JPH04204134A - Stopping method of wind tunnel apparatus - Google Patents

Stopping method of wind tunnel apparatus

Info

Publication number
JPH04204134A
JPH04204134A JP33053090A JP33053090A JPH04204134A JP H04204134 A JPH04204134 A JP H04204134A JP 33053090 A JP33053090 A JP 33053090A JP 33053090 A JP33053090 A JP 33053090A JP H04204134 A JPH04204134 A JP H04204134A
Authority
JP
Japan
Prior art keywords
pressure
low
ejector
air
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33053090A
Other languages
Japanese (ja)
Other versions
JP2642513B2 (en
Inventor
Tsunehiko Takakusaki
高草木 常彦
Masahiro Yoshida
正博 吉田
Isao Ishigamori
石ケ森 勲
Takashi Hashimoto
孝 橋本
Kuniyoshi Tsubouchi
邦良 坪内
Kazuyoshi Ninomiya
二宮 一芳
Takuo Kuwabara
卓雄 桑原
Minoru Kono
光野 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP33053090A priority Critical patent/JP2642513B2/en
Publication of JPH04204134A publication Critical patent/JPH04204134A/en
Application granted granted Critical
Publication of JP2642513B2 publication Critical patent/JP2642513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To make it possible to restore pressure at the time of stop when a flow-path closing means is omitted by providing a vacuum brake valve, introducing air from a high-pressure gas feeding source through a gas heating part and a nozzle, and stopping a fluid jetting means at a specified time constant. CONSTITUTION:A vacuum brake valve 6 for introducing atmosphere into a low-pressure chamber 3 when an apparatus is stopped is provided. Air for restoring the pressure in the chamber 3 is introduced from a main flow-path pipe 7 from a high-pressure gas feeding system on the upstream side through a lean burning heater 1 and a nozzle 2. An ejector 5 of a fluid jetting means which sets the pressure in the chamber 3 at the constant low-pressure state is stopped at a certain time constant. These parts are associatively operated automatically. When the apparatus is stopped, the pressure in the chamber 3 and the air from the valve 6 and the high-pressure-gas feeding system are used together during the period from the stopping command of the ejector 5 to the complete stopping. Thus the apparatus can be smoothly stopped without the breakdown of the ejector 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、風洞装置の停止方法に係り、特に、例えば宇
宙往還用エンジン開発等の実験設備として使用される熱
風洞試験装置の制御に好適な風洞装置の停止方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for stopping a wind tunnel apparatus, and is particularly suitable for controlling a hot wind tunnel test apparatus used as experimental equipment for, for example, developing a space shuttle engine. The present invention relates to a method for stopping a wind tunnel apparatus.

[従来の技術] 近年、例えば宇宙往還機用エンジンの開発、あるいは、
その材料開発用として、高空飛行環境を地上で模擬する
ための実験設備である熱風洞試験装置の開発が盛んであ
る。
[Prior art] In recent years, for example, the development of engines for spacecraft, or
In order to develop materials for this purpose, there is active development of thermal wind tunnel test equipment, which is an experimental facility for simulating high-altitude flight environments on the ground.

なお、この種の試験設備に関する文献として、rNAL
  TR−454Jに「航空宇宙技術研究所のロケット
エンジン高空性能試験設備」(1976年4月、航空宇
宙技術研究所発行)がある。
In addition, as a literature regarding this type of test equipment, rNAL
TR-454J includes ``Aerospace Technology Research Institute Rocket Engine High-Altitude Performance Test Facility'' (April 1976, published by Aerospace Technology Research Institute).

熱風洞試験装置は、主に、高圧ガス供給系、ガス加熱部
、ノズル、低圧室、デイフユーザ、エゼクタおよび排気
系などから構成され、デイフユーザやエゼクタの機能を
利用して、低圧室内圧力を、例えば0.1気圧などの高
空環境に模擬する装置である。
The hot wind tunnel test equipment mainly consists of a high-pressure gas supply system, a gas heating section, a nozzle, a low-pressure chamber, a diff user, an ejector, an exhaust system, etc., and uses the functions of the diff user and ejector to measure the low-pressure room pressure, for example. This is a device that simulates a high-altitude environment such as 0.1 atm.

