JPH04204244A - Complex electrode incorporated in one - Google Patents

Complex electrode incorporated in one

Info

Publication number
JPH04204244A
JPH04204244A JP33797390A JP33797390A JPH04204244A JP H04204244 A JPH04204244 A JP H04204244A JP 33797390 A JP33797390 A JP 33797390A JP 33797390 A JP33797390 A JP 33797390A JP H04204244 A JPH04204244 A JP H04204244A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
insulating layer
lead wires
integrated composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33797390A
Other languages
Japanese (ja)
Other versions
JP2949845B2 (en
Inventor
Hirokazu Sugihara
宏和 杉原
Tadayasu Mitsumata
光亦 忠泰
Makoto Takeya
誠 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33797390A priority Critical patent/JP2949845B2/en
Publication of JPH04204244A publication Critical patent/JPH04204244A/en
Application granted granted Critical
Publication of JP2949845B2 publication Critical patent/JP2949845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To make simply multipoint concurrency measurement and make the observation of signal transfer extending among many cells by the complex electrodes incorporated in one which are provided with a wiring element radially arranging lead wires from the plural electrodes whose the distances between the nearest electrodes are equal each other, and a insulating layer having holes on the electrodes. CONSTITUTION:Exposure is made with photoresist so as to become the pattern of electrodes 1 and lead wires 2 of the shape in which the centers of electrodes are located at the several intersections on a grid of 6X6, center distances between the nearest electrodes of several electrodes are equal, and moreover, lead wires extend radially. Then, the photoresist is removed after ITO is made etching in the solution in which pure water 50, hydrochloric acid 50 and nitric acid 1 are mixed with volume ratio. The wiring element in which the diameter of the electrode 1 is 15mum, the width of the lead wire 2 is 10mum, the center distance of electrodes is 100mum, is formed. Next, negative photosensitive polyimide (hereinafter abbreviated to NPI) is made spin coating as an insulating layer so that the thickness after drying is 1mum and the insulating layer pattern is made the exposure formation so that holes 3 of diameter 10mum are made at the centers of several electrodes of the wiring element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 生体活動の電気的計瓢 特に神経細胞の電
気的活動を計測する神経電気生理の分野で用いる、多電
極を有する一体化複合電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an integrated composite electrode having multiple electrodes used in the field of neuroelectrophysiology, particularly for measuring the electrical activity of nerve cells. .

従来の技術 従来 神経細胞の電気的活動を計測するに(i。Conventional technology Conventionally, to measure the electrical activity of nerve cells (i.

ガラス電極等からなる記録電極と、金属電極等からなる
刺激電極とを各々細胞内または細胞間に挿入し 刺激電
極より刺激電流(または電圧)を加えた際欧 神経細胞
の電気的活動を記録電極により計測するのが普通であっ
九 これ以外にL 例えば細胞体をガラス吸引電極で突き刺
し 細胞体の内部をガラス吸引電極中の液で還流し こ
のガラス吸引電極から電気信号を与えて細胞を観察する
所謂細胞内還流法等多数の変法があム 発明が解決しようとする課題 上述した従来の技術およびその変法においては主に空間
的な制約と操作精度上の制約で、 1つのサンプル中に
一度に2本以上の記録電極を挿入し神経細胞の電気的活
動を記録する多点同時計測は非常に困難であるという課
題があつ九 測定点が増えるに従って、困難さの度合いが増加し 多
細胞間の観測ができ難いという課題があった 本発明(よ 多点同時計測を簡便に行−\ 多細胞間に
渡る信号伝達観察を可能ならしめる一体化複合電極を提
供することを目的とする。
A recording electrode made of a glass electrode or the like and a stimulation electrode made of a metal electrode or the like are inserted into a cell or between the cells, and when a stimulation current (or voltage) is applied from the stimulation electrode, the electrical activity of the neuron is recorded. In addition to this, for example, the cell body is pierced with a glass suction electrode, the inside of the cell body is refluxed with the liquid in the glass suction electrode, and an electrical signal is applied from this glass suction electrode to observe the cell. A number of modified methods, such as the so-called intracellular perfusion method, are used to solve the problem that the invention aims to solve.The conventional techniques and their modified methods described above are mainly subject to spatial constraints and constraints on operational precision, and the problem that Amu Invention aims to solve is Simultaneous multi-point measurement by inserting two or more recording electrodes at once to record the electrical activity of neurons is extremely difficult.As the number of measurement points increases, the degree of difficulty increases. The object of the present invention is to provide an integrated composite electrode that makes it possible to easily perform simultaneous multi-point measurements and observe signal transmission between multiple cells.

