JPH04203927A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH04203927A
JPH04203927A JP2334019A JP33401990A JPH04203927A JP H04203927 A JPH04203927 A JP H04203927A JP 2334019 A JP2334019 A JP 2334019A JP 33401990 A JP33401990 A JP 33401990A JP H04203927 A JPH04203927 A JP H04203927A
Authority
JP
Japan
Prior art keywords
tuning fork
angular velocity
supporting
velocity sensor
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334019A
Other languages
Japanese (ja)
Inventor
Kazumitsu Ueda
上田 和光
Jiro Terada
二郎 寺田
Seiichi Horii
堀井 誠一
Hiroshi Takenaka
寛 竹中
Toshihiko Ichise
俊彦 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2334019A priority Critical patent/JPH04203927A/en
Publication of JPH04203927A publication Critical patent/JPH04203927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To improve the shock impact resistance of an angular velocity sensor by constituting the sensor of a tuning fork vibrating element, a supporting rod for supporting and bonding the element to a base member, a vibration absorbing material covering the periphery of the rod, and a supporting body for supporting and reinforcing the supporting rod via the absorbing material. CONSTITUTION:A driving piezoelectric element 2 starts symmetic vibrations centering an electrode block 3 when signals are impressed thereto. That is, a so-called tuning fork vibration is started. A proper oscillation while a tuning fork vibrating element is attached to an end of a supporting rod 4 is about 400Hz, which is approximately at the center of a driving frequency of the tuning fork vibrating element. A vibration absorbing material 7 is made of silicone gel. Silicone in a jel state is injected between a supporting body 8 and the supporting rod 4 and then heated to be turned to gel. Even when the absorbing material 7 and the supporting body 8 are attached around the supporting body 4, the proper oscillation of the supporting rod 4 is about 440Hz and at the center of the driving frequency of the tuning fork vibrating element. Therefore, the secondary and the tertiary higher harmonics do not have the frequency in the vicinity of the driving frequency. An angular velocity sensor which is resistive to the external acceleration is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はジャイロスコープ、特に圧電素子振動を用いた
角速度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gyroscope, and particularly to an angular velocity sensor using vibration of a piezoelectric element.

従来の技術 従来、ジャイロスコープを用いた慣性航法装置として飛
行機、船舶のような移動する物体の方位を知る方法とし
て機械式の回転ジャイロが主に使用されている。
BACKGROUND ART Conventionally, a mechanical rotary gyro has been mainly used as an inertial navigation device using a gyroscope to determine the direction of a moving object such as an airplane or a ship.

これは安定した方位が得られるが、機械式であることか
ら装置が大がかりであり、コストも高く、小型化が望ま
れる機器への応用は困難である。
Although this method can provide stable orientation, since it is mechanical, the device is large-scale and costly, and it is difficult to apply it to equipment that requires miniaturization.

一方回転力を使わずに物体を振動させ、振動する検知素
子から「コリオリの力」を検出する振動型角速度センサ
がある。多くは圧電式と電磁式のメカニズムを採用して
いる構造のものである。これらはジャイロを構成する質
量の運動が一定速度の運動ではなく、振動になっている
。従って、角速度が加わった場合、コリオリの力は、質
量の振動数と等しい振動数の振動トルクとして生じるも
のである。このトルクによる振動を検出することによっ
て角速度を測定するのが振動型角速度センサの原理であ
り、特に圧電体を用いたセンサが多く考案されている(
日本航空宇宙学会誌第23巻第257号339−350
ページ)。
On the other hand, there is a vibration-type angular velocity sensor that vibrates an object without using rotational force and detects the "Coriolis force" from a vibrating sensing element. Many of these structures employ piezoelectric and electromagnetic mechanisms. In these cases, the mass that makes up the gyro does not move at a constant speed, but instead vibrates. Therefore, when an angular velocity is applied, the Coriolis force occurs as a vibration torque with a frequency equal to the frequency of the mass. The principle of a vibration-type angular velocity sensor is to measure angular velocity by detecting vibrations caused by this torque, and in particular, many sensors using piezoelectric materials have been devised (
Journal of the Japan Society of Aeronautics and Astronautics Vol. 23 No. 257 339-350
page).

発明が解決しようする課題 上記の原理に基づく構成にて、特願昭59−18582
5号に示される角速度センサが発明されているが、下記
のような課題があった。
Problems to be Solved by the Invention With a structure based on the above principle, patent application No. 18582/1982
Although the angular velocity sensor shown in No. 5 was invented, it had the following problems.

