JPH04203906A - Measuring apparatus of position - Google Patents

Measuring apparatus of position

Info

Publication number
JPH04203906A
JPH04203906A JP33604290A JP33604290A JPH04203906A JP H04203906 A JPH04203906 A JP H04203906A JP 33604290 A JP33604290 A JP 33604290A JP 33604290 A JP33604290 A JP 33604290A JP H04203906 A JPH04203906 A JP H04203906A
Authority
JP
Japan
Prior art keywords
light
luminous intensity
measurement
light emitter
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33604290A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kito
鬼頭 博幸
Yoshihide Aoki
青木 良英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP33604290A priority Critical patent/JPH04203906A/en
Publication of JPH04203906A publication Critical patent/JPH04203906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable execution of measurement with the precision equivalent to the length of a pixel or to the one less than that even when an image is sensed over a number of pixels and thereby to improve the precision in measurement by using a light-emitting body which emits light with luminous intensity being in a known distribution for all directions. CONSTITUTION:A light-emitting body 5 of which the luminous intensity is in a Gaussian distribution being usable conveniently relatively, out of known luminous intensity distributions for all directions, is employed. Besides, two photosensors 3a and 3b are disposed at arbitrary different positions Pa and Pb and mounted on bases in such a manner that the angles thereof can be varied in vertical and horizontal directions manually or automatically so that light can be sensed even when the body 5 moves to a position being different to a large extent. The angles formed when the sensors are operated manually or automatically so that the light of the body 5 is sensed at the centers of the image-sensing screens thereof, for instance, are outputted to an arithmetic processing device 20 through angle detecting devices attached to the sensors 3a and 3b. In the device 20, the position P1 of the body 5 is calculated from position coordinates Pa (Xa, Ya, Za) and Pb (Xb, Yb, Zb) by prescribed operations. According to this constitution, the precision in measurement of the position of the body 5 can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発光体を用いて発光体の位置を測定する位置
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position measuring device that uses a light emitter to measure the position of the light emitter.

[従来技術] 加工されたワークの出来合い精度を測定するためには、
特定箇所の位置を測定することが必要である。従来、発
光体を用いて該発光体の位置を測定し、所定の演算等の
処理をして発光体の位置を測定する方法として、第1図
に示すような発光体5と2台の受光器3a、3bを用い
て行っていた。
[Prior art] In order to measure the finished precision of a processed workpiece,
It is necessary to measure the position of a specific point. Conventionally, as a method of measuring the position of the light emitter using a light emitter and performing processing such as predetermined calculations, there is a method of measuring the position of the light emitter using a light emitter 5 and two light receivers as shown in FIG. This was done using vessels 3a and 3b.

即ち、発光体5としてLED等を測定する箇所P1に載
置し、受光器3a、3bとしてCCDカメラを用いて、
発光体5と各CCDカメラ3a13bの角度(天頂角α
、水平角β)を受光器に付設の角度検出装置で検出し、
同じく受光器に付設の演算処理装置20で該角度及び受
光器3a、3bの位置座標から所定の演算をして発光体
5の位置を算出している。更には、該発光体5との位置
関係が既知である目的の位置をも測定結果として算出し
ている。
That is, an LED or the like is placed as the light emitter 5 at the measuring point P1, and CCD cameras are used as the light receivers 3a and 3b.
The angle between the light emitting body 5 and each CCD camera 3a13b (zenith angle α
, horizontal angle β) is detected by the angle detection device attached to the receiver,
Similarly, an arithmetic processing unit 20 attached to the light receiver performs a predetermined calculation based on the angle and the position coordinates of the light receivers 3a and 3b to calculate the position of the light emitter 5. Furthermore, the target position whose positional relationship with the light emitter 5 is known is also calculated as a measurement result.

[発明が解決しようとする課題] 上記方法で発光源の位置を測定する方法では次の問題点
がある。即ち、受光器3a、3bとして、例えばCCD
カメラを使用する場合に、CCDカメラの受像画面は縦
横に特定の長さを有した有限個の画素が配列されていて
、発光体の光をCCDカメラで捉えたとしても画素の長
さ以下の精度で測定することは出来ない。即ち、受光し
た光は多数の画素に渡って受像される結果、発光体の位
置と受像画面との位置関係が不明確となり、測定精度を
向上させることは困難である。
[Problems to be Solved by the Invention] The above method for measuring the position of the light emitting source has the following problems. That is, as the light receivers 3a and 3b, for example, CCD
When using a camera, the image receiving screen of a CCD camera has a finite number of pixels arrayed with a specific length in both the vertical and horizontal directions, and even if the light from the light emitter is captured by the CCD camera, it will be smaller than the length of the pixel. It cannot be measured with precision. That is, as a result of the received light being received across a large number of pixels, the positional relationship between the position of the light emitter and the image receiving screen becomes unclear, making it difficult to improve measurement accuracy.

[課題を解決するための手段] 本発明の位置測定装置は、 発光体の光を受光する2台以上の受光器と、該受光器で
前記発光体の位置を算出する演算装置とを有し、 前記発光体の光度を全方向に対して既知の光度分布をな
す発光体を用いることものである。
[Means for Solving the Problems] A position measuring device of the present invention includes two or more light receivers that receive light from a light emitter, and an arithmetic device that uses the light receivers to calculate the position of the light emitter. , a light emitting body is used whose luminous intensity has a known luminous intensity distribution in all directions.

[作用] 発光体の光度は全方向に対して既知の光度分布で発光す
るものを使用する。その為、発光体からの光をCCDカ
メラで受光したとき、多数の画素に渡って受像されたと
しても、発光体の光度分布が既知であるため画素の長さ
以下の精度で測定でき、従来に比べて測定精度の向上を
図ることができる。
[Operation] A luminous body that emits light with a known luminous intensity distribution in all directions is used. Therefore, when light from a light emitter is received by a CCD camera, even if the image is received over many pixels, since the luminous intensity distribution of the light emitter is known, it can be measured with an accuracy less than the length of the pixel. It is possible to improve measurement accuracy compared to .

[実施例コ 本発明の1実施例を図面を参照して説明する。[Example code] An embodiment of the present invention will be described with reference to the drawings.

第1図は従来例と同様に加工されたワーク1の表面の精
度を測定する為に、ワーク1の測定箇所P1に発光体5
を載置して、該発光体5の位置座標を算出するための概
念図である。本実施例で用いる発光体5は光度を全方向
に対して既知の光度分布をなすもののうち、比較的簡便
に使用できるガウス分布をなすものを使用する。一方、
2台の受光器(本例ではCCDカメラを使用する)3a
13bは任意の異なる位置Pa、Pbに配設されている
。該受光器3a、3bは発光体5が大きく異なった位置
に移動しても受光可能に上下左右に手動或いは自動で角
度が変えられるように図示省略の基台に取り付けられて
いる。又、発光体5の光を、例えば受像、画面の中心で
受像するように手動或いは自動で操作した時の角度(天
頂角α11、α21、水平角β11、β21)は、図示
省略の受光器3a、3bに付設の角度検出装置を介して
演算処理装置20に出力される。演算処理装置20では
該角度及び受光器3a、3bの位置座標Pa(Xa。
Figure 1 shows a light emitter placed at a measuring point P1 on a workpiece 1 in order to measure the accuracy of the surface of a workpiece 1 processed in the same manner as in the conventional example.
FIG. 4 is a conceptual diagram for calculating the position coordinates of the light emitting body 5 by placing the light emitting body 5 on the light emitting body 5. The light emitting body 5 used in this embodiment is one having a Gaussian distribution, which is relatively easy to use, among those having a known luminous intensity distribution in all directions. on the other hand,
Two light receivers (CCD cameras are used in this example) 3a
13b are arranged at arbitrary different positions Pa and Pb. The light receivers 3a, 3b are mounted on a base (not shown) so that the angle can be changed manually or automatically in up, down, left and right directions so that even if the light emitting body 5 moves to a greatly different position, it can receive light. In addition, the angles (zenith angles α11, α21, horizontal angles β11, β21) when the light from the light emitting body 5 is manually or automatically operated to receive the image at the center of the screen, for example, are the angles (zenith angles α11, α21, horizontal angles β11, β21) of the light receiver 3a (not shown). , 3b are outputted to the arithmetic processing unit 20 via the attached angle detection device. The arithmetic processing unit 20 calculates the angle and the position coordinates Pa (Xa) of the light receivers 3a and 3b.

