1本発明では、SQU
IDを駆動する電流バイアスおよび5QtJ10素子に
対して直列に抵抗を冷却媒体内で接続し、それらのSQ
UID素子を並列接続して、さらに各SQUIDの電流
バイアスの平均値により、多数のSQUID磁束計を同
一電流バイアスで駆動する。 【作用】 ・ 冷却媒体内で電流バイアスとSQUID素子に抵抗を直
列接続し、各SQUIDの電流バイアスの平均値を用い
て多数の5QtJ4D磁束計を同一電流バイアスで駆動
することにより、多チャンネル化に伴う信号線の増加を
防ぎ、さらに多数のSQUID素子間のバラツキを低減
し、高感度で駆動することができる。
[Means for Solving the Problems] In order to solve these problems, the present invention uses SQU
Connect a resistor in series with the current bias driving the ID and the 5QtJ10 element in the cooling medium, and set their SQ
UID elements are connected in parallel, and a large number of SQUID magnetometers are driven with the same current bias based on the average value of the current bias of each SQUID. [Function] - By connecting a resistor in series to the current bias and the SQUID element in the cooling medium, and driving a large number of 5QtJ4D magnetometers with the same current bias using the average value of the current bias of each SQUID, it is possible to increase the number of channels. It is possible to prevent the accompanying increase in signal lines, further reduce variations among a large number of SQUID elements, and drive with high sensitivity.