これら熱風洞”試験装置の運転制御、特に停止方法につ
いて述べれば、従来の停止方法は、前記文献に記載され
ているように、停止時刻、たとえば0.1気圧と低圧に
なった低圧室内の圧力を大気圧まで回復させる手段は、
低圧室下流側に仕切弁を設け、この仕切弁を閉じたのち
、エゼクタを停止させ、その後、リーク弁から低圧室に
大気を徐々に流入させて大気圧まで回復させるものであ
った。
Regarding the operation control, especially the stopping method, of these "thermal wind tunnel" test equipment, the conventional stopping method, as described in the above-mentioned literature, is based on the stopping time, for example, when the pressure in the low-pressure chamber has become as low as 0.1 atm. The means to restore it to atmospheric pressure is
A gate valve was provided on the downstream side of the low pressure chamber, and after closing the gate valve, the ejector was stopped, and then atmospheric pressure was gradually allowed to flow into the low pressure chamber through the leak valve to restore atmospheric pressure.

なお、停止時に低圧室内の圧力を大気圧近傍(少なくと
も0.6気圧以下)まで回復させることは、排気系から
低圧室への気流の逆衝撃波を防止する上で必要なことで
ある。
Note that it is necessary to restore the pressure in the low pressure chamber to near atmospheric pressure (at least 0.6 atmospheres or less) when the engine is stopped in order to prevent a reverse shock wave of the airflow from the exhaust system to the low pressure chamber.

[発明が解決しようとする課題] 上記従来技術による熱風洞試験装置の停止方法′ では
、排気系の主流路の閉鎖用として仕切弁等が設けられる
ため、装置自体が高価となり、かつ、仕切弁が誤動作し
やすく、事故発生の恐れがあった。
[Problems to be Solved by the Invention] In the method for shutting down a hot wind tunnel test device according to the prior art described above, a gate valve or the like is provided to close the main flow path of the exhaust system, so the device itself becomes expensive, and the gate valve It was easy to malfunction and there was a risk of an accident.

本発明の目的は、上記従来技術における問題点を解決す
るためになされたもので、排気系の気流の主流路に仕切
弁なとの流路閉鎖手段を設けることなしに、停止時に低
圧室内の圧力を大気圧近傍まで回復させることを可能と
した風洞装置の停止方法を提供すること、その目的とす
るものである。
SUMMARY OF THE INVENTION An object of the present invention has been made to solve the problems in the prior art described above. It is an object of the present invention to provide a method for stopping a wind tunnel apparatus that makes it possible to restore the pressure to near atmospheric pressure.

また、本発明の他の目的は、排気系主流路に仕切弁なと
の流路閉鎖手段を省略できるので、低コストで、かつ、
仕切弁の誤動作などによる事故発生の恐れのない風洞装
置の停止方法を提供することにある。
Another object of the present invention is that it is possible to omit passage closing means such as a gate valve in the main passage of the exhaust system, so that the cost is low and
It is an object of the present invention to provide a method for stopping a wind tunnel apparatus without fear of accidents caused by malfunction of gate valves.

[gA題を解決するための手段] 上記目的を達成するために、本発明に係る風洞装置の停
止方法の構成は、高圧ガス供給系と、ガス加熱部と、ノ
ズルと、低圧室と、低圧室内の圧力をある一定の低圧状
態にするための流体噴出手段と、排気系とからなる風洞
装置の停止方法において、前記低圧室に大気を流入させ
るための真空ブレーク弁を設け、かつ、低圧室上流側の
前記高圧ガス供給系より前記ガス加熱部および前記ノズ
ルを経る主流路を通して空気を導入し、さらに、前記流
体噴出手段を所定の時定数をもって停止するようにし、
これら3つの要素を連動させることによって、前記低圧
室内の圧力を所定時間内に大気圧近傍まで回復させるよ
うにしたものである。
[Means for Solving Problem gA] In order to achieve the above object, the configuration of the wind tunnel apparatus stopping method according to the present invention includes a high pressure gas supply system, a gas heating section, a nozzle, a low pressure chamber, and a low pressure In a method for stopping a wind tunnel apparatus comprising a fluid ejecting means for bringing the pressure in the room to a certain low pressure state and an exhaust system, a vacuum break valve is provided for causing atmospheric air to flow into the low pressure chamber, and the low pressure chamber Air is introduced from the high-pressure gas supply system on the upstream side through the main flow path passing through the gas heating section and the nozzle, and further, the fluid ejection means is stopped with a predetermined time constant,
By interlocking these three elements, the pressure within the low pressure chamber is restored to near atmospheric pressure within a predetermined period of time.

[作用コ 本発明は、上記のように、低圧室に真空ブレーク弁を設
け、かつ、低圧室上流側の高圧ガス供給系からガス加熱
部およびノズルを経る主流路を通して低圧室内圧力回復
のための空気を導入させ、さらに、流体噴出手段を構成
するエゼクタを瞬時に停止せずにある時定数をもって停
止させるようにし、これら3要素を自動的に連動させる
ようにしたことで、エゼクタ停止指令から完全停止まで
の間の所定時間内に低圧室内の圧力をスムーズに大気圧
近傍まで回復させることができる。すなわち、真空ブレ
ーク弁と高圧ガス供給系からの空気を併用することは、
エゼクタを停止途中でブレークダウンさせることなく、
スムーズに停止させる作用上、および真空ブレーク弁の
弁口径を極力小さくする上で有効な手段である。
[Function] As described above, the present invention provides a vacuum break valve in the low pressure chamber, and a main flow path from the high pressure gas supply system on the upstream side of the low pressure chamber through the gas heating section and the nozzle to restore the pressure in the low pressure chamber. In addition, the ejector constituting the fluid ejecting means is not stopped instantaneously, but is stopped with a certain time constant, and these three elements are automatically linked, so that the ejector can be completely stopped from the ejector stop command. The pressure in the low pressure chamber can be smoothly restored to near atmospheric pressure within a predetermined period of time before stopping. In other words, using the vacuum break valve and air from the high pressure gas supply system
without causing the ejector to break down while stopping.
This is an effective means to stop the valve smoothly and to minimize the diameter of the vacuum break valve.

エゼクタを瞬時に停止させずにある時定数をもって停止
させることは、エゼクタの駆動流体(空気または水蒸気
)を徐々に減らすことができることになり、エゼクタ吸
入側の圧力を徐々に大気圧近傍まで回復させることがで
きる。
By stopping the ejector with a certain time constant instead of instantaneously, the driving fluid (air or steam) for the ejector can be gradually reduced, and the pressure on the ejector suction side can be gradually restored to near atmospheric pressure. be able to.

なお、エゼクタのブレークダウン現象とは、エゼクタ運
転中に吸入側圧力が例えば0.1気圧から瞬時に大気圧
近傍まで高まる現象をいう。
Note that the ejector breakdown phenomenon refers to a phenomenon in which the suction side pressure instantaneously increases from, for example, 0.1 atm to near atmospheric pressure during ejector operation.