角速度センサを搭載した機器のモーターの振動等による
外乱加速度が角速度センサに作用した時、角速度センサ
が並進加速度に対して、完全不感でないかぎり、外乱加
速度に応答して、角速度センサは誤差出力を発生する。
When disturbance acceleration caused by vibration of the motor of a device equipped with an angular velocity sensor acts on the angular velocity sensor, unless the angular velocity sensor is completely insensitive to translational acceleration, the angular velocity sensor will generate an error output in response to the disturbance acceleration. do.

これは、検知用圧電素子が基本的に加速度センサであり
、「コリオリの力」のみに選択的に感応するのではない
からである。
This is because the sensing piezoelectric element is basically an acceleration sensor and is not selectively sensitive only to the "Coriolis force".

検知用圧電素子からは、上述の振動型角速度センナの原
理に従い、角速度に応じた大きさの振動トルクが生じ、
それに応じた交流信号が出力される。この交流信号を同
期検波して直流信号に変換する。そのため加速度応答の
周波数成分は外乱加速度とは同期検波信号の周波数、即
ち、駆動周波数だけ差を持つ。従って、外乱加速度のう
ち特に加速度応答に影響があるのは、駆動周波数近傍の
周波数成分である。
According to the principle of the vibration type angular velocity sensor described above, a vibration torque corresponding to the angular velocity is generated from the detection piezoelectric element.
A corresponding AC signal is output. This AC signal is synchronously detected and converted into a DC signal. Therefore, the frequency component of the acceleration response differs from the disturbance acceleration by the frequency of the synchronous detection signal, that is, the drive frequency. Therefore, of the disturbance acceleration, it is the frequency component near the driving frequency that particularly affects the acceleration response.

従来より、加速度応答を低減させるために、−対の検知
用圧電素子の感度を整合させキャンセル効果を持たせた
り、センサの保持を防振材を介して行なったり、支持体
の固有振動数を適切な値、例えば、音叉振動素子の駆動
周波数の1/2と1/3のほぼ中央の値に設定すること
で外乱加速度のセンスエレメントへの伝達を抑えたりし
ていた。しかし、加速度応答の低減は充分でなかった。
Conventionally, in order to reduce acceleration response, it has been possible to match the sensitivities of a pair of detection piezoelectric elements to create a canceling effect, to hold the sensor through a vibration isolating material, or to reduce the natural frequency of the support. By setting an appropriate value, for example, a value approximately in the middle between 1/2 and 1/3 of the driving frequency of the tuning fork vibrating element, transmission of disturbance acceleration to the sense element has been suppressed. However, the reduction in acceleration response was not sufficient.

また、検知用圧電素子の厚み方向の加速度応答は、駆動
用圧電素子の厚み方向及び、検知軸方向の加速度応答に
比べ敏感であり、それゆえ、全方向の防振性能を高めた
り、取付は方向を規定する必要があった。
In addition, the acceleration response in the thickness direction of the detection piezoelectric element is more sensitive than the acceleration response in the thickness direction and detection axis direction of the drive piezoelectric element. It was necessary to define the direction.

本発明はかかる点に鑑みてなされたもので、外乱加速度
に対して耐性のある角速度センサを得ることを目的とし
ている。
The present invention has been made in view of this point, and an object of the present invention is to obtain an angular velocity sensor that is resistant to disturbance acceleration.

課題を解決するための手段 本発明は上記問題点を解決するために、音叉振動素子を
ベース部材に支持接合する支持棒の周囲を振動吸収材に
て被覆し、支持体によりこの振動吸収材を介して前記支
持棒を支持補強する構造としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention covers the support rod that supports and connects the tuning fork vibrating element to the base member with a vibration absorbing material, and covers this vibration absorbing material with the support. The structure is such that the support rod is supported and reinforced through the support rod.

作用 上記の構成により支持棒が外乱加速度により振動したと
き、振動吸収材は支持体に外周を固定されているので、
支持棒は振動吸収材を圧縮膨張させ、振動エネルギーは
熱エネルギーに変換され、振動は速やかに減衰するので
、外乱加速度に対して耐性のある角速度センサを得るこ
とができる。
Effect: With the above configuration, when the support rod vibrates due to disturbance acceleration, the vibration absorbing material has its outer periphery fixed to the support, so
The support rod compresses and expands the vibration absorbing material, the vibration energy is converted into thermal energy, and the vibration is quickly attenuated, making it possible to obtain an angular velocity sensor that is resistant to disturbance acceleration.

実施例 第1図は本発明による角速度センサの一実施例を示す構
造図である。第1図において、1は検知用圧電素子、2
は駆動用圧電素子、3は電極ブロック、6は接合部材で
あり、検知用圧電素子1と駆動圧電素子2とは接合部材
6を介して互いにほぼ直交するように接合されてセンサ
素子が構成され、そして一対のセンサ素子は結合部材と
なる電極ブロック3により結合され音叉振動素子を構成
している。4は支持棒、5はベース、7は振動吸収材、
8は支持体であり、前記音叉振動素子は支持棒4を介し
てベース5に支持されており、支持棒4は、その下部は
、ベース5に植設され、その上部は、振動吸収材7を介
して支持体8により支持されている。
Embodiment FIG. 1 is a structural diagram showing an embodiment of an angular velocity sensor according to the present invention. In FIG. 1, 1 is a detection piezoelectric element, 2
3 is a driving piezoelectric element, 3 is an electrode block, and 6 is a joining member. The sensing piezoelectric element 1 and the driving piezoelectric element 2 are joined to each other through the joining member 6 so as to be substantially perpendicular to each other to form a sensor element. , and the pair of sensor elements are coupled by an electrode block 3 serving as a coupling member to constitute a tuning fork vibrating element. 4 is a support rod, 5 is a base, 7 is a vibration absorber,
Reference numeral 8 denotes a support body, and the tuning fork vibrating element is supported by the base 5 via the support rod 4. It is supported by a support body 8 via.

以上のように構成された本実施例の角速度センサについ
て以下その動作を説明する。
The operation of the angular velocity sensor of this embodiment configured as described above will be explained below.

まず一対の駆動用圧電素子2を駆動するには対向してい
る面を共通電極としてそれぞれ外側の面との間に交流信
号をかける。信号を印加された駆動用圧電素子2は電極
ブロック3を中心にして対称な振動を始める、いわゆる
音叉振動である。以下角速度の検出は従来の技術の項で
示した通りなので省略する。
First, in order to drive a pair of driving piezoelectric elements 2, an alternating current signal is applied between the opposing surfaces of the driving piezoelectric elements 2 and the outer surfaces thereof, using the opposing surfaces as common electrodes. The drive piezoelectric element 2 to which the signal is applied begins to vibrate symmetrically around the electrode block 3, which is what is called a tuning fork vibration. Since the detection of angular velocity is the same as that described in the prior art section, the description thereof will be omitted.

支持棒4は、鉄、コバルト、ニッケルの合金がらなって
おり、長さは4.5m111.太さは0.6n+mで先
端に音叉振動素子を付した状態での固有振動数は、約4
00 )1zであり、音叉振動素子の駆動周波数約1k
Hzの1/2と1/3のほぼ中央に値している。支持体
8は外形2鵬、内径1間、長さ4閣の金属の管である。
The support rod 4 is made of an alloy of iron, cobalt, and nickel, and has a length of 4.5 m111. The thickness is 0.6n+m and the natural frequency with a tuning fork vibrating element attached to the tip is approximately 4.
00 ) 1z, and the driving frequency of the tuning fork vibrating element is approximately 1k.
The value is approximately in the middle between 1/2 and 1/3 of Hz. The support 8 is a metal tube with an outer diameter of 2 mm, an inner diameter of 1 mm, and a length of 4 mm.

振動吸収材7はシリコーンゲルであり、ジェル状態で支
持体8と支持棒4の間に注入し、加熱、ゲル化している
。支持棒4の回りに振動吸収材7.支持体8を付した状
態であっても、支持棒4の固有振動数は約440 )1
zであり、音叉振動素子の駆動周波数の1/2と1/3
のほぼ中央に値しているので、その2次及び3次の高調
波成分が駆動周波数近傍の周波数とはならない。
The vibration absorbing material 7 is a silicone gel, which is injected in a gel state between the support body 8 and the support rod 4, and heated to gel. Vibration absorbing material 7 around the support rod 4. Even with the support 8 attached, the natural frequency of the support rod 4 is approximately 440 ) 1
z, which is 1/2 and 1/3 of the driving frequency of the tuning fork vibrating element.
Since the value is approximately at the center of , its second and third harmonic components do not have frequencies near the drive frequency.

第2図は、従来の角速度センサと本発明の一実施例にお
ける角速度センサの支持棒の共振周波数近傍の周波数で
の加振における加振強度に対する加速度応答を比較した
図である。従来のセンサでは波線で示すように0.7G
で弾性限界を超えて加速度応答が急激に増加するが本発
明の実施例におけるセンサでは実線で示すように少なく
とも3Gまでは弾性限界内であり、加速度応答は直線性
を保っている。またそのレベルも従来のセンサに比べて
約1/2であり、外乱加速度に対して耐性の向上したこ
とが示されている。
FIG. 2 is a diagram comparing the acceleration response to the excitation intensity when the support rod of a conventional angular velocity sensor and an angular velocity sensor according to an embodiment of the present invention are excited at a frequency near the resonance frequency. The conventional sensor has 0.7G as shown by the wavy line.
However, in the sensor according to the embodiment of the present invention, as shown by the solid line, the acceleration response is within the elastic limit up to at least 3G, and the acceleration response maintains linearity. Moreover, the level is also about 1/2 that of conventional sensors, indicating that the resistance to disturbance acceleration is improved.

また、耐落下衝撃においても従来の角速度センサは、3
00Gで共振特性の劣化がみられたが、本発明の実施例
における角速度センサは100OGにおいても、共振特
性の劣化はみられなかった。
In addition, in terms of drop impact resistance, conventional angular velocity sensors are
Although deterioration in resonance characteristics was observed at 00G, no deterioration in resonance characteristics was observed in the angular velocity sensor according to the example of the present invention even at 100OG.

従来の角速度センサでは、落下衝撃により支持棒がたわ
み、音叉振動素子の先端が大きく変位し音叉振動素子を
収納しているケースに接触し、その衝撃が駆動用圧電素
子の付は根に集中し駆動用圧電素子を破壊するからであ
る。本発明の実施例において、耐落下衝撃性が向上した
のは、支持棒のたわみの最大量が支持体に困って規制さ
れるので音叉振動素子の振幅が少なくなるためである。
In conventional angular velocity sensors, the support rod bends due to the impact of falling, causing the tip of the tuning fork vibrating element to displace significantly and contacting the case housing the tuning fork vibrating element, and the impact concentrates on the root of the driving piezoelectric element. This is because the driving piezoelectric element will be destroyed. In the embodiment of the present invention, the drop impact resistance is improved because the maximum amount of deflection of the support rod is regulated by the support, so the amplitude of the tuning fork vibrating element is reduced.

発明の詳細 な説明したように本発明によれば、支持棒が外乱加速度
により振動したとき、振動吸収材は支持体に外周を固定
されているので、支持棒は振動吸収材を圧縮膨張させ、
振動エネルギーは熱エネルギーに変換され、振動は速や
かに減衰するので、外乱加速度に対して耐性のある角速
度センサを得ることができる。また、支持棒のたわみの
最大量が規制されるので耐落下衝撃性の優れた角速度セ
ンサを得ることができる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, when the support rod vibrates due to disturbance acceleration, since the outer periphery of the vibration absorbing material is fixed to the support body, the support rod compresses and expands the vibration absorbing material.
Vibration energy is converted into thermal energy and the vibration is quickly attenuated, so an angular velocity sensor that is resistant to disturbance acceleration can be obtained. Furthermore, since the maximum amount of deflection of the support rod is regulated, it is possible to obtain an angular velocity sensor with excellent drop impact resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における角速度センサの構造
を示す概略図、第2図は従来例及び本発明のセンサにお
ける加振強度に対する加速応答の特性図である。 1・・・・・・検知用圧電素子、2・旧・・駆動用圧電
素子、3・・・・・・電極ブロック、4・・・・・・支
持棒、5・・・・・・ベース、6・・・・・・接合部材
、7・旧・・振動吸収材、8・・・・・・支持体。 代理人の氏名 代理士小鍜治明 ほか2名第1図
FIG. 1 is a schematic diagram showing the structure of an angular velocity sensor according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram of acceleration response to excitation intensity in the conventional sensor and the sensor of the present invention. 1... Piezoelectric element for detection, 2... Old piezoelectric element for drive, 3... Electrode block, 4... Support rod, 5... Base , 6... Joining member, 7... Old vibration absorbing material, 8... Support body. Name of agent: Agent Haruaki Ogata and two others Figure 1

Claims (1)

【特許請求の範囲】[Claims]  駆動用圧電素子と検知用圧電素子とを接合部材を介し
て互いにほぼ直交となるように接合した一対のセンサ素
子を前記駆動用圧電素子の端部において結合部材を介し
て結合した音叉振動素子と、この音叉振動素子をベース
部材に支持接合する支持棒と、この支持棒の周囲を被覆
する振動吸収材と、この振動吸収材を介して前記支持棒
を支持補強する支持体とからなる角速度センサ。
A pair of sensor elements in which a drive piezoelectric element and a detection piezoelectric element are joined to each other so as to be substantially perpendicular to each other via a joining member, and a tuning fork vibrating element in which a pair of sensor elements are joined at an end of the driving piezoelectric element through a joining member. , an angular velocity sensor consisting of a support rod that supports and connects this tuning fork vibrating element to a base member, a vibration absorber that covers the periphery of this support rod, and a support that supports and reinforces the support rod via this vibration absorber. .
JP2334019A 1990-11-29 1990-11-29 Angular velocity sensor Pending JPH04203927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334019A JPH04203927A (en) 1990-11-29 1990-11-29 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334019A JPH04203927A (en) 1990-11-29 1990-11-29 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH04203927A true JPH04203927A (en) 1992-07-24

Family

ID=18272595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334019A Pending JPH04203927A (en) 1990-11-29 1990-11-29 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH04203927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518757A (en) * 1991-07-08 1993-01-26 Murata Mfg Co Ltd Vibrating gyro
EP0768514A2 (en) * 1995-10-11 1997-04-16 Murata Manufacturing Co., Ltd. Vibration gyroscope
WO2000000789A1 (en) * 1998-06-26 2000-01-06 Fujitsu Limited Tuning fork type vibrational gyroscope
JP2008026110A (en) * 2006-07-20 2008-02-07 Epson Toyocom Corp Gyro vibrating reed

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518757A (en) * 1991-07-08 1993-01-26 Murata Mfg Co Ltd Vibrating gyro
EP0768514A2 (en) * 1995-10-11 1997-04-16 Murata Manufacturing Co., Ltd. Vibration gyroscope
EP0768514A3 (en) * 1995-10-11 1998-07-01 Murata Manufacturing Co., Ltd. Vibration gyroscope
US5889358A (en) * 1995-10-11 1999-03-30 Murata Manufacturingco., Ltd. Vibration gyroscope
WO2000000789A1 (en) * 1998-06-26 2000-01-06 Fujitsu Limited Tuning fork type vibrational gyroscope
EP1091189A1 (en) * 1998-06-26 2001-04-11 Fujitsu Limited Tuning fork type vibrational gyroscope
US6366005B2 (en) 1998-06-26 2002-04-02 Fujitsu Limited Tuning fork type vibration gyro
EP1091189A4 (en) * 1998-06-26 2003-10-15 Fujitsu Ltd Tuning fork type vibrational gyroscope
JP2008026110A (en) * 2006-07-20 2008-02-07 Epson Toyocom Corp Gyro vibrating reed

Similar Documents

Publication Publication Date Title
KR101641066B1 (en) Vibrating micro-mechanical sensor of angular velocity
JP3973742B2 (en) Vibrating gyroscope
US7454971B2 (en) Oscillating micro-mechanical sensor of angular velocity
US6227048B1 (en) Vibrators, vibratory gyroscopes, devices for measuring a linear acceleration and a method of measuring a turning angular rate
JPH0629733B2 (en) Gyroscope
JP2000074673A (en) Compound movement sensor
JPS6071909A (en) Gyro
JPH04203927A (en) Angular velocity sensor
JP3601822B2 (en) Double tone type vibration gyro sensor
JP3966719B2 (en) Angular velocity measuring device
JP3037774B2 (en) Angular velocity sensor and its vibration isolator
JPS62188908A (en) Angular velocity sensor
JP2002277247A (en) Vibratory gyro
JPH10153432A (en) Oscillation type gyroscope
JPS62297713A (en) Angular velocity sensor
JP2000180466A (en) Linear accelerometer
JP4149597B2 (en) Vibrating gyro
JPH032516A (en) Angular velocity sensor
JP4345130B2 (en) Vibrating gyro
JPH10332381A (en) Angular speed detector
JPH10170271A (en) Angular velocity detector
JP3356013B2 (en) Vibrating gyro
JPS6270715A (en) Angular velocity sensor
JPH04118515A (en) Angular speed detector and acceleration detector
JPH0251066A (en) Vibration gyroscope