【実施例】【Example】

以下、本発明の実施例を図面により説明する。 第2図は、電流バイアスに対する磁束検出感度の変化を
模擬的に表したものである。SQUID素子により最適
感度及び最適感度をとる電流バイアス値が異なっている
ため、各チャネルの利得を等しくするためには、磁束検
出感度が等しくなるようにSQUID素子ごとに電流バ
イアスを設定しなければならない。しかしながら、SQ
UID磁束計は通常FLLと呼ばれる帰還ループ構成で
動作させるため、多少の感度バラツキによる□系の利得
の変動誤差はあまり問題とはならない。このため、各S
 Q’U I Dの最適感度をとる電流バイアス値工、
〜工、の平均値をもって、同一の電流バイアス値に設定
することが可能となる。このときの同一の電流バイアス
値を工、とすると、1、=(1,+・・・+11+・・
・+In)/nで表せる。ここでnはチャネル数である
。 第1図に本発明の第1の実施例を示す。 まず、SQUID磁束計の動作について説明する。SQ
UID素子1は、インプットコイル2からの外部磁束と
フィードバックコイル3からの変調磁束及び帰還磁束の
磁束の差を電圧に変換する。 この電圧はプリアンプ4で増幅されたのち、電子回路7
により変調信号との同期検波などの処理が行われて出力
される。また、出力電圧は電圧電流変換器6で電流に変
換された後、変調信号とともにフィードバックコイルへ
入力される。 本発明の特徴は複数のSQUID素子の電流バイアスを
同一の電流源で設定できることである。 各SQUID素子1の持つ抵抗値は素子製作上バラツキ
があるため、SQUID素子の持つ抵抗値に比べて大き
なほぼ等しい抵抗値Rをもつ複数の抵抗8をSQUID
素子1にそれぞれ直列に接続したのち、各チャネルを並
列に接続し、各チャネルに共通な電流バイアス用の電流
源9に接続する。 この結果、各SQUID素子の電流バイアス値がほぼ等
しくなるように設定することができる。また、この際、
各SQUID素子に直列に接続する抵抗8を冷却媒体内
に設置することにより、冷却媒体内から取り出す電流バ
イアス線を1本とすることができるため、冷却媒体の蒸
発量を低減することができる。第1図において、冷却媒
体内tこ設置される部分破線内にて示した。 電流バイアスの設定は第3図に示すようなフローチャー
トに従って行う。まず、電流バイアス9をある値に設定
する。この時のプリアンプの出力は、SQUID磁束計
の感度を示す値である。マルチプレクサ10によりチャ
ネル切替えを行い、各チャネルの出力電圧をA/D変換
器11によりマイクロコンピュータ12に取り込む。マ
イクロコンピュータでは、各チャネルの出力電圧値及び
電流バイアス値を保持する。電流バイアスを変化させな
からSQUID感度を順次測定することにより、第2図
と同様な感度曲線を得ることができる。次に、各チャネ
ルの最適感度を示す電流値を出力電圧及び電流バイアス
のデータからマイクロコンピュータにより計算し、電流
バイアスの平均値を求めて、D/A変換器13を介して
電流源9の出力電流を設定する。本方法により、同一電
流バイアスで多数のSQUIDを駆動することが可能と
なる。 しかしながら、正常に動作しないSQUID素子が存在
する場合、その素子からは出力電圧が得られないため、
電流バイアス設定時に誤差が生じる。 この問題を解決するための実施例を第4図のフローチャ
ートにより説明する。チャネルの感度レベルがあるしき
い値に達しているか否かをマイクロコンピュータにより
判断する。しきい値に達しないSQUID素子は使用し
ないと判定し、電流バイアス設定時の対象から外す。こ
の結果、電流バイアスをより正確に設定することが可能
となる。 本発明の第1及び第2の実施例では、各チャネルごとに
磁束検出感度が高くなる電流バイアスを求めた後に多チ
ャンネルの電流バイアス値を設定する。このためにはマ
イクロコンピュータを介すことが必要となり、電流の設
定が複雑で時間がかかるという問題がある。 この問題を解決し、電流バイアス設定を短時間に行うた
めの実施例を第5図に示す。先に述べたようにSQUI
D磁束計はFLL状態で動作させるため、多少の感度バ
ラツキによる系の利得の変動誤差はあまり問題とはなら
ない。そこで、素子特性に大きなバラツキがない場合に
は、各チャネルの電流バイアスの平均値を求めることは
各チャネルの磁束検出感度の和が最大になるように電流
バイアス値を設定することと等価になる。 磁束検出感度をあられすプリアンプ4の出力電圧を加算
器14で加算する。加算後の信号が最大となるように電
流バイアス調整器15は調整出力を発して電流源9の出
力電流を調整する。このような電流バイアスの調整は、
インプットコイルに擬似信号を入力したときのプリアン
プの出力レベルが最大になるように最適電流バイアス値
を設定する方法や、電流バイアスを変化させたときの変
調信号の倍周波数成分をとらえる方法などにより容易に
行うことができる。本実施例により、電流バイアス設定
に要する時間を大幅に短縮することができ、さらに故障
したSQUID素子が存在した場合にも正確に電流バイ
アスの設定を行うことができる。 上記の実施例はSQUID素子のバラツキ度合いがほぼ
等しく、小さいとの仮定のもとで考えられている。しか
、しながら、作成されたチップごとにSQUID素子の
特性が異なる可能性がある。 このため、上記の電流バイアスの設定方法を同一チップ
上のSQUID素子に関して適用し、チップごとに電流
バイアスを設定することが有効であると考えられる。本
方法に関する実施例を第6図に示す、複数の超伝導回路
チップ16には、それぞれ特性の等しい2つ以上のSQ
UID素子が配列され、各チップごとに第1の実施例で
述べたような回路構成を持っている。つまり同一チップ
上のSQUID素子に対して共通の電流i!9を有し、
それぞれ抵抗を介して電流バイアスが与えられる。 図のようにm枚のチップがある場合にはm個の電流バイ
アスで駆動する。この結果、全てのSQUIDを同一電
流バイアスを用いて駆動する場合に比べて、素子感のバ
ラツキの影響を低減できるため、磁束検出感度を向上し
高精度で磁場の検出を行うことが可能となる。なお、二
のときの電流バイアス値の設定は本発明の第1、第2あ
るいは第3の実施例を用いることで実現可能である。 上記の実施例では、同一電流バイアスを用いた場合にS
QUIDの感度がほぼ等しくなると仮定している。しか
しながら、各チャネルの感度を正確に知ることは磁場強
度を測定する上で重要であり、各チャネルの磁束検出感
度を記録することが有効である。このための実施例を示
すフローチャートを第7図により説明する。本発明の第
1の実施例において述べたように、電流バイアス設定時
のプリアンプの出力は磁束検出感度を表す。そこで、第
3図のフローチャートで示す同一電流バイアスの設定後
、プリアンプの出力を各チャネルごとにA/D変換器を
介してマイクロコンピュータ−に取り込む、このように
各チャネルの磁束検出感度のデータを記録しておくこと
により、各チャネルの感度バラツキを防ぐことができる
。また、この方法は5本発明の第2及び第3の実施例に
おいてもプリアンプ出力をA/D変換器を介してマイク
ロコンピュータに取り込むことにより、実現可能である
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a simulated representation of changes in magnetic flux detection sensitivity with respect to current bias. Since the optimum sensitivity and the current bias value for achieving the optimum sensitivity differ depending on the SQUID element, in order to equalize the gain of each channel, the current bias must be set for each SQUID element so that the magnetic flux detection sensitivity is equal. . However, SQ
Since the UID magnetometer is normally operated with a feedback loop configuration called FLL, fluctuation errors in the gain of the □ system due to slight variations in sensitivity do not pose much of a problem. For this reason, each S