[実施例] 以下、本発明の一実施例を第1図ないし第5図を参照し
て説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は、本発明の一実施例に係る熱風洞装置の略示構
成図、第2図は、第1図の熱風洞装置の配管系統図、第
3図は、第1図の熱風洞装置における停止方法を説明す
るタイムチャート、第4図は、エゼクタ駆動空気量と低
圧室内圧力との関係を示す線図、第5図は、本発明の実
施例を基に実験し、得られた実験データを示す線図であ
る。
1 is a schematic configuration diagram of a hot air tunnel apparatus according to an embodiment of the present invention, FIG. 2 is a piping system diagram of the hot air tunnel apparatus of FIG. 1, and FIG. 3 is a diagram of the hot air tunnel of FIG. 1. FIG. 4 is a diagram showing the relationship between ejector drive air amount and low-pressure chamber pressure, and FIG. FIG. 3 is a diagram showing experimental data.

第1図において、1は、ガス加熱部に係る希薄燃焼加熱
器で、この希薄燃焼加熱器1は、主流路気流温度をある
必要温度に加熱するためのものである。2はノズル、3
は低圧室、4は下流側排気ダクト、5は、低圧室内の圧
力をある一定の低圧状態に低下させるための流体噴出手
段を構成するエゼクタ、6は、装置停止時に低圧室3内
に大気を流入させるための真空ブレーク弁である。
In FIG. 1, reference numeral 1 denotes a lean burn heater related to the gas heating section, and this lean burn heater 1 is for heating the main flow passage airflow temperature to a certain required temperature. 2 is a nozzle, 3
4 is a low pressure chamber; 4 is a downstream exhaust duct; 5 is an ejector that constitutes a fluid jetting means for reducing the pressure in the low pressure chamber to a certain low pressure state; This is a vacuum break valve for inflow.

すなわち、第1図に示すように、低圧室3を構成するチ
ャンバーの一端に希薄燃焼加熱器1が装着され、この希
薄燃焼加熱器1に連結したノズル2が低圧室3内に開口
している。また、低圧室3のチャンバーに真空ブレーク
弁6が具備されている。一方、低圧室3を構成するチャ
ンバーの他方に、下流側排気ダクト4が接続し、エゼク
タ5に連結している。
That is, as shown in FIG. 1, a lean combustion heater 1 is installed at one end of a chamber constituting a low pressure chamber 3, and a nozzle 2 connected to this lean combustion heater 1 opens into the low pressure chamber 3. . Further, the chamber of the low pressure chamber 3 is equipped with a vacuum break valve 6. On the other hand, a downstream exhaust duct 4 is connected to the other chamber constituting the low pressure chamber 3, and is connected to an ejector 5.

第2図は、第1図に示す実施例の配管系統を示す。FIG. 2 shows the piping system of the embodiment shown in FIG.

第2図において、7は、高圧ガス供給系の主流路配管、
8は高圧空気配管、9は、希薄燃焼加熱器1で燃料を燃
焼させる際の酸化剤として使用する高圧酸素の配管、1
0はエゼクタ駆動用空気配管、11は、前記希薄燃焼加
熱器1の燃料となる高圧水素の配管を、それぞれ示して
いる。
In FIG. 2, 7 is the main flow pipe of the high-pressure gas supply system;
8 is a high-pressure air pipe; 9 is a high-pressure oxygen pipe used as an oxidizing agent when burning fuel in the lean combustion heater 1;
0 indicates an air pipe for driving the ejector, and 11 indicates a high-pressure hydrogen pipe serving as the fuel for the lean combustion heater 1, respectively.

通常運転時には、主流路配管7には混合器26で混合さ
れた空気と酸素の混合ガスが流れるようになっている。
During normal operation, a mixed gas of air and oxygen mixed in the mixer 26 flows through the main flow pipe 7.

また、第2図に示す各配管系統において、12および1
6は圧力制御弁、14および18は減圧弁、13,15
.17および19は遮断弁、20および21は圧力信号
を電気信号に変換する信号変換器、22,23.24お
よび25は流量計である。
In addition, in each piping system shown in Figure 2, 12 and 1
6 is a pressure control valve, 14 and 18 are pressure reducing valves, 13, 15
.. 17 and 19 are shutoff valves, 20 and 21 are signal converters that convert pressure signals into electrical signals, and 22, 23, 24 and 25 are flow meters.

第3図は、第1図および第2図に示す実施例の熱風洞装
置の停止方法を説明するタイムチャートを示す。
FIG. 3 shows a time chart illustrating a method of stopping the hot air tunnel apparatus of the embodiment shown in FIGS. 1 and 2. FIG.

第4図は、エゼクタ駆動空気量と低圧室内圧力の関係を
示す実験データであり、また、第5図は、本発明の実施
例を基に実験し、得られた実験データを示す。
FIG. 4 shows experimental data showing the relationship between the ejector drive air amount and the low pressure chamber pressure, and FIG. 5 shows experimental data obtained from experiments based on the embodiments of the present invention.

次に、第1図および第2図に示す実施例の熱風洞装置の
停止方法について、第3図のタイムチャートを参照して
説明する。
Next, a method of stopping the hot air tunnel apparatus of the embodiment shown in FIGS. 1 and 2 will be explained with reference to the time chart shown in FIG. 3.

熱風洞装置の運転中は、空気配管10の遮断弁17、高
圧空気配管8の遮断弁13、高圧酸素配管9の遮断弁1
5、高圧水素配管11の遮断弁19は全開位置にある。
During operation of the hot air tunnel apparatus, the shutoff valve 17 of the air pipe 10, the shutoff valve 13 of the high pressure air pipe 8, and the shutoff valve 1 of the high pressure oxygen pipe 9 are closed.
5. The shutoff valve 19 of the high-pressure hydrogen pipe 11 is in the fully open position.

また、高圧空気配管8の圧力制御弁12.空気配管10
の圧力制御弁16、および高圧酸素配管9の減圧弁14
.高圧水素配管工1の減圧弁18は、それぞれ成る調整
開度位置にある。
Also, the pressure control valve 12 of the high pressure air piping 8. Air piping 10
pressure control valve 16 and pressure reducing valve 14 of high pressure oxygen piping 9
.. The pressure reducing valves 18 of the high pressure hydrogen plumber 1 are in respective adjusted opening positions.

この運転状態において、低圧室3内の圧力はエゼクタ5
の機能により1例えば0.1気圧などの低圧状態を保っ
ており、また、主流路配管7の気流Qaは、例えばマツ
ハ5といった高速状態にある。
In this operating state, the pressure inside the low pressure chamber 3 is reduced to the ejector 5.
This function maintains a low pressure state of, for example, 0.1 atmosphere, and the airflow Qa of the main flow pipe 7 is in a high-speed state, such as that of Matsuha 5, for example.

この状態から1図示しない運転制御盤盤面上の停止操作
スイッチを停止側に操作すると、まず、真空ブレーク弁
6が全閉する。続いて、真空ブレーク弁6と同時または
一定時間遅れて、エゼクタ駆動空気量調整用の圧力制御
弁16が成る時定数TIをもって閉鎖動作に入る。この
状態では、低圧室3への流入空気量31は、主流路配管
7側からの気流Qsと真空ブレーク弁6からの流入空気
Qvとが加算された状態にあり、また、エゼクタ駆動空
気量32は、エゼクタ駆動空気量調整用圧力制御弁16
の弁開度に比例した流量状態にある。
From this state, when the stop operation switch on the operation control panel (not shown) is operated to the stop side, first, the vacuum break valve 6 is fully closed. Subsequently, at the same time as the vacuum break valve 6 or after a fixed time delay, the pressure control valve 16 for adjusting the ejector drive air amount enters a closing operation with a time constant TI. In this state, the amount of air flowing into the low pressure chamber 3 31 is the sum of the air flow Qs from the main flow pipe 7 side and the amount of air flowing in from the vacuum break valve 6, and the amount of air for driving the ejector 32 is the pressure control valve 16 for adjusting the ejector drive air amount.
The flow rate is proportional to the valve opening.

運転制御盤盤面上の停止操作スイッチ停止操作後、また
は、真空ブレーク弁6全開後、一定時間T2経過して、
ガス供給系主流路空気量調整用の圧力制御弁12が成る
閉鎖時間T3をもって全閉する。
After a certain period of time T2 has passed after the stop operation switch on the operation control panel is stopped or after the vacuum break valve 6 is fully opened,
The pressure control valve 12 for adjusting the air amount in the main channel of the gas supply system is fully closed at the closing time T3.

なお、第3図しこは図示しないが、高圧酸素「供給−停
止」用の遮断弁15および高圧水素「供給−停止」用の
遮断弁19は、運転制御盤盤面上の停止操作スイッチの
停止操作と同じに全閉するようになっている。
Although not shown in FIG. 3, the high-pressure oxygen "supply-stop" shutoff valve 15 and the high-pressure hydrogen "supply-stop" shutoff valve 19 are connected to the stop operation switch on the operation control panel. It is designed to be fully closed in the same way as the operation.

上記した一連の動作により、エゼクタ排出空気量33お
よび低圧室内圧力34は、第3図の図示のように変化し
、エゼクタのブレークダウンもなくスムーズに大気圧近
傍まで回復する。
Through the series of operations described above, the ejector discharge air amount 33 and the low-pressure chamber pressure 34 change as shown in FIG. 3, and smoothly recover to near atmospheric pressure without ejector breakdown.

このことは、第4図、第5図に示す実験データでも証明
された。第5図において、35は、エゼクタ駆動空気量
調整用の圧力制御弁16の二次側圧力を示し、これは弁
開度に比例した値である。
This was also proven by the experimental data shown in FIGS. 4 and 5. In FIG. 5, numeral 35 indicates the secondary side pressure of the pressure control valve 16 for adjusting the amount of air for driving the ejector, and this is a value proportional to the valve opening degree.

エゼクタ駆動空気量32は図の如く変化し、低圧室内圧
力34はブレークダウンもなく、図のようにスムーズに
大気圧近傍まで回復していることが明らかである。
It is clear that the ejector drive air amount 32 changes as shown in the figure, and the low-pressure chamber pressure 34 has no breakdown and smoothly recovers to near atmospheric pressure as shown in the figure.

以上説明したように、本実施例によれば、低圧室に大気
を流入させるための真空ブレーキ弁を設け、かつ、低圧
室上流側の高圧ガス供給系から主流路を通して低圧室内
圧力回復のための空気を導入させ、さらに、エゼクタを
成る時定数をもって停止させるようにし、これら3つの
要素を自動的に連動させるようにしたので、熱風洞装置
の停止方法において、排気系の気流の主流路に仕切弁な
との流路閉鎖手段を設けることなしに、低圧室内の圧力
を所定時間内に大気圧近傍まで回復することができる。
As explained above, according to this embodiment, a vacuum brake valve is provided to allow atmospheric air to flow into the low pressure chamber, and a vacuum brake valve is provided to allow atmospheric air to flow into the low pressure chamber, and a vacuum brake valve is provided to restore the pressure in the low pressure chamber through the main passage from the high pressure gas supply system on the upstream side of the low pressure chamber. By introducing air and stopping the ejector with a certain time constant, these three elements are automatically linked, so in the method of stopping the hot air tunnel equipment, it is possible to partition the main air flow path of the exhaust system. The pressure within the low pressure chamber can be restored to near atmospheric pressure within a predetermined time without providing a flow path closing means such as a valve.

また、排気系主流路に仕切弁などの流路閉鎖手段を省略
できるので、コスト面での効果のみでなく、仕切弁誤動
作などにより生じる可能性のある熱風洞装置の事故を回
避することができる。
In addition, since it is possible to omit flow path closing means such as a gate valve in the main flow path of the exhaust system, it is not only effective in terms of cost, but also avoids accidents in hot air tunnel equipment that may occur due to gate valve malfunction. .

なお、上記の実施例では、低圧室内の圧力をある一定の
低圧状態にするための流体噴呂手段としてエゼクタを用
いた例を説明したが、本発明はこれに限らず、エゼクタ
およびデイフユーザを用いても差支えない。
In addition, in the above embodiment, an example was explained in which an ejector was used as a fluid jet means for bringing the pressure inside the low pressure chamber to a certain low pressure state, but the present invention is not limited to this, and the present invention is not limited to this. There is no problem.

また、上記の実施例では、エゼクタ駆動空気量調整用の
圧力制御弁16は、成る時定数をもって停止する例を説
明したが、成る閉鎖時間をもって閉鎖しても同様の効果
が得られる。
Further, in the above embodiment, the pressure control valve 16 for adjusting the amount of air for driving the ejector is stopped after a certain time constant, but the same effect can be obtained even if the pressure control valve 16 is closed after a certain closing time.

[発明の効果コ 以上、詳細に説明したように、本発明によれば、排気系
の気流の主流路に仕切弁なとの流路閉鎖手段を設けるこ
となしに、停止時に低圧室内の圧力を大気圧近傍まで回
復させることを可能とした風洞装置の停止方法を提供す
ることができる。
[Effects of the Invention] As explained in detail above, according to the present invention, the pressure in the low pressure chamber can be reduced at the time of stoppage without providing a flow path closing means such as a gate valve in the main flow path of the air flow in the exhaust system. It is possible to provide a method for stopping a wind tunnel apparatus that allows the pressure to be restored to near atmospheric pressure.

また、本発明によれば、排気系主流路に仕切弁なとの流
路閉鎖手段を省略できるので、低コストで、かつ、仕切
弁の誤動作などによる事故発生の恐れのない風洞装置の
停止方法を提供することができる。
Furthermore, according to the present invention, a flow path closing means such as a gate valve can be omitted in the main flow path of the exhaust system, so a method for shutting down a wind tunnel apparatus is low-cost and eliminates the risk of accidents due to malfunction of the gate valve. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る熱風洞装置の略示構
成図、第2図は、第1図の熱風洞装置の配管系統図、第
3図は、第1図の熱風洞装置における停止方法を説明す
るタイムチャート、第4図は、エゼクタ駆動空気量と低
圧室内圧力との関係を示す線図、第5図は、本発明の実
施例を基に実験し、得られた実験データを示す線図であ
る。 1・・・希薄燃焼加熱器、2・・・ノズル、6・・・低
圧室、4・・・下流側排気ダクト、5・・・エゼクタ、
6・・・真空ブレークベン、7・・・主流路配管、8・
・・高圧空気配管、9・・・高圧酸素配管、10・・・
空気配管、11・・・高圧水素配管、12.16・・・
圧力制御弁。
1 is a schematic configuration diagram of a hot air tunnel apparatus according to an embodiment of the present invention, FIG. 2 is a piping system diagram of the hot air tunnel apparatus of FIG. 1, and FIG. 3 is a diagram of the hot air tunnel of FIG. 1. FIG. 4 is a diagram showing the relationship between ejector drive air amount and low-pressure chamber pressure, and FIG. FIG. 3 is a diagram showing experimental data. DESCRIPTION OF SYMBOLS 1... Lean burn heater, 2... Nozzle, 6... Low pressure chamber, 4... Downstream exhaust duct, 5... Ejector,
6... Vacuum break vent, 7... Main channel piping, 8...
...High pressure air piping, 9...High pressure oxygen piping, 10...
Air piping, 11...High pressure hydrogen piping, 12.16...
Pressure control valve.

Claims (1)

【特許請求の範囲】 1、高圧ガス供給系と、ガス加熱部と、ノズルと、低圧
室と、低圧室内の圧力をある一定の低圧状態にするため
の流体噴出手段と、排気系とからなる風洞装置の停止方
法において、 前記低圧室に大気を流入させるための真空ブレーク弁を
設け、 かつ、低圧室上流側の前記高圧ガス供給系より前記ガス
加熱部および前記ノズルを経る主流路を通して空気を導
入し、 さらに、前記流体噴出手段を所定の時定数を、もって停
止するようにし、 これら3つの要素を連動させることによって、前記低圧
室内の圧力を所定時間内に大気圧近傍まで回復させるよ
うにした ことを特徴とする風洞装置の停止方法。
[Claims] 1. Consisting of a high-pressure gas supply system, a gas heating section, a nozzle, a low-pressure chamber, a fluid jetting means for bringing the pressure in the low-pressure chamber to a certain low-pressure state, and an exhaust system. In the method for stopping a wind tunnel apparatus, a vacuum break valve is provided to allow atmospheric air to flow into the low pressure chamber, and air is introduced from the high pressure gas supply system upstream of the low pressure chamber through the main channel passing through the gas heating section and the nozzle. Further, the fluid ejecting means is stopped with a predetermined time constant, and by interlocking these three elements, the pressure in the low pressure chamber is restored to near atmospheric pressure within a predetermined time. A method of stopping a wind tunnel apparatus characterized by the following.
JP33053090A 1990-11-30 1990-11-30 How to stop the wind tunnel device Expired - Fee Related JP2642513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33053090A JP2642513B2 (en) 1990-11-30 1990-11-30 How to stop the wind tunnel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33053090A JP2642513B2 (en) 1990-11-30 1990-11-30 How to stop the wind tunnel device

Publications (2)

Publication Number Publication Date
JPH04204134A true JPH04204134A (en) 1992-07-24
JP2642513B2 JP2642513B2 (en) 1997-08-20

Family

ID=18233667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33053090A Expired - Fee Related JP2642513B2 (en) 1990-11-30 1990-11-30 How to stop the wind tunnel device

Country Status (1)

Country Link
JP (1) JP2642513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729845A (en) * 2020-12-29 2021-04-30 北京动力机械研究所 Heater rectifying component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729845A (en) * 2020-12-29 2021-04-30 北京动力机械研究所 Heater rectifying component

Also Published As

Publication number Publication date
JP2642513B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US4047381A (en) Gas turbine engine power plants for aircraft
CN106499543B (en) A kind of ejector exhaust pipe thruster vector control and the device of area regulation
US8096104B2 (en) Fluidic vectoring for exhaust nozzle
JPH04204134A (en) Stopping method of wind tunnel apparatus
US2713245A (en) Internal combustion turbine power plants with regenerative exhaust treatment system
GB1357635A (en) Pneumatic pressure type respirator
US3403507A (en) Control apparatus for equalizing an engine operating condition of a plurality of gasturbine engines
US2748566A (en) Compound gas-turbine engine with lowpressure compressor and turbine bypass
JP2998571B2 (en) Gas turbine protection device for exhaust reburning combined plant
US2895294A (en) Control system for gas turbine installations
CN209752623U (en) Online debugging and switching device for urea hydrolysis system
JPH0921329A (en) Exhaust gas reverse flow prevention device for gas turbine system
JPH11173214A (en) Burning type thrust generating device
JPH09293522A (en) Safety device for fuel cell power generation device
JPH06129305A (en) Emergency shut-off device of gas engine
JP3066777B2 (en) Fuel control device for gas turbine combustor
CN216846904U (en) Pipeline system and test device
JPS57186038A (en) Idle speed controller
CN106507870B (en) A kind of rocket diaphragm high temperature gas flow washout test device
KR890014861A (en) Engine turbo and air supply controls
GB879747A (en) Improved gas turbine engine fuel system
Matsumoto et al. Development of a subscale supersonic aeropropulsion wind tunnel
GB971222A (en) Gas turbine power plant
JPH0886225A (en) Fuel supply device for gas turbine engine
JPS59112124A (en) Gas burner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees