JPH04204206A - Length measuring standard method of scanning electromicroscope - Google Patents

Length measuring standard method of scanning electromicroscope

Info

Publication number
JPH04204206A
JPH04204206A JP2337436A JP33743690A JPH04204206A JP H04204206 A JPH04204206 A JP H04204206A JP 2337436 A JP2337436 A JP 2337436A JP 33743690 A JP33743690 A JP 33743690A JP H04204206 A JPH04204206 A JP H04204206A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
measured
scanning electron
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2337436A
Other languages
Japanese (ja)
Inventor
Takao Yasue
孝夫 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2337436A priority Critical patent/JPH04204206A/en
Publication of JPH04204206A publication Critical patent/JPH04204206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To simply and accurately measure length by a non-standard method by providing a forcible vibration source such as a piezoelectric element and setting the amplitude or displacement of a part of an object to be measured or a part of a sample stage generated at this time to a reference length measuring dimension. CONSTITUTION:In such a state that the electron beam 9 of a scanning electromicroscope(SEM) is fixed constant, voltage is applied to the electrode 8 of a piezoelectric element 7 to minutely move a sample holder 5 and the displacement of an SEM image generated at this time is observed. By this method, especially, length of 0.1mum or less can be accurately and simply measured by a non-standard method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は走査型電子顕微鏡(SEM)用試料微動機構
及びこれを用いた測長標準方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sample fine movement mechanism for a scanning electron microscope (SEM) and a standard length measurement method using the same.

〔従来の技術〕[Conventional technology]

第2図はたとえば走査型電子顕微鏡(8EM)用の試料
ステージで、図において、(4)は走査型電子顕微鏡(
sgu)の試料ステージ%(5)は試料ホルダー%(6
)はこの試料ホルダーに取シ付けられた被測定試料、頭
はスクリュウねじ、(9)は走査型電子顕微*(SEM
)の電子ビームを示す。v、科ステージ(4)はステー
ジ全体を自由に電子顕aS内を可動させることができる
Figure 2 shows, for example, a sample stage for a scanning electron microscope (8EM).
sample stage % (5) of sample holder % (6
) is the sample to be measured attached to this sample holder, the head is a screw, and (9) is a scanning electron microscope* (SEM).
) shows the electron beam. v. The entire stage (4) can be freely moved within the electron microscope aS.

また第3図はたとえばアメリカのNBEI社から発売さ
れているSRM484tiという走査型電子顕微鋼(S
KM)用の測長標準試料で、図において、(1)は試料
基板プラスチック、(2)はその上に描かれた金線、(
3)は試料的観察位置を示すマーカーである。
Figure 3 shows, for example, a scanning electron microscopy steel (SRM484ti) sold by the American company NBEI.
In the figure, (1) is the sample substrate plastic, (2) is the gold wire drawn on it, (
3) is a marker indicating the sample observation position.

次に動作について説明する。第2図に示し九走査型電子
顕微鏡(8KM)用の試料ステージにおいて、(5)の
試料ホルダーに取り付けられた被測定試料(6)は、(
ト)の試料ステージ内部に取り付けられ被測定試料のス
クリュウねじで2方向の位置調整を行なった後に、(4
)の走査型電子顕微鏡(EIFM)の試料ステージに装
着される。このときの2方向の位置調整は、(9)の走
査型電子顕微鏡(8KM)の電子ビームにたいし”c、
m測定試料(6)の基準位Ifを決定するために行なう
。また試料ステージ(4)はステージ全体を自由に電子
顕微鏡内を可動させることができる。
Next, the operation will be explained. On the sample stage for a nine-scanning electron microscope (8KM) shown in Figure 2, the sample to be measured (6) attached to the sample holder (5) is (
After adjusting the position in two directions with the screw of the sample to be measured installed inside the sample stage of (4)
) is attached to the specimen stage of a scanning electron microscope (EIFM). At this time, the position adjustment in two directions is "c" for the electron beam of the scanning electron microscope (8KM) in (9).
m is performed to determine the reference position If of the measurement sample (6). Further, the entire sample stage (4) can be freely moved within the electron microscope.

次にこれを用いた測長標準方法について説明する。第3
図に示したSRM484aを走査型電子顕微鏡(SKM
)の試料ステージにマウントした後、まず(3]の試料
的観察位置を示すマーカーを探し出す。
Next, a standard length measurement method using this will be explained. Third
The SRM484a shown in the figure was examined using a scanning electron microscope (SKM).
) After mounting on the sample stage, first find the marker indicating the sample observation position in (3).

次に(2)の金線間の間隔を走査型電子顕微鏡を用いて
測長する。たとえば金線Line Oと金線Line1
との間隔は1μ工、金線LineOと金@Line2と
の間隔は2μm、金#!Line2と金@Line3と
の間隔は3μm、金掃Line3と金嵌Line4との
間隔は5μmといった具合に、あらかじめ既知の寸法と
して規定されているため、このときの値と走査型電子顕
微@(8KM)との像を比較対応したり、コンピユータ
ーフに記憶させたジして測長標準とする。
Next, the distance between the gold wires (2) is measured using a scanning electron microscope. For example, gold wire Line O and gold wire Line 1
The distance between gold wire LineO and gold@Line2 is 1μm, and the distance between gold wire LineO and gold@Line2 is 2μm. The distance between Line 2 and Gold @ Line 3 is 3 μm, and the distance between Gold sweep Line 3 and Gold fit Line 4 is 5 μm. ), or store it in a computer turf and use it as a length measurement standard.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の走査型電子顕微鏡(BTrM)のによる測長標準
方法は以上のように行われているが、(1)被測定試料
と上記測長標準試料との位置関係、特にZ方向の微少誤
差、(2)定食型電子顕微fl装置の日時変化、(3)
校正倍率をおのおのの倍率ごとに調べなければならな5
’を校正のわずられしさ、(4)正確な値を得るように
した場合には、あ(まで測長標準試料そのものを便用し
なければならなく、ノンスタンダード法を長期間にわ之
っで行う場合には、定期的な測長標準試料そのものによ
る校正が必要であること、さらに(5) 0.5μm以
下の測長標準試料が現存しないなどの問題屯があつto この発明は上記のような問題(5)を@巾するためニナ
サれたもので、ノンスタンダード法であり、特に0.1
μm以下の正確な測長が簡便にできる走査型電子顕微′
a(SEM)用拭料倣@機構及びこnを用いた測長標準
方法を得ることを目的とする。
The standard length measurement method using a conventional scanning electron microscope (BTrM) is carried out as described above, but (1) the positional relationship between the sample to be measured and the above-mentioned standard length measurement sample, especially minute errors in the Z direction; (2) Changes in date and time of set meal type electron microscope fl device, (3)
The calibration magnification must be checked for each magnification5.
(4) In order to obtain accurate values, the length measurement standard sample itself must be used, and the non-standard method has to be used for a long time. In the case of performing the measurement using the above-mentioned method, there are problems such as the need for periodic calibration using the length measurement standard sample itself, and (5) the lack of existing length measurement standard samples of 0.5 μm or less. It was developed to solve problem (5), and is a non-standard method, especially when 0.1
Scanning electron microscope that allows easy and accurate length measurements of micrometers or less
The purpose of this study is to obtain a standard length measurement method using a (SEM) wipe imitation@mechanism and this.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る走査型シ子顕倣境(S、KM)用試料微
動機構及びこれを用い念測長襟準方法は、被測定物を固
定するための試料ステージ内。もしくはこの試料ステー
ジの一部分に接して、ピエゾ素子等の強制振動fp、を
設けたものである。
A sample fine movement mechanism for scanning type microscopy (S, KM) and a method for pre-positioning a predetermined measurement using the same according to the present invention are provided in a sample stage for fixing an object to be measured. Alternatively, a forced vibration fp such as a piezo element is provided in contact with a portion of this sample stage.

〔作 用〕[For production]

この発明における走査ff1i!子頴微境(8118M
)用試料微動機構及びこれを用いた測長標準試料は、ピ
エゾ素子等の強制撮動源を設けることによって。
Scanning ff1i! in this invention! Zizhou Weikyo (8118M
) sample fine movement mechanism and length measurement standard sample using this, by providing a forced imaging source such as a piezo element.

この除土じる被狙1定物の一部分もしくは試料ステージ
の一部分のS@、変位を基準測長寸法とすることにより
、ノンスタンダード法で、正確な測長が簡便にできる。
By using the displacement S@ of a portion of the target object to be removed or a portion of the sample stage as the reference length measurement dimension, accurate length measurement can be easily performed using the non-standard method.

〔実寵例〕[True example]

以下、この発明の一実施例を図について説明する。第1
図において、(4)は走査型電子顕微−(SEM)の試
料ステージ、(5)は試料ホルダー、(6)はこの試料
ホルダーに取り汀けられた仮測定試料、(7)は試料ス
テージ内部に取り付けられたピエゾ素子で、五つの電極
(8)がピエゾ素子の円周上と内部に形成しである。(
9)は走査型電子顕微鏡(SEM)の電子ビームを示す
。試料ステージ(4)はステージ全体を自白に電子顕微
鏡内を可動させることができるO きて、第1図〜)に示したように試料ステージ(4)の
内部に取り付けられたピエゾ素子(7)は五つの電極(
8)がピエゾ素子の円周上と内部に形成しである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (4) is the sample stage of a scanning electron microscope (SEM), (5) is the sample holder, (6) is the temporary measurement sample placed in this sample holder, and (7) is the interior of the sample stage. Five electrodes (8) are formed on the circumference and inside the piezo element. (
9) shows the electron beam of a scanning electron microscope (SEM). The entire stage of the sample stage (4) can be moved within the electron microscope.As shown in Figures 1-), a piezo element (7) is attached to the inside of the sample stage (4). is five electrodes (
8) is formed on the circumference and inside the piezo element.

こnにはピエゾ素子の一端を固定端として、円周上のそ
れぞれの対向する電極x、 Tx、 y、テ電圧を加え
ることによってX7 方間に自由端を可動させることが
できる。又、内部!極に十−電圧を加えることによって
2方向に自由端を可動させることかできる。したがって
第1図(a)に示したように試料ステージ(4)の内部
にこのピエゾ素子(7)を取り付け、これに(5)の試
料ホルダー、(6)の被測定試料を装着する事により、
被測定試料をX7Z方向に可動させることができる。
In this case, one end of the piezo element is set as a fixed end, and the free end can be moved in the X7 direction by applying a voltage to each of the opposing electrodes x, Tx, y, and Te on the circumference. Also, inside! The free end can be moved in two directions by applying a voltage to the pole. Therefore, as shown in Fig. 1(a), by attaching this piezo element (7) inside the sample stage (4) and attaching the sample holder (5) and the sample to be measured (6) to it, ,
The sample to be measured can be moved in the X7Z directions.

ここで示したピエゾ素子を用いnば、極めて微少の被f
i11定試料移動が可能となる。通常市販さ几ているピ
エゾ素子の移!E!ltは−ボルト当たり数十から数百
オングストローム程度である。
If the piezo element shown here is used, an extremely small amount of f
i11 Constant sample movement becomes possible. Transferring piezo elements that are usually commercially available! E! lt is on the order of tens to hundreds of angstroms per -volt.

さて、このようにして構成され九走査型電子顕微iij
l(19EM)の試料ステージ音用いて、0.5μm以
下の測長を行なう場合、(9)の走査型電子顕微鏡(S
KM)の電子ビームは一定に固定したままで、ピエゾ素
子に上記電圧を加えて(5)の試料ホルダーを微少可動
させ、そのときに生ずる81M画像の変位を観察してや
れば良い。
Now, the nine scanning electron microscopes configured in this way
When measuring a length of 0.5 μm or less using the sample stage sound of (19EM), the scanning electron microscope (S
While the electron beam (KM) remains fixed, the above voltage is applied to the piezo element to slightly move the sample holder (5), and the resulting displacement of the 81M image can be observed.

なお、上記実施例では走査型電子gm&(s′Au)の
試料ステージを例にあげた試料微動機構及びこれを用い
之測長標準方法を示したが、たとえば透過型電子顕微鏡
(TZM) 、光電子分光分析装置(xps)、オージ
=−1[子分光分析装置1 (AFJ) 、二次イオン
質量分析装41 (S工M8)などの試料ステージであ
ってもよく、上記実施例と同様の効果を奏する。
In addition, in the above example, the sample fine movement mechanism and the standard length measurement method using the same were shown using the sample stage of scanning electron microscope (s'Au) as an example. A sample stage such as a spectrometer (XPS), an auzi=-1 [audience spectrometer 1 (AFJ), a secondary ion mass spectrometer 41 (S Engineering M8), etc., may be used, and the same effects as in the above embodiments can be obtained. play.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発男によれば走査型電子顕微鏡(E
IEM)内にピエゾ素子等の強制撮動源を設けることに
よって、この際生じる被測定物の一部分もしくは試料ス
テージの一部分の振幅、変位を基準測長寸法とするよう
に構成したので、被測定試料と上記測長標準試料との位
置関係、特に2方向の微少誤差が少なく、走査型電子顕
微鏡装置の日時変化を受けず、校正倍率をおのおのの倍
車ごとに調べなければならない校正のわずられしさの無
いノンスタンダード法で、特に0.1μm以下の正確な
測長が簡便にできるといった効果かある。
As mentioned above, according to this discovery, scanning electron microscopy (E
By installing a forced imaging source such as a piezo element in the IEM, the amplitude and displacement of a part of the object to be measured or a part of the sample stage that occur at this time are set as the reference length measurement dimension. The positional relationship between the above-mentioned length measurement standard sample, especially in two directions, is small, and it is not affected by the date and time changes of the scanning electron microscope, and the calibration magnification must be checked for each multiplier. This non-standard method has the advantage of being able to easily and accurately measure lengths of 0.1 μm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図−)はこの発明の一実施例による走査型電子顕微
鏡(SKM)用試料微動ステージ機構を示す図、第1図
(b)はピエゾ素子を示す図、第2図は従来の走査型電
子顕微鏡(SEM)用の試料ステージ。 第3図は走査型電子顕微鏡(日E!M)用の測長標準試
料を示す図である。 図において、(1)は試料基板プラスチック、(2)は
その上に描かれた金線、13)は試料内観察位+IIt
を示すマーカー、(4)は走査型電子顕微fi(BFi
M)の試料ステージ、(5)は試料ホルダー、(6)は
この試料ホルダーに取り付けらnた被測定試料、(7)
は試料ステージ内部に増り付けられたピエゾ素子、(9
)は走査型電子顕微鏡(SInM)の電子ビーム、αQ
はスクリュウねじである。 なお、図中、同一符号は同一、又は相当部分を示す。
@Figure 1-) is a diagram showing a sample fine movement stage mechanism for a scanning electron microscope (SKM) according to an embodiment of the present invention, Figure 1 (b) is a diagram showing a piezo element, and Figure 2 is a diagram showing a conventional scanning type. Sample stage for electron microscope (SEM). FIG. 3 is a diagram showing a length measurement standard sample for a scanning electron microscope (Nichi-E!M). In the figure, (1) is the sample substrate plastic, (2) is the gold line drawn on it, and 13) is the observation position inside the sample +IIt.
(4) is a marker indicating scanning electron microscopy fi (BFi).
M) sample stage, (5) sample holder, (6) sample to be measured attached to this sample holder, (7)
is a piezo element added inside the sample stage, (9
) is the scanning electron microscope (SInM) electron beam, αQ
is a screw thread. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 走査型電子顕微鏡(SEM)装置において、被測定物の
長さ、間隔等の物理量を測長する場合において、被測定
物を固定するための試料ステージ内、もしくはこの試料
ステージの一部分に接して、ピエゾ素子等の強制振動源
を設けることによる試料微動機構、及びこの際生じる被
測定物の一部分もしくは試料ステージの一部分の振幅、
変位を基準測長寸法としたことを特徴とする走査型電子
顕微鏡用測長標準方法。
In a scanning electron microscope (SEM) device, when measuring physical quantities such as the length and spacing of an object to be measured, it is used within the sample stage for fixing the object to be measured, or in contact with a part of this sample stage. A sample fine movement mechanism by providing a forced vibration source such as a piezo element, and the amplitude of a part of the object to be measured or a part of the sample stage that occurs at this time,
A standard length measurement method for a scanning electron microscope, characterized in that displacement is used as a reference length measurement dimension.
JP2337436A 1990-11-30 1990-11-30 Length measuring standard method of scanning electromicroscope Pending JPH04204206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337436A JPH04204206A (en) 1990-11-30 1990-11-30 Length measuring standard method of scanning electromicroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337436A JPH04204206A (en) 1990-11-30 1990-11-30 Length measuring standard method of scanning electromicroscope

Publications (1)

Publication Number Publication Date
JPH04204206A true JPH04204206A (en) 1992-07-24

Family

ID=18308615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337436A Pending JPH04204206A (en) 1990-11-30 1990-11-30 Length measuring standard method of scanning electromicroscope

Country Status (1)

Country Link
JP (1) JPH04204206A (en)

Similar Documents

Publication Publication Date Title
JP2574942B2 (en) Electrical probe
US5553486A (en) Apparatus for microindentation hardness testing and surface imaging incorporating a multi-plate capacitor system
DE69734413T2 (en) Instrument with double table for scanning a specimen
US7022985B2 (en) Apparatus and method for a scanning probe microscope
DE69633067T2 (en) MULTIDIMENSIONAL CAPACITIVE SENSOR
EP0792437B1 (en) Capacitive transducer with electrostatic actuation
US6507197B1 (en) Electrostatic force detector with cantilever for an electrostatic force microscope
JPS63313075A (en) Mechanical type probe for optically measuring potential
DE102017205528A1 (en) Apparatus and method for a scanning probe microscope
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
Yacoot et al. An atomic force microscope for the study of the effects of tip–sample interactions on dimensional metrology
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
JPH04204206A (en) Length measuring standard method of scanning electromicroscope
US20060101895A1 (en) Lateral calibration device and method
JP3325258B2 (en) Scanning probe microscope
JPH07134137A (en) Probe microscope device, and method for measuring probe-to-probe distance
US5701381A (en) Mounting arrangement for a probe tip of a scanning force or tunneling microscope
JPH09251026A (en) Scanning probe microscope
JP2001264373A (en) Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
JP3859588B2 (en) Scanning probe microscope and measuring method thereof
JP3428403B2 (en) Friction force probe microscope and method for identifying atomic species and materials using friction force probe microscope
JPH0526662A (en) Scanning type interatomic force/magnetic force microscope and analogous device thereof
JP3090295B2 (en) Needle tip shape measurement device, standard sample, and needle tip shape measurement method
JPH02243918A (en) Displacement detector
JPH06249863A (en) Sensor for imaging surface structure