Current bias value engineer to obtain optimal sensitivity of Q'UID,
It becomes possible to set the same current bias value by using the average value of . Letting the same current bias value at this time be 1, = (1, +...+11+...
・It can be expressed as +In)/n. Here n is the number of channels. FIG. 1 shows a first embodiment of the present invention. First, the operation of the SQUID magnetometer will be explained. SQ
The UID element 1 converts the difference between the external magnetic flux from the input coil 2 and the modulated magnetic flux and feedback magnetic flux from the feedback coil 3 into a voltage. After this voltage is amplified by the preamplifier 4, the electronic circuit 7
Processing such as synchronous detection with the modulated signal is performed and output. Further, the output voltage is converted into a current by the voltage-current converter 6, and then input to the feedback coil together with the modulation signal. A feature of the present invention is that the current biases of a plurality of SQUID elements can be set using the same current source. Since the resistance value of each SQUID element 1 varies due to element manufacturing, a plurality of resistors 8 having approximately equal resistance value R, which is larger than the resistance value of the SQUID element, is connected to the SQUID element.
After each channel is connected in series to the element 1, each channel is connected in parallel and connected to a current source 9 for current bias common to each channel. As a result, the current bias values of each SQUID element can be set to be approximately equal. Also, at this time,
By installing the resistor 8 connected in series to each SQUID element in the coolant, only one current bias line can be taken out from the coolant, thereby reducing the amount of evaporation of the coolant. In FIG. 1, the portion of the cooling medium installed within the cooling medium is shown within the broken line. Setting of the current bias is performed according to a flowchart as shown in FIG. First, the current bias 9 is set to a certain value. The output of the preamplifier at this time is a value indicating the sensitivity of the SQUID magnetometer. A multiplexer 10 performs channel switching, and an A/D converter 11 inputs the output voltage of each channel into a microcomputer 12. The microcomputer holds the output voltage value and current bias value of each channel. By sequentially measuring the SQUID sensitivity without changing the current bias, a sensitivity curve similar to that shown in FIG. 2 can be obtained. Next, a current value indicating the optimum sensitivity of each channel is calculated by a microcomputer from the output voltage and current bias data, an average value of the current bias is calculated, and the current value is outputted from the current source 9 via the D/A converter 13. Set the current. This method makes it possible to drive multiple SQUIDs with the same current bias. However, if there is a SQUID element that does not operate normally, no output voltage can be obtained from that element.
An error occurs when setting the current bias. An embodiment for solving this problem will be explained with reference to the flowchart of FIG. A microcomputer determines whether the sensitivity level of the channel has reached a certain threshold. A SQUID element that does not reach the threshold value is determined not to be used, and is excluded from the target when setting the current bias. As a result, it becomes possible to set the current bias more accurately. In the first and second embodiments of the present invention, the current bias values for multiple channels are set after determining the current bias that increases the magnetic flux detection sensitivity for each channel. For this purpose, it is necessary to use a microcomputer, and there is a problem that setting the current is complicated and takes time. An embodiment for solving this problem and setting the current bias in a short time is shown in FIG. As mentioned earlier, SQUI
Since the D magnetometer is operated in the FLL state, fluctuation errors in the system gain due to slight variations in sensitivity do not pose much of a problem. Therefore, if there are no large variations in the element characteristics, finding the average value of the current bias for each channel is equivalent to setting the current bias value so that the sum of the magnetic flux detection sensitivities of each channel is maximized. . The output voltage of the preamplifier 4, which determines the magnetic flux detection sensitivity, is added by an adder 14. The current bias regulator 15 outputs an adjustment output to adjust the output current of the current source 9 so that the signal after the addition becomes the maximum. This adjustment of current bias is
This can be easily done by setting the optimal current bias value so that the preamplifier's output level is maximized when a pseudo signal is input to the input coil, or by capturing the double frequency component of the modulation signal when changing the current bias. can be done. According to this embodiment, the time required to set the current bias can be significantly shortened, and even if a faulty SQUID element exists, the current bias can be set accurately. The above embodiments have been considered on the assumption that the degree of variation in the SQUID elements is approximately equal and small. However, the characteristics of the SQUID element may differ depending on the chip produced. Therefore, it is considered effective to apply the above-described current bias setting method to SQUID elements on the same chip and set the current bias for each chip. An embodiment of this method is shown in FIG. 6. A plurality of superconducting circuit chips 16 each include two or more SQ
UID elements are arranged, and each chip has a circuit configuration as described in the first embodiment. In other words, a common current i! for SQUID elements on the same chip! has 9;
A current bias is applied to each through a resistor. If there are m chips as shown in the figure, they are driven with m current biases. As a result, compared to driving all SQUIDs using the same current bias, the influence of variations in element sensitivity can be reduced, improving magnetic flux detection sensitivity and making it possible to detect magnetic fields with high precision. . Note that setting of the current bias value in the second case can be realized by using the first, second, or third embodiment of the present invention. In the above embodiment, when using the same current bias, S
It is assumed that the QUID sensitivities are approximately equal. However, accurately knowing the sensitivity of each channel is important in measuring magnetic field strength, and it is effective to record the magnetic flux detection sensitivity of each channel. A flowchart showing an embodiment for this purpose will be explained with reference to FIG. As described in the first embodiment of the present invention, the output of the preamplifier when the current bias is set represents the magnetic flux detection sensitivity. Therefore, after setting the same current bias as shown in the flowchart in Figure 3, the output of the preamplifier is input to the microcomputer via the A/D converter for each channel, and the magnetic flux detection sensitivity data of each channel is By recording the information, it is possible to prevent variations in the sensitivity of each channel. Furthermore, this method can also be implemented in the second and third embodiments of the present invention by taking in the preamplifier output into the microcomputer via an A/D converter.

【発明の効果】【Effect of the invention】

多チャンネルSQUID磁束計において、SQUIDを
駆動する電流バイアスおよびSQUID素子に対して直
列に抵抗を冷却媒体内で接続し。 それらのSQUID素子を並列接続して、さらに各SQ
UIDの電流バイアスの平均値により、多数のSQUI
D磁束計を同一電流バイアスで駆動することにより、多
チャンネル化に伴う信号線の増加を防ぎ、多数のSQU
IDをほぼ等しい高感度で駆動することができる。
In a multi-channel SQUID magnetometer, a resistor is connected within the cooling medium in series with the current bias driving the SQUID and the SQUID element. These SQUID elements are connected in parallel, and each SQUID element is further connected in parallel.
Due to the average value of the UID current bias, a large number of SQUI
By driving the D magnetometer with the same current bias, it is possible to prevent an increase in the number of signal lines due to multichannelization, and to reduce the number of SQUs.
The ID can be driven with almost the same high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す図、第2図は電流
バイアス値に対する磁束検出感度を模擬的に表した図、
第3図は本発明の第1の実施例を明の第3の実施例を示
す図、第6図は本発明の第4の実施例を示す図、第7図
は本発明の第50実施例を説明するフローチャートであ
る。 符号の説明 1・・・SQUID素子、2インプツトコイル、3・・
フィードバックコイル、4・・・プリアンプ、5・・1
チャンネルSQUID磁束計、6・・・電圧電流変換器
、7・・・電子回路、8・・抵抗、9電流バイアス、1
0・・・マルチプレクサ、11・・・A/D変換器、1
2・・・マイクロコンピュータ、13・・・D/A変換
器、14・・・加算器、15・・・電流バイアス調整器
、16・・1チツプ上のSQUID磁束計代理人弁理士
 小 川 勝 男・パ \−ノ′ V、 ・ ・ ・V、 ・ ・・へ
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a diagram simulating magnetic flux detection sensitivity with respect to current bias value,
FIG. 3 is a diagram showing a third embodiment of the invention, FIG. 6 is a diagram showing a fourth embodiment of the invention, and FIG. 7 is a diagram showing a fiftieth embodiment of the invention. 3 is a flowchart illustrating an example. Explanation of symbols 1...SQUID element, 2 input coils, 3...
Feedback coil, 4...Preamplifier, 5...1
Channel SQUID magnetometer, 6...voltage-current converter, 7...electronic circuit, 8...resistance, 9 current bias, 1
0... Multiplexer, 11... A/D converter, 1
2...Microcomputer, 13...D/A converter, 14...Adder, 15...Current bias regulator, 16...SQUID magnetometer on one chip Masaru Ogawa, patent attorney Man/Pa\-ノ' V、 ・ ・ ・V、 ・ ・・・to

Claims (1)

【特許請求の範囲】 1、少なくとも1つのジョセフソン接合を持ち、冷却媒
体内に配置されるSQUID素子を用いる磁束計におい
て、前記SQUID素子を駆動する電流バイアス源と前
記SQUID素子の間が前記冷却媒体内に配置される抵
抗で直列に接続されることを特徴とするSQUID磁束
計。 2、第1請求項に記載のSQUID磁束計を少なくとも
2つ以上有する多チャンネルSQUID磁束計において
、抵抗を直列接続したSQUID素子を並列に接続し、
同一電流バイアスで駆動することを特徴とする多チャン
ネルSQUID磁束計。 3、少なくとも1つのジョセフソン接合を有し、冷却媒
体内に配置されるSQUID素子と、該SQUID素子
に検出すべき入力磁束を伝達する入力系と、該SQUI
D素子の出力に対応する磁束と変調磁束とを帰還する帰
還系とを有する磁束検出回路を複数チャンネル有すると
ともに各チャンネルのSQUID素子に電流バイアスを
与えるための各チャンネル共通の電流源を有し、各チャ
ンネルのSQUID素子にそれぞれ直列に接続された抵
抗を介して前記電流バイアスが各SQUID素子に供給
されることを特徴とする多チャンネルSQUID磁束計
。 4、前記抵抗は各チャンネル間でほぼ等しい抵抗値を有
することを特徴とする請求項3に記載の多チャンネルS
QUID磁束計。 5、前記抵抗は前記SQUID素子よりも大きな抵抗値
を有することを特徴とする請求項3に記載の多チャンネ
ルSQUID磁束計。 6、前記抵抗は前記冷却媒体内に配置され、かつ前記冷
却媒体内で共通に接続されてその共通接続点と前記電流
源とが接続されることを特徴とする請求項3に記載の多
チャンネルSQUID磁束計。 7、前記電流源の出力電流は複数のSQUID素子の電
流バイアスの最適値の平均値に対応して設定されること
を特徴とする請求項3に記載の多チャンネルSQUID
磁束計。 8、請求項3に記載の多チャンネルSQUID磁束計に
おいて、複数チャンネルのSQUID素子の磁束検出感
度が最大となる電流バイアス値をそれぞれ検出し、各チ
ャネルの電流バイアスがその平均値となるよう前記電流
源の出力電流を設定する手段を更に有することを特徴と
する多チャンネルSQUID磁束計。 9、請求項3に記載の多チャンネルSQUID磁束計に
おいて、複数チャンネルのSQUID素子の磁束検出感
度の和が最大になるように前記電流源の出力電流を設定
する手段を更に有することを特徴とする多チャンネルS
QUID磁束計。 10、前記出力電流設定手段は、正常動作しないSQU
ID素子を除いて電流バイアス値を設定することを特徴
とする請求項8もしくは9に記載の多チャンネルSQU
ID磁束計。 11、複数の超伝導回路チップの各々にそれぞれ複数の
SQUID磁束計を備え、同一チップ上のSQUID素
子を同一電流バイアスで駆動し、各チップごとに電流バ
イアスを調整する手段を有することを特徴とする多チャ
ンネルSQUID磁束計。
[Claims] 1. In a magnetometer using a SQUID element having at least one Josephson junction and disposed in a cooling medium, the cooling is provided between a current bias source that drives the SQUID element and the SQUID element. A SQUID magnetometer characterized in that it is connected in series with a resistor placed in a medium. 2. In a multi-channel SQUID magnetometer having at least two or more SQUID magnetometers according to the first claim, SQUID elements having resistors connected in series are connected in parallel,
A multi-channel SQUID magnetometer characterized by being driven with the same current bias. 3. a SQUID element having at least one Josephson junction and disposed in a cooling medium; an input system for transmitting input magnetic flux to be detected to the SQUID element;
It has a plurality of channels of magnetic flux detection circuits each having a feedback system that returns the magnetic flux corresponding to the output of the D element and the modulated magnetic flux, and has a current source common to each channel for applying a current bias to the SQUID element of each channel, A multi-channel SQUID magnetometer, characterized in that the current bias is supplied to each SQUID element through a resistor connected in series to each SQUID element of each channel. 4. The multi-channel S according to claim 3, wherein the resistor has a substantially equal resistance value between each channel.
QUID magnetometer. 5. The multi-channel SQUID magnetometer according to claim 3, wherein the resistor has a larger resistance value than the SQUID element. 6. The multi-channel device according to claim 3, wherein the resistors are disposed within the cooling medium and are commonly connected within the cooling medium so that the common connection point is connected to the current source. SQUID magnetometer. 7. The multi-channel SQUID according to claim 3, wherein the output current of the current source is set corresponding to an average value of optimal values of current biases of a plurality of SQUID elements.
Magnetic flux meter. 8. In the multi-channel SQUID magnetometer according to claim 3, the current bias value at which the magnetic flux detection sensitivity of the SQUID elements of the plural channels is maximized is detected, and the current bias value of each channel is adjusted so that the current bias of each channel becomes the average value. A multi-channel SQUID magnetometer, further comprising means for setting the output current of the source. 9. The multi-channel SQUID magnetometer according to claim 3, further comprising means for setting the output current of the current source so that the sum of magnetic flux detection sensitivities of the SQUID elements of the plurality of channels is maximized. Multi-channel S
QUID magnetometer. 10. The output current setting means is used for SQU that does not operate normally.
The multi-channel SQU according to claim 8 or 9, wherein the current bias value is set excluding the ID element.
ID flux meter. 11. Each of the plurality of superconducting circuit chips is provided with a plurality of SQUID magnetometers, the SQUID elements on the same chip are driven with the same current bias, and the current bias is adjusted for each chip. Multi-channel SQUID magnetometer.
JP2337130A 1990-11-30 1990-11-30 Multi-channel SQUID magnetometer Expired - Fee Related JP3058681B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2337130A JP3058681B2 (en) 1990-11-30 1990-11-30 Multi-channel SQUID magnetometer
DE19914139212 DE4139212C2 (en) 1990-11-30 1991-11-28 Multi-channel SQID magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337130A JP3058681B2 (en) 1990-11-30 1990-11-30 Multi-channel SQUID magnetometer

Publications (2)

Publication Number Publication Date
JPH04204279A true JPH04204279A (en) 1992-07-24
JP3058681B2 JP3058681B2 (en) 2000-07-04

Family

ID=18305730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337130A Expired - Fee Related JP3058681B2 (en) 1990-11-30 1990-11-30 Multi-channel SQUID magnetometer

Country Status (2)

Country Link
JP (1) JP3058681B2 (en)
DE (1) DE4139212C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313910B1 (en) * 1999-02-25 2001-11-15 구자홍 Apparatus and Method for Multichannel Measuring of Magnetic field

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2303677A1 (en) 1999-04-09 2000-10-09 Hideo Itozaki Device and method for easily adjusting working point of squid
ES2213620T3 (en) 1999-10-04 2004-09-01 Qest Quantenelektronische Systeme Tubingen Gmbh Sitz Boblingen DEVICE FOR MEASURING HIGH RESOLUTION OF MAGNETIC FIELDS.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906930A (en) * 1987-02-27 1990-03-06 Hitachi, Ltd. Magnetometer using a Josephson device and superconducting phototransistor
JPH02257076A (en) * 1989-03-30 1990-10-17 Fujitsu Ltd System for controlling digital squid
JPH07104402B2 (en) * 1990-09-07 1995-11-13 ダイキン工業株式会社 Magnetic flux lock method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313910B1 (en) * 1999-02-25 2001-11-15 구자홍 Apparatus and Method for Multichannel Measuring of Magnetic field

Also Published As

Publication number Publication date
JP3058681B2 (en) 2000-07-04
DE4139212A1 (en) 1992-06-11
DE4139212C2 (en) 1994-02-03

Similar Documents

Publication Publication Date Title
US9377515B2 (en) Flux-locked loop circuit, flux-locked loop method, and squid measuring apparatus
US5285155A (en) Method and apparatus for magnetic flux locking based upon a history of plural comparisons of the SQUID output signal and a predetermined signal
US7453263B2 (en) Reference current optimizing apparatus for controlling magnetic flux-voltage conversion characteristic of double relaxation oscillation squid
US6819101B2 (en) Magnetic detector
US4203137A (en) Dual mode read preamplifier with electrical short detector
JP3081902B2 (en) Magnetic field detection circuit
US5668472A (en) Multichannel flux measuring apparatus having function for compensating interference due to crosstalk
US5291135A (en) Weak magnetic field measuring system using dc-SQUID magnetometer with bias current adjustment and/or detecting function of abnormal operation
JPH04204279A (en) Multi-channel squid magnetic flux meter
JP2929172B2 (en) Multi-channel SQUID magnetometer
JP5089048B2 (en) Multiple signal readout circuit
Kim et al. Compact readout electronics for 62-channel DROS magnetocardiogram system
JP2869780B2 (en) Latch-free SQUID magnetometer
JP2641456B2 (en) SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same
JP2869775B2 (en) SQUID magnetometer
JP3063655B2 (en) Magnetic sensor element operation circuit
JPH05264691A (en) Squid fluxmeter
Makie‐Fukuda et al. Automatic adjustment of bias current for direct current superconducting quantum interference device
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
JP2808258B2 (en) SQUID magnetometer
JP2902007B2 (en) Magnetic flux detector
JP3206198B2 (en) DC-SQUID magnetometer
JPH09222468A (en) Multi-channel squid fluxmeter
JP2003344543A (en) Multi-input current detector, current detecting method using multi-input current detector, and radiation detector using multi-input current detector
JP3156387B2 (en) SQUID magnetometer system and initial value setting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees