JPH04203852A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH04203852A
JPH04203852A JP2330324A JP33032490A JPH04203852A JP H04203852 A JPH04203852 A JP H04203852A JP 2330324 A JP2330324 A JP 2330324A JP 33032490 A JP33032490 A JP 33032490A JP H04203852 A JPH04203852 A JP H04203852A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
degree
indoor machine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2330324A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
広一 山口
Yasunori Oyabu
大薮 康典
Kazuo Suzuki
一雄 鈴木
Katsuaki Yamagishi
勝明 山岸
Tetsuo Sano
哲夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2330324A priority Critical patent/JPH04203852A/en
Publication of JPH04203852A publication Critical patent/JPH04203852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the shortage and/or excess of refrigerant for an operating indoor machine smoothly by a method wherein the degree of overheating of the suction port of a compressor and the change of overheating degree with respect to the change of the unit valve travel of an expansion valve for the operating indoor machine are detected while the expansion valve of a stopping indoor machine is controlled based on the detecting results to control the amount of refrigerant. CONSTITUTION:A suction temperature sensor 13 and a suction pressure sensor 14 for detecting the overheating degree of a suction temperature are provided at the suction port of a compressor 1 while these detecting signals are sent to a control unit 15 to operate the overheating degree of the suction port of the compressor 1. The control unit 15 detects the overheating degree of the suction port of the compressor 1 and the change of the overheating degree with respect to the change of the unit valve travel of an electronic expansion valve for an operating indoor machine among three sets of indoor machines 4, 5, 6 and controls the opening and/or closing of the electronic expansion valve of a stopping indoor machine based on the results of detection to control the amount of refrigerant in the stopping indoor machine. When the refrigerant in the operating indoor machine is short, a valve at the outlet port of refrigerant of the stopping indoor machine is controlled so as to be opened and when the refrigerant is excessive, an expansion valve at the inlet port side of the refrigerant is controlled so as to be opened. According to this method, the shortage and/or excess of refrigerant in the operating indoor machine can be eliminated smoothly.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、空気調和装置に関し、特にマルチシステム
の空気調和装置における冷媒量の調整制御に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to an air conditioner, and particularly to the adjustment control of the amount of refrigerant in a multi-system air conditioner.

(従来の技術) 一般にマルチシステムの空気調和装置は、圧縮機、四方
弁、室外機及び並列接続された複数の室内機等により冷
凍サイクルが構成されている。
(Prior Art) Generally, in a multi-system air conditioner, a refrigeration cycle is configured by a compressor, a four-way valve, an outdoor unit, a plurality of indoor units connected in parallel, and the like.

このようなマルチシステムの空気調和装置において、複
数の室内機の運転台数か減少した場合、停止した室内機
に冷媒か溜り(主として、弁の漏れが原因)、運転され
ている室内機側のサイクル内の冷媒が不足して能力不足
や過熱度の著しい上昇が起る場合がある。通常、この不
都合を取除くため、停止した室内機におけるガス側の電
磁弁は閉、液側の電磁弁は開にして溜った冷媒の回収、
又は冷媒が溜らないようにするか、さらには、バイパス
キャピラリーを用いて冷媒を回収することが行われてい
る。しかし、これらの手段をとる際、従来の空気調和装
置では冷媒回収量を制御しておらず、マルチシステムの
空気調和装置における広範囲な運転条件を考慮すると、
場合によっては急激な液戻りが生じたり、液を戻すのに
時間がかがったり、液を戻し過ぎてしまうおそれもある
In such a multi-system air conditioner, if the number of operating indoor units decreases, refrigerant may accumulate in the stopped indoor unit (mainly caused by valve leakage), or the cycle of the operating indoor unit may There may be a shortage of refrigerant in the tank, resulting in insufficient capacity or a significant increase in the degree of superheating. Normally, to eliminate this inconvenience, the solenoid valve on the gas side of the stopped indoor unit is closed and the solenoid valve on the liquid side is opened to recover the accumulated refrigerant.
Alternatively, attempts are made to prevent the refrigerant from accumulating, or to recover the refrigerant using a bypass capillary. However, when taking these measures, conventional air conditioners do not control the amount of refrigerant recovered, and considering the wide range of operating conditions in multi-system air conditioners,
In some cases, the liquid may return suddenly, it may take time to return the liquid, or there is a risk that the liquid may be returned too much.