Ya、 Za) 、Pb (Xb、 Yb、 Zb)か
ら所定の演算をして発光体5の位置P1を算出する。
The position P1 of the light emitter 5 is calculated by performing a predetermined calculation from Ya, Za) and Pb (Xb, Yb, Zb).

即ち、具体的には下記の様にして算出する。発光体5を
ワーク1上の測定点P1に載置し、発光体5からの光を
受光器3a、3bで受光する。受光器(CCDカメラ)
3a、3bの受像画面11は第2図に示すように縦横に
配設された画素10(長さを縦a、横b)で構成され、
受光器3a、3bの受像画面11の中心(線m、nで示
す画素上の交点)で受光するように受光器3a、3bの
角度を調整する。しかしながら、発光体5の種類によっ
ては第2図斜線部に示されるように複数の画素10に渡
って受像される場合があり、係る場合には発光体5の位
置に対する受像画面11との位置関係が不明確となり、
画素10の長さ以下の精度で発光体5の位置を測定する
ことは困難である。即ち、発光体5の光度分布が不明で
ある為、受光器3a、3bの位置、角度が異なることに
よって受像画面11上の光度分布は異なる。その為、例
え受像画面11の中心(線mSnで示す画素上の交点)
で受光するように受光器2a、2bの角度を調整しても
、該調整された角度は不正確である。
That is, specifically, it is calculated as follows. The light emitter 5 is placed on the measurement point P1 on the workpiece 1, and the light from the light emitter 5 is received by the light receivers 3a and 3b. Receiver (CCD camera)
As shown in FIG. 2, the image receiving screens 11 of 3a and 3b are composed of pixels 10 arranged vertically and horizontally (the length is a by vertical and horizontal is b),
The angles of the light receivers 3a and 3b are adjusted so that the light receivers 3a and 3b receive light at the center of the image receiving screen 11 (the intersection of the pixels indicated by lines m and n). However, depending on the type of the light emitting body 5, the image may be received across a plurality of pixels 10 as shown in the shaded area in FIG. becomes unclear,
It is difficult to measure the position of the light emitter 5 with an accuracy less than the length of the pixel 10. That is, since the luminous intensity distribution of the light emitter 5 is unknown, the luminous intensity distribution on the image receiving screen 11 differs depending on the positions and angles of the light receivers 3a and 3b. Therefore, even if the center of the image receiving screen 11 (the intersection on the pixels indicated by the line mSn)
Even if the angles of the light receivers 2a and 2b are adjusted so that the light is received at 1, the adjusted angles are inaccurate.

しかしながら、本実施例に用いる全方向に対してガウス
分布で発光する発光体5を使用する場合には、第3図に
示すように受光された受光光度も同様に受像画面11の
中心m、nにピークを持っガウス分布となり、受光器3
a、3bの位置、角度に無関係に受像される。その為、
発光体5の受光を受像画面11の中心(mSnの交点)
となるように各受光器3a、3bを作動させた時の角度
(天頂角α11、α21、水平角β11、β21)を角
度検出装置で検出し、下記の要領で演算処理装置20に
よって発光体5の位置P1を求めることができ、第1図
を参照して説明する。
However, when using the light emitting body 5 that emits light with a Gaussian distribution in all directions used in this embodiment, the received light intensity also varies between the centers m and n of the image receiving screen 11, as shown in FIG. It becomes a Gaussian distribution with a peak at
Images are received regardless of the positions and angles of a and 3b. For that reason,
The light received by the light emitter 5 is placed at the center of the image receiving screen 11 (the intersection of mSn).
The angles (zenith angles α11, α21, horizontal angles β11, β21) when each light receiver 3a, 3b is activated are detected by the angle detection device, and the light emitting body 5 is detected by the arithmetic processing device 20 in the following manner. The position P1 can be determined and will be explained with reference to FIG.

受光器3a、3b等のx、y、z軸で表す空間内の位置
を其々下記の通りとする。固定された受光器3a、3b
の位置座標をPa (Xa、Ya。
The positions of the light receivers 3a, 3b, etc. in the space represented by the x, y, and z axes are as follows. Fixed receivers 3a, 3b
The position coordinates of Pa (Xa, Ya.

Za) 、Pb (Xb、Yb、Zb) 、発光体5の
位置座標をPL (Xi、Yl、Zl)として、発光体
5の座標PL (Xi、Yl、Zl)を求める。
Za), Pb (Xb, Yb, Zb), and the position coordinates of the light emitter 5 are determined as PL (Xi, Yl, Zl), and the coordinates PL (Xi, Yl, Zl) of the light emitter 5 are determined.

受光器3a及び3bで発光体5からの光を、例えば受光
器3a、3bの受像画面11の中心m1nで受光できる
ように作動させ、求まった受光器3a、3bの天頂角を
α11、α21、水平角をβ11、β21とする。又、
Paと21間の距離をLla、PbとPlの距離をLl
b、天頂角α11、α21、水平角β11、β21とす
ると、 X1=Xa −Lla −8IN (all) ・CO8(β11)
Y 1 =Y a −Lla −8IN (all) ・S IN (β1
1)Z1=Za+L1a −CO8(all)X1=X
b −Llb−3IN(α21)・CO8(β21)Y1=
Yb −Llb−8IN(α21)・ 5IN(β21)Z1
=Zb+L1b−CO8(α21)の関係式が成立する
The light receivers 3a and 3b are operated to receive the light from the light emitter 5, for example, at the center m1n of the image receiving screen 11 of the light receivers 3a and 3b, and the determined zenith angles of the light receivers 3a and 3b are α11, α21, Let the horizontal angles be β11 and β21. or,
The distance between Pa and 21 is Lla, and the distance between Pb and Pl is Ll.
b, zenith angle α11, α21, horizontal angle β11, β21, X1=Xa −Lla −8IN (all) ・CO8(β11)
Y 1 = Y a −Lla −8IN (all) ・S IN (β1
1) Z1=Za+L1a -CO8(all)X1=X
b -Llb-3IN(α21)・CO8(β21)Y1=
Yb-Llb-8IN(α21)・5IN(β21)Z1
The relational expression =Zb+L1b-CO8(α21) is established.

以上の各式より発光体5の座標PL (Xi、 Yl、
Zl)が求まる。
From the above formulas, the coordinates PL of the light emitter 5 (Xi, Yl,
Zl) can be found.

尚、前記実施例では受光器を2台としたが、多数の受光
器を設置すればワークの形状に対応する受光器を選択す
ることによって受光器を移動させることなく測定するこ
とが出来る。又、発光体の光を受光器の受像画面の中心
となるように受光して、簡便に受光器の角度を求めたが
、受像画面の任意の位置で受光して演算処理を施して角
度を算出してもよい。又、発光体の光度分布が既知であ
る他の発光体を使用した場合には、受像光度分布と既知
の光度分布とから演算をして受光器の角度を求めれば正
確な発光体の位置を算出できる。
In the above embodiment, two light receivers were used, but if a large number of light receivers are installed, measurement can be performed without moving the light receivers by selecting the light receiver corresponding to the shape of the workpiece. In addition, the angle of the light receiver was simply determined by receiving the light from the emitter so that it was centered on the image receiving screen of the light receiver, but it is also possible to receive the light at any position on the image receiving screen and perform calculation processing to calculate the angle. It may be calculated. In addition, when using another light emitter whose luminous intensity distribution is known, the exact position of the emitter can be determined by calculating the angle of the receiver by calculating from the received luminous intensity distribution and the known luminous intensity distribution. It can be calculated.

又、前記実施例では、受光器としてCCDカメラを使用
したが、同じような画素で形成されているMO3形受像
素子を使用してもよい。更には、走査線を使用してモニ
ターに写像するカメラを使用する場合であっても同様の
ことがいえる。
Further, in the above embodiment, a CCD camera was used as a light receiver, but an MO3 type image receiving element formed of similar pixels may also be used. Furthermore, the same holds true even when using a camera that uses scanning lines to image on a monitor.

[発明の効果] 本発明の位置測定装置は発光体の光度分布が全方向に対
して既知であるものを使用するため、受像は発光体の位
置とは無関係となり、発光体の位置測定精度の向上を図
ることができる。
[Effects of the Invention] Since the position measuring device of the present invention uses a light emitter whose luminous intensity distribution is known in all directions, image reception is independent of the position of the light emitter, which improves the accuracy of position measurement of the light emitter. You can improve your performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は位置測
定装置の概念図、第2図は受光器の受像画面の一部を示
す図、第3図は画素上の受光光度を示す図である。 1・・・ワーク 3a、3b・・・受光器 Pa、Pb・・・受光器の座標 5・・・発光体 Pl・・・発光体の座標 α11、α21・・・天頂角 β11、β21・・・水平角
The drawings show one embodiment of the present invention. Fig. 1 is a conceptual diagram of a position measuring device, Fig. 2 is a diagram showing a part of the image receiving screen of a light receiver, and Fig. 3 is a diagram showing the received light intensity on a pixel. FIG. 1... Workpieces 3a, 3b... Light receivers Pa, Pb... Coordinates of the light receiver 5... Light emitter Pl... Coordinates of the light emitter α11, α21... Zenith angle β11, β21...・Horizontal angle

Claims (1)

【特許請求の範囲】 発光体の光を受光する2台以上の受光器と、該受光器で
前記発光体の位置を算出する演算装置とを有する位置測
定装置に於て、 前記発光体の光度を全方向に対して既知の光度分布をな
す発光体を用いることを特徴とする位置測定装置。
[Scope of Claims] In a position measuring device comprising two or more light receivers that receive light from a light emitter, and an arithmetic device that uses the light receivers to calculate the position of the light emitter, the luminous intensity of the light emitter is determined by: A position measuring device characterized in that it uses a light emitter that has a known luminous intensity distribution in all directions.
JP33604290A 1990-11-29 1990-11-29 Measuring apparatus of position Pending JPH04203906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33604290A JPH04203906A (en) 1990-11-29 1990-11-29 Measuring apparatus of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33604290A JPH04203906A (en) 1990-11-29 1990-11-29 Measuring apparatus of position

Publications (1)

Publication Number Publication Date
JPH04203906A true JPH04203906A (en) 1992-07-24

Family

ID=18295103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33604290A Pending JPH04203906A (en) 1990-11-29 1990-11-29 Measuring apparatus of position

Country Status (1)

Country Link
JP (1) JPH04203906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314243A (en) * 1992-04-03 1993-11-26 Sony Corp Three-dimensional shape restoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314243A (en) * 1992-04-03 1993-11-26 Sony Corp Three-dimensional shape restoring method

Similar Documents

Publication Publication Date Title
EP1739391B1 (en) Image obtaining apparatus
US6310644B1 (en) Camera theodolite system
US6031606A (en) Process and device for rapid detection of the position of a target marking
US20140192187A1 (en) Non-contact measurement device
Fuchs et al. Calibration and registration for precise surface reconstruction with time-of-flight cameras
US7502504B2 (en) Three-dimensional visual sensor
WO2002063241A1 (en) Three-dimensional coordinate measuring method, three-dimensional coordinate measuring apparatus, and method for building large-sized structure
CA2054705A1 (en) Device and method for measuring angles of a workpiece
US4744664A (en) Method and apparatus for determining the position of a feature of an object
US20190132560A1 (en) Method for calibrating image capturing sensor consisting of at least one sensor camera, using time coded patterned target
JP2021193400A (en) Method for measuring artefact
JPH06137840A (en) Automatic calibration device for visual sensor
JP2015225083A (en) Method for determining closed trajectory by means of laser and laser light sensor, and apparatus for determining closed trajectory
JPH08210812A (en) Length measuring instrument
EP3839418A1 (en) Optical sensor with overview camera
JP2001148025A5 (en)
CN109916346B (en) Workpiece flatness detection device and method based on vision system
JPH04203906A (en) Measuring apparatus of position
US8717579B2 (en) Distance measuring device using a method of spanning separately targeted endpoints
CN206583440U (en) A kind of projected image sighting distance detecting system
JPH0820207B2 (en) Optical 3D position measurement method
JPH07139918A (en) Method for measuring central position/radius of cylinder
JPH0613461Y2 (en) Light distribution measuring device
JPS6129704A (en) Measuring method
JPH0663733B2 (en) Method for detecting multiple holes