課題を解決するための手段 本発明は 絶縁基板上に 最近接の電極間距離が相等し
い複数個の電極をtiえ 前記電極からリード線を放射
状に配設した配線部と、前記配線部上の前記電極上に孔
を有した絶縁層とを設けた一体化複合電極のよって、上
記課題を解決したものである。
Means for Solving the Problems The present invention includes a plurality of electrodes having equal distances between the nearest electrodes on an insulating substrate, a wiring section in which lead wires are arranged radially from the electrodes, and a wiring section on the wiring section. The above problem is solved by an integrated composite electrode in which an insulating layer having holes is provided on the electrode.

作用 本発明の一体化複合電極上に培養した細胞に信号を与え
 同時に細胞間の信号の伝達を計測する際(ミ 最近接
の電極間距離を調整し しかもこの電極間を等間隔で並
ばせることにより、−細胞体が電極上に配置し この細
胞体から伸びた細胞突起を介した細胞体が、隣合う電極
上に位置する確率が高(なム したがって、隣合う細胞
体間の信号の伝達を検知できも また 電極から伸ばしたリード線を放射状に配設するこ
とにより、 リード線間の容量成分がなくなり、ノイズ
が減少し測定制度が向上する。
Function: When applying a signal to cells cultured on the integrated composite electrode of the present invention and simultaneously measuring the transmission of signals between cells (i.e. adjusting the distance between the nearest electrodes and arranging the electrodes at equal intervals) Therefore, there is a high probability that the cell body is placed on the electrode and the cell body is located on the adjacent electrode via the cell protrusion extending from this cell body. By arranging the lead wires extending from the electrodes in a radial pattern, the capacitance component between the lead wires is eliminated, noise is reduced, and measurement accuracy is improved.

実施例 本発明に供される基板材料としては 細胞培養後顕微鏡
観察する必要があるため透明な基板が好ましく、石英ガ
ラ入 鉛ガラ入 ホウ珪酸ガラス等のガラ入 若しくは
石英等の無期物質、また1飄有機ガラス等の有機物質が
挙げられる力丈 機械的強度と透明性とを加味すると無
期物質が好まし1本発明に供される電極材料としては 
例えば酸化インジウム錫(ITO)、酸化acr、Au
、Cu、Ni、A1等が使用可能である。ただしITO
若しくは酸化錫を用いると、電極はわずかに黄色を帯び
た透明なものとなり、神経細胞の顕微鏡下での視認性が
良く、実験操作上有利であるが、とりわけITOが良導
電性であるため望まし鶏 リード線材料にも同様の材料が適応でき、やはり電極材
料と同様の理由でITOが好ましl、%まt& 本発明
の供される絶縁層材料として(よ例えばポリイミド(P
I)樹脂 エポキシ樹脂アクリレート樹脂 ポリエステ
ルWUt  或はポリアミド樹脂等透明な樹脂が挙げら
れる。
EXAMPLE The substrate material used in the present invention is preferably a transparent substrate since it is necessary to perform microscopic observation after cell culture, and it is preferable to use a transparent substrate containing quartz glass, lead glass, glass containing glass such as borosilicate glass, or an indefinite substance such as quartz. In view of mechanical strength and transparency, indefinite materials are preferred as the electrode materials used in the present invention.
For example, indium tin oxide (ITO), ACR oxide, Au
, Cu, Ni, A1, etc. can be used. However, ITO
Alternatively, if tin oxide is used, the electrode becomes transparent with a slight yellow tinge, making it easy to see nerve cells under a microscope, which is advantageous for experimental operations, but ITO is especially desirable because it has good conductivity. A similar material can be applied to the lead wire material, and ITO is preferable for the same reason as the electrode material (for example, polyimide (P)
I) Resin Transparent resins such as epoxy resin, acrylate resin, polyester WUt, or polyamide resin may be used.

これらの樹脂;L 配線部上に通常の手法によって塗布
して絶縁層が構成される。な耘 絶縁層材料が光照射重
合性であると、パターン形成が可能となるため好ましし
− 特に 絶縁層材料がPIであり培養する細胞が培養神経
細胞である場合に(表 良好な生育を示すため望ましl
v犯  さらにPIO中でL ネガティブフォトセンシ
ティブポリイミド(NPI)力匁 半導体のパターン形
成と同様に 配線部に塗布した後フォトエツチングプロ
セスを用いて孔を形成できるため好ましへ まt二  絶縁層の厚み:よ 絶縁性が付与できる程度
であればよく、特に限定するものではない低通常0.1
〜10μmが好ましく、 1〜5μm程度がさらに好ま
しへ 本発明の一体化複合電極(主 直接細胞を培養して細胞
の電気活動を計測記録する。培養条件若しくは細胞の種
類によって、細胞体の大きさ若しくは細胞突起の長さが
異なるが、一体化複合電極の最近接の電極間距離(よ 
10〜1000μmが好ましく℃ 電極間距離が10μ
m未満であると、互いに近接し過ぎるため細胞体が細胞
突起を介して相隣合う確率が減り、またリード線の配線
も困難になる。ま?=IO00μmを越えると、 リー
ド線の配線はしやすいが、細胞突起が1000μm程度
も伸びることは稀なため、細胞体が電極上に位置する確
率が減a 一般の条件で培養した細胞突起の長さ1よ 
平均100μm程度であるたべ電極間距離も100μm
程度が望ましt、%電極の形状(飄 最近接の電極間距
離を一定にする要請のた嵌 正方形か円形が好ましく、
細胞体の形状は一般には球状体なので円形形状の電極が
好ましくl ま−L  電極の大きさζ友 培養する細
胞体の大きさ程度が好ましく、正方形状の電極の場合一
辺が15〜20μ爪 円形状の電極の場合直径が15〜
20μmが好ましくも さらに 本発明の一体化複合電極の絶縁層中の孔は 一
体化複合電極上で培養した細胞体に電気信号を与えて刺
激させると同時!ミ 隣合う細胞体から刺激信号を検知
するた玖 電極を露出させる目的で形成し 電極中心部
に位置すム この孔の大きさ(よ 電極以下の大きさを
有すればよく、 5〜20μm程度が好ましく〜 また 本発明の一体化複合電極の電極中心部力丈同心円
状若しくは6×6の格子状の各交点に位置する構成であ
ると、 リード線を放射状に配線でき、特に6×6の格
子状の場合はリード線の配線の構成が簡単にすることが
できるため好ましくも以下具体的実施例で、本発明の一
体化複合電極をさらに詳細に説明する。
These resins are applied onto the L wiring portion by a conventional method to form an insulating layer. It is preferable that the insulating layer material is polymerizable by light irradiation because it enables pattern formation, especially when the insulating layer material is PI and the cells to be cultured are cultured nerve cells (Table 1). Desirable to show
Negative photosensitive polyimide (NPI) is preferable because holes can be formed using a photo-etching process after coating it on the wiring, similar to semiconductor pattern formation.Thickness of the insulating layer :Yo It is sufficient as long as it can provide insulation properties, and there is no particular limitation. Low usually 0.1
~10 μm is preferred, and approximately 1 ~ 5 μm is more preferred. The distance between the nearest electrodes of the integrated composite electrode (
Preferably 10 to 1000 μm °C Distance between electrodes is 10 μm
If it is less than m, the cell bodies will be too close to each other, reducing the probability that the cell bodies will be adjacent to each other via cell protrusions, and also making it difficult to wire lead wires. Ma? = When the IO exceeds 00 μm, it is easy to wire the lead wire, but it is rare for cell protrusions to extend as much as 1000 μm, so the probability that the cell body will be located on the electrode decreases.a Length of cell protrusions cultured under normal conditions Sa1!
The average distance between the pan electrodes is about 100μm, and the distance between them is also 100μm.
The shape of the electrodes (in order to keep the distance between the nearest electrodes constant) is preferably square or circular.
The shape of the cell body is generally spherical, so a circular electrode is preferable.The size of the electrode is preferably about the same size as the cell body to be cultured.In the case of a square electrode, each side is 15 to 20μ. For shaped electrodes, the diameter is 15~
The diameter of the hole in the insulating layer of the integrated composite electrode of the present invention is preferably 20 μm, and the hole in the insulating layer of the integrated composite electrode of the present invention can be simultaneously stimulated by applying an electric signal to the cell bodies cultured on the integrated composite electrode! M. A hole for detecting stimulation signals from adjacent cell bodies. A hole formed for the purpose of exposing the electrode. A hole located at the center of the electrode. The size of this hole (it only needs to be smaller than the electrode, about 5 to 20 μm. It is preferable that the electrode center portion of the integrated composite electrode of the present invention is arranged in concentric circles or at each intersection of a 6×6 grid, so that the lead wires can be wired radially, especially in a 6×6 grid. In the case of a lattice-like structure, the structure of the wiring of the lead wires can be simplified, so it is preferable that the integrated composite electrode of the present invention will be explained in more detail with reference to specific examples below.

実施例1 先ず、複合電極配線部の作製について述べる。Example 1 First, the production of the composite electrode wiring section will be described.

一体化複合電極の基盤は機械的強度の強い透明な絶縁素
材として、厚さ]、mmの硬質ガラス(IWAKI  
C0DE  7740  GLASS (居城硝子(株
)製)以下同じ)を用い九 配線部外寸(表 リードレスチップキャリアーパッケー
ジ実装用ソケット(753ERIES (山゛−電機工
業(株)製))に適合するものとし九電極およびリード
線の材料にはIT○を用シXIWAKI  C0DE 
 7740  GLASS上に約1000八属にコート
レ その後洗浄し九次(ミ 第1図に示すような6×6
の格子上の各交点に電極の中心部が位置し 各電極の最
近接の電極の中心間距離が等しく、 しかもリード線が
放射状に伸びた形状の電極1およびリード線2のパター
ンになるよう置 フォトレジストを用いて露光し 純水
50、塩酸50、硝酸1の体積比で混合した溶液中でI
T○をエツチングした後、フォトレジストを除去し九 
電極1の直径は15μRリ一ドwA2の幅は10μへ 
電極中心間距離は100μmの配線部を形成しな 次いで、絶縁層としてネガティブフォトセンシティブポ
リイミド(以下NPIと略す)を、乾燥後の厚みが1μ
mとなるようにスピンコートレ第2図に示すように配線
部の各電極の中心に直径10μmの孔3ができるよう番
! 絶縁層パターンを露光形成させ九 リードレスチップキャリアーパッケージ実装用ソケット
との接点1よ 金およびニッケルでコートし 耐久性を
向上させな さらぬ 電極1の部分を1%の塩化白金(
IV)酸六水和物と0.01%酢酸鉛の混合水溶液に!
極を浸漬り、50mA/cm2の電流を30s間通電し
電極表面に白金黒を析出させる所謂プラチナイズするこ
とで、インピーダンスを低下させた後、以下の実験に供
し島な杖 本実施例では電極1およびリード2の部分に
ITO1絶縁層にNPIを用いたが、用いる材料はこれ
らに限定されないことは既に述べf島また 本発明の一
体化複合電極を構成するためのプロセスは本実施例の方
法に限定されな賎実施例2 装置 一体化複合電極上での神経細胞の培養について述
べも 実施例1のようにして構成した一体化複合電極上で、神
経細胞としてラット大脳視覚皮質を培養し九 以下、培養法について詳細に述べる。
The base of the integrated composite electrode is a transparent insulating material with strong mechanical strength, made of hard glass (IWAKI) with a thickness of
C0DE 7740 GLASS (manufactured by Ishiro Glass Co., Ltd.) (the same applies hereinafter) shall be used (Table 1). Use IT○ for the material of the electrode and lead wire.XIWAKI C0DE
7740 GLASS was coated with about 1,000 eight genera. After that, it was washed and divided into nine layers (6 x 6 as shown in Figure 1).
The centers of the electrodes are located at each intersection on the grid, the distance between the centers of the nearest electrodes is equal, and the electrodes 1 and 2 are arranged in a pattern in which the lead wires extend radially. I was exposed using a photoresist in a solution containing 50 parts of pure water, 50 parts of hydrochloric acid, and 1 part of nitric acid by volume.
After etching T○, remove the photoresist and
The diameter of electrode 1 is 15μR, and the width of lead wA2 is 10μ.
A wiring part with a distance between electrode centers of 100 μm was formed, and then negative photosensitive polyimide (hereinafter abbreviated as NPI) was formed as an insulating layer to a thickness of 1 μm after drying.
Spin coating so that a hole 3 with a diameter of 10 μm is formed at the center of each electrode in the wiring part as shown in Figure 2. An insulating layer pattern is formed by exposure, and contact points 1 with the leadless chip carrier package mounting socket are coated with gold and nickel to improve durability.
IV) Mixed aqueous solution of acid hexahydrate and 0.01% lead acetate!
After lowering the impedance by immersing the electrode and applying a current of 50 mA/cm2 for 30 seconds to deposit platinum black on the electrode surface, the impedance was lowered. Although NPI was used for the insulating layer of ITO 1 and lead 2, it has already been mentioned that the materials used are not limited to these. EXAMPLE 2 Apparatus: Culture of neurons on an integrated composite electrode is described. Rat cerebral visual cortex was cultured as a neuron on an integrated composite electrode constructed as in Example 1. The culture method will be described in detail below.

(イ)生後2、3日を経過したSDプラット脳を摘出し
 氷冷したハンクス液に浸たす。
(b) Remove the SD Pratt brain after 2 or 3 days of age and immerse it in ice-cold Hank's solution.

(ロ)水冷ハンクス液中の脳から視覚皮質を切り出し 
イーグルの最小必須培地(以下MEMと略す〉液中に移
す。
(b) Cutting out the visual cortex from the brain in water-cooled Hank's solution
Transfer to Eagle's minimum essential medium (hereinafter abbreviated as MEM).

(ハ)MEM液中で、視覚皮質をできるだけ細かく、最
大でも0.2mm角となるように 切断する。
(c) In MEM solution, cut the visual cortex as finely as possible, to a maximum of 0.2 mm square.

(ニ)細かく切断した視覚皮質を遠沈管に入れカルシウ
ムおよびマグネシウムを含まないハンクス液(CMFハ
ンクス液)で3回洗浄した後、適量の同液中に分散する
(d) The finely cut visual cortex is placed in a centrifuge tube, washed three times with Hank's solution (CMF Hank's solution) that does not contain calcium and magnesium, and then dispersed in an appropriate amount of the same solution.

(ホ)上記(ニ)の遠沈管中に トリプシンのCMFハ
ンクス溶液(0,25重量パーセント)を加え 全量を
倍にすム 緩やかに撹はんしなが収 37℃で15分か
ら20分間恒温状態に保ち酵素反応をおこなわせた(即
ちインキュベート)。
(e) Add CMF Hanks solution of trypsin (0.25% by weight) into the centrifuge tube (d) above and double the total volume. Gently stir and collect. Keep at constant temperature at 37℃ for 15 to 20 minutes. The enzymatic reaction was carried out (ie, incubated).

(へ)牛胎児血清(FCS)10%を含むダルベツコ変
更イーグル培地とF−12培地とを1対1の体積比で混
合したDMEM/F 12混合培地を、上記(ホ)を経
た遠沈管中に加え 全量をさらに倍にすム 先端をバー
ナーであぶり口径を小さくしたパスツールピペットて 
緩やかにピペッティングを繰り返しく最大20回程度)
、細胞をほぐす。
(f) DMEM/F 12 mixed medium, which is a mixture of Dulbecco's modified Eagle medium containing 10% fetal calf serum (FCS) and F-12 medium at a volume ratio of 1:1, is placed in a centrifuge tube after passing through (e) above. In addition, double the total volume using a Pasteur pipette with a smaller diameter and burnt the tip with a burner.
(Repeat gentle pipetting up to 20 times)
, loosen cells.

(ト)9806. 65m/s2(即ち1000 g)
)で約5分間遠心分離を行う。遠心分離終了後、上溝を
捨て、沈澱をFC35%を含むDMEM/F12混合培
地に混濁する。
(g)9806. 65m/s2 (i.e. 1000g)
) for about 5 minutes. After centrifugation, the upper groove is discarded and the precipitate is suspended in a DMEM/F12 mixed medium containing 35% FC.

(チ)上記(ト)の混濁液を、再び1000gで5分間
遠心分離する。
(H) Centrifuge the turbid liquid from (G) above again at 1000g for 5 minutes.

(す)上記操作(ト)および(チ)をあと2回(計3回
)繰り返す。
(S) Repeat the above operations (g) and (h) two more times (total 3 times).

(ヌ)最終的に得られた沈澱を、 1rnlの5%FC
3を含むDMEM/F 12混合培地に混濁し混濁液中
の細胞濃度を赤血球勘定板を用いて計測すム 同様の培
地を用いて細胞濃度を2〜4X106個/mlになるよ
うに調整すも (ル)一体化複合電極上に直径12m爪 高さ7mmの
プラスティック製円筒を、複合電極の中心と円筒の中心
を合わせて接着することにより構成した細胞培養用ウェ
ル中ζへ あらかじめ5%FC8を含むDMEM/F 
12混合培地500μlを加え CO2インキユベータ
内(02濃度95瓢COe濃度5販 湿度979A 温
度37℃)で暖めておく。
(J) The finally obtained precipitate was added to 1rnl of 5% FC.
DMEM/F12 mixed medium containing 3 is suspended, and the cell concentration in the turbid liquid is measured using a red blood cell counting plate.Adjust the cell concentration to 2 to 4 x 106 cells/ml using the same medium. (l) Add 5% FC8 in advance to a cell culture well constructed by gluing a 7 mm high plastic cylinder with a nail of 12 m in diameter onto the integrated composite electrode, aligning the center of the composite electrode with the center of the cylinder. Contains DMEM/F
Add 500 μl of 12 mixed medium and warm it in a CO2 incubator (02 concentration: 95% COe concentration: 5%, humidity: 979A, temperature: 37°C).

(ヲ)上記(ル)のウェル中に細胞濃度を調整した混濁
液100μmを静かに加え 再びCOeインキュベータ
内に静置する。
(2) Gently add 100 μm of the turbid solution with adjusted cell concentration into the well in (1) above, and leave it in the COe incubator again.

(ヨ)上記(ル)の操作より3日後(ミ 培地の半量を
新しいものと交換すム 交換培地はFCSを含まないD
MEM/F l 2混合培地を用いも(り)以1!!、
4〜5日毎に上記と同様の培地交換を行う。
(Y) Three days after the operation in (L) above (Mi) Replace half of the medium with a new one.D The replacement medium does not contain FCS.
Also using MEM/Fl2 mixed medium (1)! ! ,
The medium is replaced every 4 to 5 days in the same manner as above.

これら一連の操作により、一体化複合電極上でラット大
脳視覚皮質の神経細胞を培養することができ通 細胞は絶縁層(PI)上でもプラチナイズされた電極上
でも良好に生育した したがって、適当な位置にある電極を刺激電極または記
録電極として用いれば 神経細胞電気活動の同時多点計
測が可能であっ九 な耘 神経細胞の培養法は本実施例以外にも多数の変法
があり、本実施例に限定されるものではなし− 発明の効果 本発明は 絶縁基板上に 最近接の電極間距離が相等し
い複数個の電極を備え 前言己電極からり−ド線を放射
状に配設した配線部と、前記配線部上の前記電極上に孔
を有した絶縁層とを設けた一体化複合電極を用℃(この
上での神経細胞の培養が可能であった さらにこの電極を用いれは 従来不可能または非常に困
難であった神経細胞電気活動の同時多点計測及び多細胞
に渡る信号伝達観察が実現できる第1図は本発明の一体
化複合電極の一実施例の配線部のパターン上面@ 第2
図は本発明の一体化複合電極の一実施例の絶縁層のパタ
ーン上面図である。
Through these series of operations, it was possible to culture neurons in the rat cerebral visual cortex on the integrated composite electrode, and the cells grew well both on the insulating layer (PI) and on the platinized electrode. Simultaneous multi-point measurement of neuron electrical activity is possible by using the electrodes at different locations as stimulation electrodes or recording electrodes. Effects of the Invention The present invention provides a wiring section in which a plurality of electrodes having the same distance between nearest electrodes are provided on an insulating substrate, and lead wires from the electrodes are arranged radially. and an insulating layer with a hole on the electrode on the wiring part.Culture of nerve cells on this electrode was possible. Simultaneous multi-point measurement of nerve cell electrical activity and observation of signal transmission across multiple cells, which have been extremely difficult, are now possible. Figure 1 shows the upper surface of the pattern of the wiring section of an embodiment of the integrated composite electrode of the present invention. Second
The figure is a top view of the pattern of the insulating layer of one embodiment of the integrated composite electrode of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁基板上に、最近接の電極間距離が相等しい複
数個の電極を備え、前記電極からリード線を放射状に配
設した配線部と、前記配線部上の前記電極上に孔を有し
た絶縁層とを設けたことを特徴とする一体化複合電極。
(1) A wiring section including a plurality of electrodes having the same distance between nearest electrodes on an insulating substrate, and a wiring section in which lead wires are arranged radially from the electrodes, and a hole on the electrodes on the wiring section. An integrated composite electrode characterized in that it is provided with an insulating layer.
(2)最近接の電極間距離が、10〜1000μmであ
る請求項1記載の一体化複合電極。
(2) The integrated composite electrode according to claim 1, wherein the distance between the nearest electrodes is 10 to 1000 μm.
(3)電極の大きさが、正方形若しくは円形であって、
一辺の長さ若しくは直径が15〜20μmである請求項
1記載の一体化複合電極。
(3) The size of the electrode is square or circular,
The integrated composite electrode according to claim 1, wherein the length of one side or the diameter is 15 to 20 μm.
(4)孔の大きさが、電極の大きさ以下である請求項1
若しくは3何れかに記載の一体化複合電極。
(4) Claim 1, wherein the size of the hole is less than or equal to the size of the electrode.
or the integrated composite electrode according to any one of 3.
(5)複数個の電極中心部が、6×6の格子状の各交点
に位置する請求項1記載の一体化複合電極。
(5) The integrated composite electrode according to claim 1, wherein the plurality of electrode centers are located at each intersection of a 6×6 grid.
JP33797390A 1990-11-30 1990-11-30 Electrodes for measuring cell electrical activity Expired - Lifetime JP2949845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33797390A JP2949845B2 (en) 1990-11-30 1990-11-30 Electrodes for measuring cell electrical activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33797390A JP2949845B2 (en) 1990-11-30 1990-11-30 Electrodes for measuring cell electrical activity

Publications (2)

Publication Number Publication Date
JPH04204244A true JPH04204244A (en) 1992-07-24
JP2949845B2 JP2949845B2 (en) 1999-09-20

Family

ID=18313740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33797390A Expired - Lifetime JP2949845B2 (en) 1990-11-30 1990-11-30 Electrodes for measuring cell electrical activity

Country Status (1)

Country Link
JP (1) JP2949845B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585933A2 (en) * 1992-09-04 1994-03-09 Matsushita Electric Industrial Co., Ltd. Planar electrode
US5563067A (en) * 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US5810725A (en) * 1993-04-16 1998-09-22 Matsushita Electric Industrial Co., Ltd. Planar electrode
US6297025B1 (en) 1994-06-13 2001-10-02 Matsushita Electric Industrial Co., Ltd Measurement of complete electrical waveforms of tissue or cells
WO2002006809A1 (en) * 2000-07-13 2002-01-24 Matsushita Electric Industrial Co., Ltd. Extracellular recording integrated composite electrode
WO2003001194A1 (en) * 2001-06-20 2003-01-03 Matsushita Electric Industrial Co., Ltd. Extracellular recording electrode
USRE40209E1 (en) 1994-06-13 2008-04-01 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
CN102247137A (en) * 2010-05-19 2011-11-23 中国科学院电子学研究所 Microelectrode array-based multichannel neural information detection system
WO2015151395A1 (en) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 Electrochemical measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801617B2 (en) 2003-06-27 2006-07-26 松下電器産業株式会社 Pharmacological measurement apparatus and system and well container used therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585933A3 (en) * 1992-09-04 1995-09-13 Matsushita Electric Ind Co Ltd Planar electrode
EP0585933A2 (en) * 1992-09-04 1994-03-09 Matsushita Electric Industrial Co., Ltd. Planar electrode
US5810725A (en) * 1993-04-16 1998-09-22 Matsushita Electric Industrial Co., Ltd. Planar electrode
USRE38323E1 (en) 1994-06-13 2003-11-18 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US5563067A (en) * 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US6297025B1 (en) 1994-06-13 2001-10-02 Matsushita Electric Industrial Co., Ltd Measurement of complete electrical waveforms of tissue or cells
USRE40209E1 (en) 1994-06-13 2008-04-01 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US6894511B2 (en) 2000-07-13 2005-05-17 Matsushita Electric Industrial Co., Ltd. Extracellular recording multiple electrode
WO2002006809A1 (en) * 2000-07-13 2002-01-24 Matsushita Electric Industrial Co., Ltd. Extracellular recording integrated composite electrode
WO2003001194A1 (en) * 2001-06-20 2003-01-03 Matsushita Electric Industrial Co., Ltd. Extracellular recording electrode
US7041492B2 (en) 2001-06-20 2006-05-09 Matsushita Electric Industrial Co., Ltd. Extracellular recording electrode
CN102247137A (en) * 2010-05-19 2011-11-23 中国科学院电子学研究所 Microelectrode array-based multichannel neural information detection system
WO2015151395A1 (en) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 Electrochemical measurement device
CN106164243A (en) * 2014-03-31 2016-11-23 松下知识产权经营株式会社 Electrochemical gaging device
JP6074874B2 (en) * 2014-03-31 2017-02-08 パナソニックIpマネジメント株式会社 Electrochemical measurement device
JPWO2015151395A1 (en) * 2014-03-31 2017-04-13 パナソニックIpマネジメント株式会社 Electrochemical measurement device
JP2017083462A (en) * 2014-03-31 2017-05-18 パナソニックIpマネジメント株式会社 Electrochemical measurement device
CN106164243B (en) * 2014-03-31 2018-04-27 松下知识产权经营株式会社 Electrochemical gaging device
US10457907B2 (en) 2014-03-31 2019-10-29 Panasonic Intellectual Property Management Co., Ltd. Electrochemical measurement device

Also Published As

Publication number Publication date
JP2949845B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US6151519A (en) Planar electrode
CN101614729B (en) Microelectrode array device and special device for cell manipulation and electrophysiological signal detection
EP0585933B1 (en) Planar electrode
JP3193471B2 (en) Integrated composite electrode
US9329168B2 (en) Devices, systems and methods for high-throughput electrophysiology
Blum et al. Multisite microprobes for neural recordings
US5388577A (en) Electrode array microchip
JP5555709B2 (en) Biocompatible electrode
JP3101122B2 (en) Integrated composite electrode
TW541433B (en) Extracellular recording multiple electrode
JPH04204244A (en) Complex electrode incorporated in one
CN101556273A (en) Method for analyzing cell migration by resistance sensing resistant technology and special device thereof
CN110726765B (en) Graphene biosensor electrode
CN113181549A (en) Flexible micro-nano electrode array for positioning deep brain of epileptogenic focus and preparation method thereof
CN111272819B (en) Interdigital arrangement conductive nanotube sensing device for detecting multi-element activity of myocardial cells
CN109959679B (en) Vertical multi-electrode impedance sensor for real-time monitoring of 3D tumor cell migration and preparation method
US20210310979A1 (en) Probe arrays
CN114636744A (en) Microelectrode array chip based on nano porous membrane and high-flux intracellular electric signal continuous monitoring system
Mohr et al. Performance of a thin film microelectrode array for monitoring electrogenic cells in vitro
JP3979574B2 (en) Array electrode for biological sample and production method thereof
CN106732842B (en) For the micro-fluidic chip and preparation method thereof without mark high content screening
CN114383761B (en) Pressure sensor with unidirectional conductive function and preparation method and application thereof
KR20120085692A (en) Bio appratus and facture method thereof, and method for growth and sensing neuron using the same
DE102018125403A1 (en) ANALYTE SENSOR PACKAGE WITH DISPENSING CHEMISTRY AND MICROFLUID CAP
CN108254414A (en) A kind of flexible in vitro micro- raceway groove microelectrode array integrated chip and its preparation method and application

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12