また、起動時において、全室内機を運転しない場合、稼
働室内機側のサイクル内において冷媒過多の現象が起る
ことがある。通常、これはレシーバ−により一時的に吸
収される(やがて、他の停止室内機に漏れ出し、冷媒過
多は無くなる)が、マルチシステムの空気調和装置にお
ける広範囲な運転条件において、必ずしも効率的に吸収
できるわけではない。
Furthermore, if all indoor units are not operated at startup, a phenomenon of excess refrigerant may occur in the cycle of the operating indoor unit. Normally, this is temporarily absorbed by the receiver (eventually, it leaks out to other stopped indoor units, eliminating the excess refrigerant), but it is not necessarily absorbed efficiently under a wide range of operating conditions in multi-system air conditioners. Not that you can.

(発明が解決しようとする課題) マルチシステムの空気調和装置では、冷凍サイクル内を
冷媒量か頻繁且つかなり広範囲に変化する。このような
空気調和装置において稼働室内機と停止室内機かある場
合、従来の冷媒量調整方法では、稼働室内機の冷媒不足
、冷媒過多を解消することが難しく、冷凍サイクルの効
率が低下するとともに圧縮機の信頼性の低下を招くおそ
れかあるという問題かあった。
(Problems to be Solved by the Invention) In a multi-system air conditioner, the amount of refrigerant in the refrigeration cycle changes frequently and over a fairly wide range. When such an air conditioner has an operating indoor unit and a stopped indoor unit, it is difficult to resolve refrigerant shortage or refrigerant excess in the operating indoor unit using conventional methods of adjusting the amount of refrigerant, and the efficiency of the refrigeration cycle decreases. There was a problem that the reliability of the compressor could be reduced.

この発明は上記事情に鑑みてなされたもので、広範囲な
運転条件において稼働室内機の冷媒不足、冷媒過多を極
めて滑らかに解消することかできるとともに冷凍サイク
ルの効率及び圧縮機の信頼性を向上させることのできる
空気調和装置を提供することを目的とする。
This invention was made in view of the above-mentioned circumstances, and can extremely smoothly resolve refrigerant shortages and refrigerant excesses in operating indoor units under a wide range of operating conditions, and improves the efficiency of the refrigeration cycle and the reliability of the compressor. The purpose is to provide an air conditioner that can.

[発明の構成] (課題を解決するための手段) この発明は上記課題を解決するために、圧縮機、室外機
、及び冷媒出入口にそれぞれ膨張弁を備えた複数の室内
機を有する空気調和装置であって、前記圧縮機吸込み口
の過熱度及び前記複数の室内機のうち稼働室内機の前記
膨張弁の単位開度変化に対する前記過熱度の変化を検知
しその検知結果に基づいて停止室内機の前記膨張弁を制
御し当該停止室内機内の冷媒量を調整する冷媒量調整手
段を有することを要旨とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides an air conditioner having a compressor, an outdoor unit, and a plurality of indoor units each equipped with an expansion valve at a refrigerant inlet/outlet. The degree of superheat of the compressor suction port and the change in the degree of superheat with respect to the unit opening degree change of the expansion valve of the operating indoor unit among the plurality of indoor units are detected, and based on the detection result, the indoor unit is stopped. The gist of the present invention is to include a refrigerant amount adjusting means for controlling the expansion valve and adjusting the amount of refrigerant in the stopped indoor unit.

(作用) 複数の室内機のうち、停止室内機に冷媒が溜り、稼働室
内機側のサイクル内の冷媒か不足してくると、稼働して
いる室内機の膨張弁か過熱度制御を行なっているにもか
かわらず、弁開度の単位変化に対する過熱度の変化は正
の相関(つまり、弁が開いているにも係わらず過熱度は
下がらない)を示し、圧縮機吸込み口の過熱度が増大し
てくる。
(Function) When refrigerant accumulates in a stopped indoor unit among multiple indoor units and the refrigerant in the cycle of the working indoor unit becomes insufficient, the expansion valve of the working indoor unit controls the degree of superheating. Despite this, the change in superheat for a unit change in valve opening shows a positive correlation (that is, the superheat does not decrease even though the valve is open), and the superheat at the compressor suction It's increasing.

また、稼働室内機は能力不足になるから、圧縮機周波数
が増加し、さらに過熱度は増大傾向を示す。
Furthermore, since the capacity of the operating indoor unit is insufficient, the compressor frequency increases, and the degree of superheat tends to increase.

このことは、稼働室内機の膨張弁の弁開度の単位変化に
対する過熱度の変化、過熱度の値から冷媒不足が判断て
きることを示している。
This indicates that refrigerant shortage can be determined from the change in the degree of superheating with respect to a unit change in the opening degree of the expansion valve of the operating indoor unit, and the value of the degree of superheating.

また、起動時において全室内機を運転しない場合に稼働
室内機側のサイクル内で冷媒過多の現象が起ると、稼働
室内機の膨張弁が過熱度制御を行なっているにもかかわ
らず、圧縮機吸込み口は液バツクの様相を呈し、過熱度
は小さくなり、膨張弁の弁開度の単位変化に対する過熱
度の変化は正の相関もしくはゼロとなる。このことは、
膨張弁の弁開度の単位変化に対する過熱度の変化、加熱
度の値から冷媒過多が判断できることを示している。
In addition, if all indoor units are not operated at startup, and an excessive amount of refrigerant occurs in the cycle of the operating indoor unit, the compression The machine suction port takes on the appearance of a liquid bag, the degree of superheating decreases, and the change in degree of superheating with respect to a unit change in the opening degree of the expansion valve has a positive correlation or becomes zero. This means that
This shows that refrigerant excess can be determined from the change in the degree of superheating and the value of the degree of heating with respect to a unit change in the degree of opening of the expansion valve.

以上より、圧縮機吸込み口の過熱度及び稼働室内機の膨
張弁の単位開度変化に対する過熱度の変化を検知し、そ
の検知結果に基づいて稼働室内機が冷媒不足の場合は、
停止室内機の冷媒出口例の弁が開制御され、冷媒過多の
場合は、冷媒人口側の膨張弁か開制御される。これによ
り、稼働室内機の冷媒不足、冷媒過多か極めて滑らかに
解消される。マルチシステムの空気調和装置の運転範囲
はかなり広いため、上記膨張弁の制御をファジー制御で
行えば、−層精度よく冷媒量を制御することが可能とな
る。
As described above, the degree of superheating of the compressor suction port and the change in the degree of superheating with respect to the unit opening change of the expansion valve of the operating indoor unit are detected, and based on the detection results, if the operating indoor unit is short of refrigerant,
The valve at the refrigerant outlet of the stopped indoor unit is controlled to open, and if there is an excess of refrigerant, the expansion valve on the refrigerant population side is also controlled to open. As a result, the problem of refrigerant shortage or refrigerant excess in the operating indoor unit is resolved very smoothly. Since the operating range of a multi-system air conditioner is quite wide, if the expansion valve is controlled by fuzzy control, it becomes possible to control the amount of refrigerant with high precision.

(実施例) 以下、この発明の実施例を第1図ないし第4図に基づい
て説明する。この実施例は、3室型の空気調和装置に適
用されている。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 4. This embodiment is applied to a three-room air conditioner.

まず、第1図を用いて空気調和装置の構成を説明すると
、同図において、1は圧縮機、2は四方弁、3は室外機
であり、1台の室外機に対し、冷媒出入口にそれぞれ電
子膨張弁7〜12を備えた3台の室内機4.5.6が並
列接続されてマルチシステムのヒートポンプ式冷凍サイ
クルが構成されている。また、圧縮機1の吸込み口には
、その吸込み温度の過熱度を検知するための吸込み温度
センサ13と吸込み圧力センサ14が設けられている。
First, the configuration of an air conditioner is explained using Figure 1. In the figure, 1 is a compressor, 2 is a four-way valve, and 3 is an outdoor unit. Three indoor units 4, 5, and 6 equipped with electronic expansion valves 7 to 12 are connected in parallel to form a multi-system heat pump refrigeration cycle. Further, the suction port of the compressor 1 is provided with a suction temperature sensor 13 and a suction pressure sensor 14 for detecting the degree of superheating of the suction temperature.

両センサ13.14の検知信号は制御部15に送られ、
この制御部で圧縮機1吸込み口の過熱度が算出されるよ
うになっている。制御部15は、この圧縮機1吸込み口
の過熱度及び3台の室内機4.5.6のうちの稼働室内
機の電子膨張弁の単位開度変化に対する過熱度の変化を
検知し、その検知結果に基づいて停止室内機の電子膨張
弁を開閉制御し、当該停止室内機内の冷媒量を調整する
ようになっている。而して吸込み温度センサ13、吸込
み圧力センサ4及び制御部15により冷媒量調整手段が
構成されている。
The detection signals of both sensors 13 and 14 are sent to the control unit 15,
This control unit calculates the degree of superheat at the suction port of the compressor 1. The control unit 15 detects the superheat degree of the suction port of the compressor 1 and the change in the superheat degree with respect to a unit opening degree change of the electronic expansion valve of the operating indoor unit among the three indoor units 4.5.6. Based on the detection results, the electronic expansion valve of the stopped indoor unit is controlled to open and close, and the amount of refrigerant in the stopped indoor unit is adjusted. The suction temperature sensor 13, the suction pressure sensor 4, and the control section 15 constitute a refrigerant amount adjusting means.

次に、上述のように構成された空気調和装置の作用を第
2図の制御フローチャート及び第3図、第4図を用いて
説明する。
Next, the operation of the air conditioner configured as described above will be explained using the control flowchart of FIG. 2 and FIGS. 3 and 4.

稼働しようとする室内機に備えられたマイコンか、当該
室内機が必要する能力を圧縮機周波数(HzA 、Hz
B 5HzC)として室外機3に送る(ステップ21.
22.23)。室外機3は、室内機、室外機の馬力を基
に次式で表わされる周波数で作動する(ステップ24)
The microcomputer installed in the indoor unit to be operated or the compressor frequency (HzA, Hz
B 5HzC) to the outdoor unit 3 (step 21.
22.23). The outdoor unit 3 operates at a frequency expressed by the following formula based on the horsepower of the indoor unit and outdoor unit (step 24).
.

ΣHziX室内機喝室内機外力/室外機馬力1)ここに i−室内機番号A、B、C また、吸込み温度センサ13と吸込み圧力センサ14の
検知信号か制御部15に送られて圧縮機1吸込み口の過
熱度が算出され、その過熱度TSHと目標過熱度TS 
H”の差である過熱度偏差SHが検出される(ステップ
25)。
ΣHziX Indoor unit external force/outdoor unit horsepower 1) Here, i - Indoor unit number A, B, C In addition, the detection signals of the suction temperature sensor 13 and suction pressure sensor 14 are sent to the control unit 15 and the compressor 1 The superheat degree of the suction port is calculated, and the superheat degree TSH and the target superheat degree TS are calculated.
The superheat degree deviation SH, which is the difference between the two temperatures, is detected (step 25).

そして、この過熱度偏差SHの値を基に、稼働室内機の
電子膨張弁の開度が制御されて過熱度制御が行われる。
Then, based on the value of this superheat degree deviation SH, the opening degree of the electronic expansion valve of the operating indoor unit is controlled to perform superheat degree control.

この制御内容は、まず稼働室内機の電子膨張弁の開度ト
ータル増分ΔPLS”が計算された後(ステップ26)
、各室内機の電子膨張弁にその要求能力に応して弁開度
増分が振分けられる(ステップ27.28)。この制御
機構はPID制御でもファジー制御でもどのようなもの
でもよい。
The contents of this control are as follows: First, the total opening degree increment ΔPLS of the electronic expansion valve of the operating indoor unit is calculated (step 26).
, an increment in valve opening is allocated to the electronic expansion valve of each indoor unit according to its required capacity (steps 27 and 28). This control mechanism may be of any type, such as PID control or fuzzy control.

一方、上記の制御と並行して、弁開度の単位変化に対す
る過熱度の変化の逆数Bか以下のようにして計算される
(ステップ2つ、30)。
On the other hand, in parallel with the above control, the reciprocal B of the change in superheat degree for a unit change in valve opening degree is calculated as follows (step 2, 30).

ΔSH(”  )  −3H(’  )  −5)I 
 (n  −1)  、・ (2)B= ΔPLS(n
 −1)”/Δ5H(n)    、、、(3)ここで
、ΔSH(’)−0の場合はBに大きな値が入れられる
。また、添え字nは、n×Δを時刻における状態値を示
している。
ΔSH('') −3H(') −5)I
(n −1) , (2) B=ΔPLS(n
-1)"/Δ5H(n) ,,,(3) Here, in the case of ΔSH(')-0, a large value is entered in B. Also, the subscript n is expressed as n×Δ, which is the state value at time. It shows.

そして、これらの数値を基に、第3図、第4図に示すフ
ァジー制御により停止室内機出入口の電子膨張弁の弁開
度増分ΔPLSが決められる。このとき過熱度偏差SH
が正か負かで入口側と出口側のどちらの電子膨張弁を開
けるかが決定される(ステップ31.32.33)。入
口側と出口側の両方の電子膨張弁が同時に開いていると
いうことはない。
Then, based on these values, the valve opening degree increment ΔPLS of the electronic expansion valve at the inlet/outlet of the stopped indoor unit is determined by the fuzzy control shown in FIGS. 3 and 4. At this time, superheat degree deviation SH
If is positive or negative, it is determined which electronic expansion valve, the inlet side or the outlet side, should be opened (steps 31, 32, and 33). Both the inlet and outlet electronic expansion valves are never open at the same time.

次いで、第4図のファジー制御のルールについて簡単に
説明する。過熱度がかなり太きく (SH−PB)Bの
値がかなり大きい場合(B−PB:稼働室内機側の電子
膨張弁の制御がきかない場合)、冷媒不足であり、停止
室内機の冷媒出口側の電子膨張弁が大きく開けられる(
ΔPLS−PB)。
Next, the fuzzy control rules shown in FIG. 4 will be briefly explained. If the degree of superheating is quite large (SH-PB) and the value of B is quite large (B-PB: the electronic expansion valve on the operating indoor unit side cannot be controlled), there is a refrigerant shortage, and the refrigerant outlet side of the stopped indoor unit electronic expansion valve is opened wide (
ΔPLS-PB).

また、過熱度が目標値近傍であれば、Bの値にかかわら
ず、冷媒は適量とみなし、冷媒出口側の電子膨張弁は動
作しない(この場合、電子膨張弁は閉しるとする)。
Furthermore, if the degree of superheat is close to the target value, the amount of refrigerant is considered to be appropriate regardless of the value of B, and the electronic expansion valve on the refrigerant outlet side does not operate (in this case, the electronic expansion valve is closed).

一方、液バツクが生し過熱度か目標値よりかなり小さい
場合(SH−NB) 、過熱度制御を行っても液バツク
が解消しなければ(B−ZOもしくはB−NB、B−P
B) 、冷媒過多とみなし、停止室内機の冷媒入口側の
電子膨張弁が制御される。
On the other hand, if a liquid back-up occurs and the superheat degree is considerably smaller than the target value (SH-NB), if the liquid back-up does not disappear even after controlling the superheat degree (B-ZO, B-NB, B-P
B) It is assumed that there is an excess of refrigerant, and the electronic expansion valve on the refrigerant inlet side of the stopped indoor unit is controlled.

この場合、冷媒音を考慮し、冷媒出口側を開ける場合よ
りも電子膨張弁の開度増分は小さくなるように、すべて
ΔPLS=PMとしている。
In this case, in consideration of refrigerant noise, ΔPLS=PM is set in all cases so that the increment in the opening degree of the electronic expansion valve is smaller than when the refrigerant outlet side is opened.

[発明の効果] 以上説明したように、この発明によれば、圧縮機吸込み
口の過熱度及び複数の室内機のうち稼働室内機の膨張弁
の単位開度変化に対する前記過熱度の変化を検知しその
検知結果に基づいて停止室内機の膨張弁を制御し当該停
止室内機内の冷媒量を調整するようにしたため、上記過
熱度及び膨張弁の単位開度変化に対する当該過熱度の変
化から稼働室内機の冷媒不足又は冷媒過多が判断できる
ことより、広範囲な運転条件において稼働室内機の冷媒
不足、冷媒過多を極めて滑らかに解消することができ、
これとともに冷凍サイクルの効率及び圧縮機の信頼性を
向上させることができる。
[Effects of the Invention] As explained above, according to the present invention, the degree of superheat of the compressor suction port and the change in the degree of superheat with respect to the unit opening degree change of the expansion valve of the operating indoor unit among the plurality of indoor units are detected. Based on the detection result, the expansion valve of the stopped indoor unit is controlled and the amount of refrigerant in the stopped indoor unit is adjusted. By being able to determine if there is a refrigerant shortage or refrigerant excess in the unit, it is possible to resolve refrigerant shortages or refrigerant excesses in operating indoor units extremely smoothly under a wide range of operating conditions.
At the same time, the efficiency of the refrigeration cycle and the reliability of the compressor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はこの発明に係る空気調和装置の実
施例を示すもので、第1図は冷凍サイクルを示す系統図
、第2図は作用を説明するためのフローチャート、第3
図はファジー制御のメンバーシップ関数を示す図、第4
図はファジー制御のルールを示す図である。 1:圧縮機、  3 室外機、 4.5.6:室内機、 7〜12:電子膨張弁、13:
吸込み温度センサ、 〕4.吸込み圧力センサ、 15、吸込み温度センサ及び吸込み圧力センサとともに
冷媒量調整手段を構成する制御部。
1 to 4 show an embodiment of the air conditioner according to the present invention, in which FIG. 1 is a system diagram showing a refrigeration cycle, FIG. 2 is a flowchart for explaining the operation, and FIG.
Figure 4 shows the membership function of fuzzy control.
The figure shows the rules of fuzzy control. 1: Compressor, 3 Outdoor unit, 4.5.6: Indoor unit, 7-12: Electronic expansion valve, 13:
Suction temperature sensor, ]4. Suction pressure sensor; 15. A control unit that constitutes a refrigerant amount adjustment means together with the suction temperature sensor and the suction pressure sensor.

Claims (1)

【特許請求の範囲】 圧縮機、室外機、冷媒出入口にそれぞれ 膨張弁を備えた複数の室内機を有する空気調和装置であ
って、前記圧縮機吸込み口の過熱度及び前記複数の室内
機のうち稼働室内機の前記膨張弁の単位開度変化に対す
る前記過熱度の変化を検知しその検知結果に基づいて停
止室内機の前記膨張弁を制御し当該停止室内機内の冷媒
量を調整する冷媒量調整手段を有することを特徴とする
空気調和装置。
[Scope of Claims] An air conditioner having a compressor, an outdoor unit, and a plurality of indoor units each equipped with an expansion valve at a refrigerant inlet/outlet, the degree of superheat of the compressor suction port and one of the plurality of indoor units Refrigerant amount adjustment that detects a change in the degree of superheat with respect to a unit opening change of the expansion valve of the operating indoor unit, controls the expansion valve of the stopped indoor unit based on the detection result, and adjusts the amount of refrigerant in the stopped indoor unit. An air conditioner characterized by having means.
JP2330324A 1990-11-30 1990-11-30 Air conditioning apparatus Pending JPH04203852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330324A JPH04203852A (en) 1990-11-30 1990-11-30 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330324A JPH04203852A (en) 1990-11-30 1990-11-30 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH04203852A true JPH04203852A (en) 1992-07-24

Family

ID=18231356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330324A Pending JPH04203852A (en) 1990-11-30 1990-11-30 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH04203852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146460B1 (en) * 2010-02-08 2012-05-21 엘지전자 주식회사 A refrigerant system
KR20150009275A (en) * 2013-07-16 2015-01-26 삼성전자주식회사 Heat pump multi air conditioner and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146460B1 (en) * 2010-02-08 2012-05-21 엘지전자 주식회사 A refrigerant system
KR20150009275A (en) * 2013-07-16 2015-01-26 삼성전자주식회사 Heat pump multi air conditioner and control method thereof

Similar Documents

Publication Publication Date Title
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
US5323844A (en) Refrigerant heating type air conditioner
EP0355180B1 (en) Cooling apparatus and control method
JP3334222B2 (en) Air conditioner
JPH04203852A (en) Air conditioning apparatus
JPH03260561A (en) Air conditioner
JPH04324069A (en) Refrigerating plant
JPH04222349A (en) Operation controller for freezer
JPH01302072A (en) Heat pump type air conditioner
JP2974381B2 (en) Air conditioner
JP3835310B2 (en) Air conditioner
JP2508842B2 (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2966633B2 (en) Air conditioner
JP3637621B2 (en) Refrigeration equipment
JPH0694954B2 (en) Refrigerator superheat control device
JPH0213908Y2 (en)
JPH03267657A (en) Multi-room air-conditioner
JPH01312358A (en) Air conditioner
JP2542649B2 (en) Air conditioner
JPS63161342A (en) Electrical expansion valve control device for air conditioner
JPH0317177Y2 (en)
JPS6028935Y2 (en) Heat pump air conditioning system
JPH04327770A (en) Defrosting device in multi-chamber type air conditioner
KR100471439B1 (en) A controller and control method of the air-conditioner