JPH04204191A - Precision approach radar apparatus - Google Patents

Precision approach radar apparatus

Info

Publication number
JPH04204191A
JPH04204191A JP2334774A JP33477490A JPH04204191A JP H04204191 A JPH04204191 A JP H04204191A JP 2334774 A JP2334774 A JP 2334774A JP 33477490 A JP33477490 A JP 33477490A JP H04204191 A JPH04204191 A JP H04204191A
Authority
JP
Japan
Prior art keywords
trigger
cycle
signal
generator
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334774A
Other languages
Japanese (ja)
Inventor
Motohiro Hashimoto
橋本 牟弘
Yuji Kami
上 勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2334774A priority Critical patent/JPH04204191A/en
Publication of JPH04204191A publication Critical patent/JPH04204191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To achieve a higher detection probability of an aircraft by enabling the varying of an interval of a power output of a transmitter to irradiate the aircraft to be guided with a large amount of energy of a transmission power. CONSTITUTION:A trigger generator 2-2 generates a trigger signal with a cycle N+A longer by a value A than a fixed cycle Npps and a trigger generator 2-3 generates a trigger signal with a cycle N-B shorter by a value B than the value to be inputted into a switch 2-4 separately. Then, the switch 2-4 selects and outputs one of the two inputs according to a gate signal from a gate generator 1. With manual operation of a servo mechanism, a switch 2-5 operated to select an output of the switch 2-4 and a precision approach radar PAR works at a variable cycle -- long cycle (N+A) and a short cycle (N-B). As a result, a transmitter 3 outputs a power at a short cycle within a range near an area where an aircraft to be guided exists and the number of hits to the aircraft increases to irradiate it with a large amount of energy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、航空機を安全に着陸させるための地上用装置
である精測進入レーダ装置(PAR:Pr−ecisl
on Approach Radar)に関す渇。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a precision approach radar system (PAR), which is a ground device for safely landing an aircraft.
on Approach Radar).

(従来の技術) 第4図は、PARの代表的な覆域を示す。PARの方位
ど高低の覆域は方位アンテナと高低アンテナによって走
査される範囲で定まる。例えば、図示例で言えば、方位
アンテナは、水平方向幅が約0.8°、垂直方向幅が約
2°のファンビームで方位方向20°の範囲を走査する
。また、高低アンテナは、垂直方向幅が約0.5°、水
平方向幅が約3°のファンビームで高低方向7″の範囲
を走査する。そして、サーボ機構によって方位アンテナ
は高低方向に7°傾動でき、高低アンテナは方位方向に
20″傾動できるようになっている。
(Prior Art) FIG. 4 shows a typical coverage area of PAR. The coverage area of the PAR direction and height is determined by the range scanned by the direction antenna and the height antenna. For example, in the illustrated example, the azimuth antenna scans a range of 20 degrees in the azimuth direction with a fan beam having a horizontal width of about 0.8 degrees and a vertical width of about 2 degrees. In addition, the height antenna scans a range of 7" in the height direction using a fan beam with a vertical width of approximately 0.5° and a horizontal width of approximately 3°.The azimuth antenna is then moved by a servo mechanism to scan a range of 7" in the height direction. It can be tilted, and the height antenna can be tilted 20'' in the azimuth direction.

PARでは、送信機から一定電力を一定周期で両アンテ
ナに出力し空間に輻射させるとともに、両アンテナを一
定の順序で駆動し、覆域を繰り返し走査する。この間に
航空機からの反射波があると、それをレーダビデオとし
て指示装置の表示画面上に表示し、管制官に知らせる。
In PAR, a transmitter outputs constant power to both antennas at regular intervals to radiate it into space, and both antennas are driven in a fixed order to repeatedly scan the coverage area. If there is a reflected wave from the aircraft during this time, it is displayed as radar video on the display screen of the indicating device and notified to the controller.

そして、管制官がサーボ機構を手動操作し、高低アンテ
ナを方位方向のある角度に設定し、また方位アンテナを
高低方向のある角度に設定すると、両アンテナはその指
定された角度においてそれぞれの走査範囲を走査する。
Then, when the controller manually operates the servo mechanism and sets the altitude antenna at a certain angle in the azimuth direction, and also sets the azimuth antenna at a certain angle in the altitude direction, both antennas will move within their respective scanning ranges at the specified angle. scan.

両アンテナの走査方向の交点位置に航空機があれば、そ
の航空機は最大感度で捕捉できることになる。
If an aircraft is located at the intersection of the scanning directions of both antennas, that aircraft can be captured with maximum sensitivity.

即ち、管制官は、指示装置の表示画面上に航空機のレー
ダビデオ信号が最適な状態で表示されるように方位アン
テナ及び高低アンテナのサーボ機構を手動操作して航空
機の位置の監視を続け、最適な進入路であるコースライ
ンとグライドパスに合うようにパイロットと連絡をとり
、航空機を誘導するようになっている。
In other words, the controller continues to monitor the aircraft's position by manually operating the servo mechanism of the azimuth antenna and altitude antenna so that the radar video signal of the aircraft is displayed in the optimal condition on the display screen of the indicating device. The system communicates with the pilot and guides the aircraft to match the course line and glide path.

(発明が解決しようとする課題) 上述した従来のPARでは、アンテナはサーボ機構によ
って、航空機の存在する位置にビームが向くように操作
できるが、送信機からの電力は常に一定の周期で空中に
輻射されているため、航空機の存在しない方向にもエネ
ルギーが分散される。
(Problem to be Solved by the Invention) In the conventional PAR described above, the antenna can be operated by a servo mechanism so that the beam is directed to the position where the aircraft is, but the power from the transmitter is always transmitted into the air at a constant cycle. Because it is radiated, energy is dispersed even in directions where the aircraft is not present.

また、航空機の存在しない地表上への輻射により地表か
らの反射も多く、不要信号を受信することになる、など
の問題がある。
Furthermore, there is a problem in that radiation to the ground surface where no aircraft is present causes many reflections from the ground surface, resulting in the reception of unnecessary signals.

本発明は、このような問題に鑑みなされたもので、その
目的は、送信機の電力出力の間隔をアンテナのビーム方
向に対応して可変可能とする手段を備えた精測進入レー
ダ装置を提供することにある。
The present invention has been made in view of such problems, and an object thereof is to provide a precision approach radar device equipped with a means for making the interval between transmitter power outputs variable in accordance with the beam direction of the antenna. It's about doing.

(課題を解決するための手段) 前記目的を達成するために、本発明の精測進入レーダ装
置は次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the precision approach radar device of the present invention has the following configuration.

即ち、第1発明の精測進入レーダ装置は、アンテナ(方
位アンテナと高低アンテナ)の角度信号を受けてアンテ
ナの走査範囲内の所定角度範囲を指定するゲート信号を
発生する手段と; 一定周期Nの第1トリガ信号を発生
する手段と; 前記ゲート信号を受けて、前記所定角度
範囲外では前記一定周期Nよりも長い周期であり、当該
所定角度範囲内では一定周期Nよりも短い周期である周
期可変トリガ信号を発生する手段と; 前記第1トリガ
信号と前記周期可変トリガ信号とを切り替えて送信機等
へ出力する手段と; を備えたことを特徴とするもので
ある。
That is, the precision approach radar device of the first invention includes means for receiving angle signals from the antennas (azimuth antenna and height antenna) and generating a gate signal specifying a predetermined angle range within the scanning range of the antenna; means for generating a first trigger signal; upon receiving the gate signal, the period is longer than the fixed period N outside the predetermined angular range, and the period is shorter than the fixed period N within the predetermined angular range; The present invention is characterized by comprising: means for generating a variable period trigger signal; and means for switching between the first trigger signal and the variable period trigger signal and outputting the switched signal to a transmitter or the like.

また、第2発明の精測進入レーダ装置は、アンテナ(方
位アンテナと高低アンテナ)の角度信号を受けてアンテ
ナの走査範囲内の所定角度範囲を指定するゲート信号を
発生するゲート発生器と;一定周期Nの第1トリガ信号
を発生する第1トリガ発生器と; 前記一定周期Nより
も長い周期の第2トリガ信号を発生する第2トリガ発生
器と;前記一定周期Nよりも短い周期の第3トリガ信号
を発生する第3トリガ発生器と; 前記ゲート信号を受
けて前記所定角度範囲外では前記第2トリガ発生器の出
力を選択し、当該所定角度範囲内では前記第3トリガ発
生器の出力を選択する第1切替器と: 外部操作によっ
て前記第1トリガ発生器の出力と前記第1切替器の出力
の一方を選択出力する第2切替器と: 前記第2切替器
の出力を送信機等へ分配する分配器と; を備えたこと
を特徴とするものである。
The precision approach radar device of the second invention further includes a gate generator that receives angle signals from the antennas (azimuth antenna and elevation antenna) and generates a gate signal that designates a predetermined angle range within the scanning range of the antenna; a first trigger generator that generates a first trigger signal with a period N; a second trigger generator that generates a second trigger signal with a period longer than the certain period N; a second trigger signal with a period shorter than the certain period N; a third trigger generator that generates three trigger signals; upon receiving the gate signal, selects the output of the second trigger generator outside the predetermined angle range, and selects the output of the third trigger generator within the predetermined angle range; A first switching device that selects an output: A second switching device that selects and outputs either the output of the first trigger generator or the output of the first switching device by external operation; and: Sending the output of the second switching device. It is characterized by being equipped with a distributor for distributing to machines, etc.;

(作 用) 次に、前記の如く構成される本発明の精測進入レーダ装
置の作用を説明する。
(Function) Next, the function of the precision approach radar device of the present invention configured as described above will be explained.

覆域内に航空機が検出されると、アンテナは管副官の手
動操作により指定された角度において方位方向、高低方
向の走査を行う。すると、本発明では、送信機の電力出
力の周期が一定周期Nから、航空機の存在位置近傍の所
定領域以外での長周期と、航空機の存在位置近傍の所定
領域内での短周期との2つの周期に変更される。
When an aircraft is detected within the coverage area, the antenna scans in the azimuth and elevation directions at an angle specified by the deputy's manual operation. Then, in the present invention, the period of the power output of the transmitter is divided into two periods from the constant period N, a long period outside the predetermined area near the aircraft's location, and a short period within the predetermined area near the aircraft's location. changed to one cycle.

その結果、航空機に対しては送信電力のエネルギーを多
く照射でき、航空機の検出確率が高まる。
As a result, a large amount of transmitted power energy can be irradiated to the aircraft, increasing the probability of detecting the aircraft.

また、航空機の存在領域近傍以外の範囲へは送信電力の
エネルギーを小さくでき、地表や建物等からの反射が少
なくなる。
Furthermore, the energy of the transmitted power can be reduced to areas other than the vicinity of the aircraft presence area, and reflections from the ground surface, buildings, etc. are reduced.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る精測進入レーダ装置を
示す。第1図に示すように、本発明では、ゲート発生器
1を新設しであるとともに、同期信号発生器2に若干の
機能追加をしである。
FIG. 1 shows a precision approach radar system according to an embodiment of the present invention. As shown in FIG. 1, in the present invention, a gate generator 1 is newly installed, and some functions are added to a synchronizing signal generator 2.

図示するように、送信機3、受信機4、指示装置5等は
全て同期信号発生器2の分配器2−6から分配供給され
る同一のトリガ信号に従って一定のタイミングで動作す
る。
As shown in the figure, the transmitter 3, receiver 4, indicating device 5, etc. all operate at a constant timing according to the same trigger signal distributed and supplied from the distributor 2-6 of the synchronization signal generator 2.

同期信号発生器2では、従来、一定周期N ppsのト
リガ信号を発生するトリガ発生器2−1の出力が直接分
配器2−6に入力していた。その結果、従来では、送信
機3がら空間へ輻射される電力は一定の周期N pps
で発生し、方位では20°の範囲、高低では7″の範囲
に均等に電力エネルギーが輻射されていた。
Conventionally, in the synchronization signal generator 2, the output of the trigger generator 2-1, which generates a trigger signal with a constant cycle of N pps, is directly input to the distributor 2-6. As a result, conventionally, the power radiated into space from the transmitter 3 has a constant period N pps
The power energy was radiated evenly over a 20° range in direction and a 7″ range in elevation.

本実施例の同期信号発生器2では、2つのトリガ発生器
(2−2,2−3)と2つのスイッチ(2−4,2−5
)を追加しである。トリガ発生器2−2は、一定周期N
 ppsよりも値Aだけ長い周期N+AI)I)Sのト
リガ信号を発生する。これはスイッチ2−4の一方の入
力となる。また、トリガ発生器2−3は、一定周期Nよ
りも値Bだけ短い周期N−Bのトリガ信号を発生する。
The synchronization signal generator 2 of this embodiment includes two trigger generators (2-2, 2-3) and two switches (2-4, 2-5).
) is added. The trigger generator 2-2 has a constant period N
A trigger signal with a period N+AI)I)S that is longer than pps by a value A is generated. This becomes one input of switch 2-4. Further, the trigger generator 2-3 generates a trigger signal with a cycle NB shorter than the constant cycle N by a value B.

これはスイッチ2−4の他方の入力となる。This becomes the other input of switch 2-4.

スイッチ2−4は、ゲート発生器1からのゲート信号に
従って切替動作をし、2人力の一方を選択出力する。
The switch 2-4 performs a switching operation according to a gate signal from the gate generator 1, and selectively outputs one of the two outputs.

スイッチ2−5は、一方の入力がトリガ発生器2−1の
出力であり、他方の入力がスイッチ2−4の出力であり
、管制官の手動操作に従って切替動作をし、2人力の一
方を選択し分配器2−6に出力する。
One input of the switch 2-5 is the output of the trigger generator 2-1, and the other input is the output of the switch 2-4, and the switch 2-5 performs a switching operation according to the manual operation of the air traffic controller, and switches one of the two manually. It is selected and output to the distributor 2-6.

つまり、このスイッチ2−5は、サーボ機構の手動操作
が開始される以前ではトリガ発生器2−1の出力を選択
するように操作される。これにより当該PARは従来と
同様に一定の周期N ppsで動作する。そして、サー
ボ機構の手動操作を開始するとき、スイッチ2−5はス
イッチ2−4の出力を選択するように操作される。これ
により、当該PARは長周期(N+A)と短周期(N−
B)の可変周期で動作することになる。
That is, this switch 2-5 is operated to select the output of the trigger generator 2-1 before manual operation of the servo mechanism is started. As a result, the PAR operates at a constant cycle N pps as in the conventional case. Then, when starting manual operation of the servo mechanism, switch 2-5 is operated to select the output of switch 2-4. As a result, the corresponding PAR has a long period (N+A) and a short period (N-
It will operate at the variable cycle of B).

次に、角度信号発生器6からゲート発生器1に入力する
角度信号θ(AZ/EL)は、アンテナの機械的動きに
連動して方位(AZ)では20°、高低では76の範囲
を変化する。これに対応して指示装置5の表示画面には
第3図に示すように高低表示と方位表示がなされる。
Next, the angle signal θ (AZ/EL) input from the angle signal generator 6 to the gate generator 1 changes within a range of 20 degrees in direction (AZ) and 76 degrees in elevation in conjunction with the mechanical movement of the antenna. do. Correspondingly, the display screen of the pointing device 5 displays elevation and direction as shown in FIG.

第3図は管制官がサーボ機構を手動操作して航空機を誘
導している場合の表示例であるが、本発明では図中点線
で示すように、高低ではグライドパスを挟んだ所定角度
範囲(EL角度範囲)が、方位ではコースラインを挟ん
だ所定角度範囲(AZ角度範囲)がそれぞれ指定されて
ゲート発生器1に入力する。
Figure 3 is an example of a display when an air traffic controller manually operates a servo mechanism to guide an aircraft. EL angle range), and a predetermined angle range (AZ angle range) across the course line are respectively designated and input to the gate generator 1 in the azimuth.

第2図は、副圧の場合のゲート信号の発生を示すが、ゲ
ート発生器1は角度信号と角度範囲指定信号とから、ア
ンテナの走査範囲内において、指定角度範囲内では例え
ば“1”レベル、指定角度範囲外では0′”レベルとな
るゲート信号を発生する。
FIG. 2 shows the generation of a gate signal in the case of sub-pressure, and the gate generator 1 generates a level of "1" within the scanning range of the antenna from the angle signal and the angle range designation signal, for example, within the designated angle range. , generates a gate signal that becomes 0''' level outside the specified angle range.

前記スイッチ2−4は、ゲート信号が“01ルベルのと
きはトリガ発生器2−3の出力たる長周期(N+A)の
トリガ信号を選択し、ゲート信号が“1”レベルのとき
はトリガ発生器2−2の出力たる短周期(N−B)のト
リガ信号を選択する。
The switch 2-4 selects the long period (N+A) trigger signal which is the output of the trigger generator 2-3 when the gate signal is "01 level", and selects the trigger signal of the long period (N+A) which is the output of the trigger generator 2-3 when the gate signal is "1" level. Select the short period (N-B) trigger signal which is the output of 2-2.

その結果、誘導する航空機が存在する近傍の所定角度範
囲では、送信機3は短周期(N−B)で電力出力を行う
。誘導すべき航空機に対するヒツト数を増加し、多くの
エネルギーを航空機に照射するのである。逆に、管制し
ない角度範囲では、送信機3は長周期(N+A)で電力
出力を行う。
As a result, in a predetermined angular range in the vicinity of the aircraft to be guided, the transmitter 3 outputs power in short cycles (N-B). This increases the number of hits directed at the aircraft and irradiates the aircraft with more energy. Conversely, in an uncontrolled angular range, the transmitter 3 outputs power in a long period (N+A).

エネルギーの分散を少なくするのである。This reduces energy dispersion.

(発明の効果) 以上説明したように、本発明の精測進入レーダ装置によ
れば、送信機の電力出力周期を可変にする手段を設けた
ので、誘導すべき航空機に対して送信電力のエネルギー
の多くを照射でき、航空機の検出確率を高める効果があ
る。また、誘導すべき航空機の存在する位置の近傍以外
には送信間隔を長くして送信電力のエネルギーを少なく
することができ、地表や建物等からの反射を少な(する
効果がある。
(Effects of the Invention) As explained above, according to the precision approach radar device of the present invention, since a means for making the power output cycle of the transmitter variable is provided, the energy of the transmitted power is applied to the aircraft to be guided. can irradiate a large amount of light, which has the effect of increasing the probability of aircraft detection. Furthermore, the energy of the transmitted power can be reduced by lengthening the transmission interval to areas other than the vicinity of the position where the aircraft to be guided exists, which has the effect of reducing reflections from the ground surface, buildings, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図はゲー
トを発生するための説明を高低について示す図、第3図
は指示装置の表示画面上における送信電力間隔の短い部
分、長い部分の例を示す図、第4図はPARの覆域を示
す図である。 1・・・・・・ゲート発生器、 2・・・・・・同期信
号発生器、2−1.2−2.2−3・・・・・・トリガ
発生器、2−4.2−5・・・・・・スイッチ、  2
−6・・・・・・分配器、 3・・・・・・送信機、 
4・・・・・・受信機、 5・・・・・・指示装置、 
6・・・・・・角度信号発生器。 代理人 弁理士  八 幡  義 博 ゲート登支 第2 ゾ 九本殻1 精1】]差入レーダ(βAR)の蹟フ呪第4図
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the explanation for generating gates in terms of height, and FIG. 3 is a short portion of the transmission power interval on the display screen of the indicating device, FIG. 4 is a diagram showing an example of a long portion, and is a diagram showing the coverage area of PAR. 1... Gate generator, 2... Synchronization signal generator, 2-1.2-2.2-3... Trigger generator, 2-4.2- 5...Switch, 2
-6...Distributor, 3...Transmitter,
4...Receiver, 5...Instruction device,
6...Angle signal generator. Agent: Yoshihiro Yahata, Patent Attorney, Gate Registration No. 2, Nine Shells, Sei 1]] Insertion Radar (βAR) Trap Curse Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)アンテナ(方位アンテナと高低アンテナ)の角度
信号を受けてアンテナの走査範囲内の所定角度範囲を指
定するゲート信号を発生する手段と;一定周期Nの第1
トリガ信号を発生する手段と;前記ゲート信号を受けて
、前記所定角度範囲外では前記一定周期Nよりも長い周
期であり、当該所定角度範囲内では一定周期Nよりも短
い周期である周期可変トリガ信号を発生する手段と;前
記第1トリガ信号と前記周期可変トリガ信号とを切り替
えて送信機等へ出力する手段と;を備えたことを特徴と
する精測進入レーダ装置。
(1) means for receiving the angle signals of the antennas (azimuth antenna and height antenna) and generating a gate signal specifying a predetermined angle range within the scanning range of the antenna;
means for generating a trigger signal; a variable period trigger that receives the gate signal and has a cycle longer than the constant cycle N outside the predetermined angular range and shorter than the constant cycle N within the predetermined angular range; A precision measurement approach radar device comprising: means for generating a signal; and means for switching between the first trigger signal and the period variable trigger signal and outputting the switched signal to a transmitter or the like.
(2)アンテナ(方位アンテナと高低アンテナ)の角度
信号を受けてアンテナの走査範囲内の所定角度範囲を指
定するゲート信号を発生するゲート発生器と;一定周期
Nの第1トリガ信号を発生する第1トリガ発生器と;前
記一定周期Nよりも長い周期の第2トリガ信号を発生す
る第2トリガ発生器と;前記一定周期Nよりも短い周期
の第3トリガ信号を発生する第3トリガ発生器と;前記
ゲート信号を受けて前記所定角度範囲外では前記第2ト
リガ発生器の出力を選択し、当該所定角度範囲内では前
記第3トリガ発生器の出力を選択する第1切替器と;外
部操作によって前記第1トリガ発生器の出力と前記第1
切替器の出力の一方を選択出力する第2切替器と;前記
第2切替器の出力を送信機等へ分配する分配器と;を備
えたことを特徴とする精測進入レーダ装置。
(2) a gate generator that receives angle signals from the antennas (azimuth antenna and height antenna) and generates a gate signal specifying a predetermined angle range within the scanning range of the antenna; generates a first trigger signal with a constant period N; a first trigger generator; a second trigger generator that generates a second trigger signal with a cycle longer than the constant cycle N; and a third trigger generator that generates a third trigger signal with a cycle shorter than the constant cycle N. a first switch that receives the gate signal and selects the output of the second trigger generator outside the predetermined angle range, and selects the output of the third trigger generator within the predetermined angle range; The output of the first trigger generator and the first
A precision approach radar device comprising: a second switch that selectively outputs one of the outputs of the switch; and a distributor that distributes the output of the second switch to a transmitter or the like.
JP2334774A 1990-11-30 1990-11-30 Precision approach radar apparatus Pending JPH04204191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334774A JPH04204191A (en) 1990-11-30 1990-11-30 Precision approach radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334774A JPH04204191A (en) 1990-11-30 1990-11-30 Precision approach radar apparatus

Publications (1)

Publication Number Publication Date
JPH04204191A true JPH04204191A (en) 1992-07-24

Family

ID=18281084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334774A Pending JPH04204191A (en) 1990-11-30 1990-11-30 Precision approach radar apparatus

Country Status (1)

Country Link
JP (1) JPH04204191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229325A1 (en) * 2011-03-11 2012-09-13 Eurocopter Method of measuring height and detecting obstacles, a radioaltimeter, and an aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226076A (en) * 1986-03-28 1987-10-05 Nippon Kokan Kk <Nkk> Pulse radar for marine vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226076A (en) * 1986-03-28 1987-10-05 Nippon Kokan Kk <Nkk> Pulse radar for marine vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229325A1 (en) * 2011-03-11 2012-09-13 Eurocopter Method of measuring height and detecting obstacles, a radioaltimeter, and an aircraft
US9239381B2 (en) * 2011-03-11 2016-01-19 Airbus Helicopters Method of measuring height and detecting obstacles, a radioaltimeter, and an aircraft

Similar Documents

Publication Publication Date Title
EP3929623B1 (en) Laser radar
US5081456A (en) Method of detecting unknown object and apparatus therefor
US2459481A (en) Instrument landing system
US2428351A (en) Radio wave reflectivity indicating system
JPH1114749A (en) Radar device
JP2002071807A (en) Rear turbulence detecting system
US3879732A (en) Multi-directional barrage jamming system
US2842760A (en) Object locating apparatus
GB1292876A (en) Blind landing aid system
JP3724379B2 (en) Wind shear detector
US3971022A (en) Phased-array antenna employing an electrically controlled lens
CN109324349A (en) Subarea-scanning safety check instrument system and its scan method based on millimeter wave
US2526314A (en) Radio detection and ranging system employing multiple scan
WO2007021217A1 (en) Shipborne radar
US2682048A (en) Radio object detection apparatus
JPH04204191A (en) Precision approach radar apparatus
US2569485A (en) Automatic ranging system
US3452353A (en) Conical and navigation radar scan simulator for testing electronic countermeasures system
US2597348A (en) Range height indicator
US2549641A (en) Display of three-dimensional information
JP2008101998A (en) Precision approach radar system
JPH0854457A (en) Radar
JP2668966B2 (en) Radar equipment
JP2001091195A (en) Apparatus and method for disturbing tracking
JPH0142392B2 (en)