JPH04203802A - Method and apparatus for controlling secondary combustion chamber of combustion furnace - Google Patents

Method and apparatus for controlling secondary combustion chamber of combustion furnace

Info

Publication number
JPH04203802A
JPH04203802A JP33664990A JP33664990A JPH04203802A JP H04203802 A JPH04203802 A JP H04203802A JP 33664990 A JP33664990 A JP 33664990A JP 33664990 A JP33664990 A JP 33664990A JP H04203802 A JPH04203802 A JP H04203802A
Authority
JP
Japan
Prior art keywords
combustion
gas
secondary air
combustion chamber
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33664990A
Other languages
Japanese (ja)
Inventor
Yuya Yamahata
山畑 祐哉
Hiroaki Harada
裕昭 原田
Kunio Yoshida
邦夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP33664990A priority Critical patent/JPH04203802A/en
Publication of JPH04203802A publication Critical patent/JPH04203802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To eliminate a local presence of non-ignited gas such as CO in a combustion furnace and unify the presence of the non-ignited gas in the combustion furnace by a method wherein a secondary combustion spacing within the combustion furnace is divided into some control segments and a temperature of each of the segments and/or a gas concentration in each of the segments is independently controlled. CONSTITUTION:Dust 9 to be ignited is fed into a fluidized bed 3 at a feeding port 10, where it is fluidized and ignited together with a flowing medium under blowing of a primary air 5. Combustion discharging gas is passed through a secondary combustion chamber above the fluidized bed and an amount of supplying secondary air in each of supplying pipes is adjusted in such a way as measured values with a thermometer 13 and an oxygen concentration meter 11 disposed at a downstream side may become set values in addition to a dividing effect of a gas flow by the secondary air supplying pipe itself while the combustion discharging gas passes through a row of the first stage segment 39 arranged in a cross sectional direction of a flow passage, a pipe row 33 for dividing a gas flow and a row of the second stage segment 37, thereby an amount of air getting a predetermined temperature and a complete combustion of non-ignited fuel is supplied for every segment, so that carbon mono-oxide gas or the like are not locally present over an entire secondary combustion chamber and thus a complete combustion of these non-ignited fuel and a temperature control can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼炉の二次燃焼室制御方法および装置に関し
、さらに詳しくは未燃ガス等が多く発生する炉において
これらを完全燃焼させ、燃焼効率を向上させる燃焼炉の
二次燃焼室制御方法および装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and device for controlling the secondary combustion chamber of a combustion furnace, and more specifically, the present invention relates to a secondary combustion chamber control method and apparatus for a combustion furnace, and more specifically, in a furnace that generates a large amount of unburned gas, etc., complete combustion is performed. The present invention relates to a method and apparatus for controlling a secondary combustion chamber of a combustion furnace to improve efficiency.

[従来の技術] 従来、廃棄物等の焼却炉、例えば流動焼却炉においては
、第6図Aに示すように流動層炉1の出口2に酸素濃度
計11および温度計13を設置し、これらの計測データ
に基づいて流動層炉1の二次燃焼室7に供給する二次空
気11の全量をコントロールしていた。なお、図中9は
ごみ、3は流動層、および5は一次空気の供給管を示す
。このような流動層炉では、投入されたごみの質や、量
の変動によって燃焼排ガスの組成が炉内の場所によって
異なり、また経時的にも変動することになる。
[Prior Art] Conventionally, in an incinerator for waste, etc., for example, a fluidized bed incinerator, an oxygen concentration meter 11 and a thermometer 13 are installed at the outlet 2 of the fluidized bed furnace 1, as shown in FIG. 6A. The total amount of secondary air 11 supplied to the secondary combustion chamber 7 of the fluidized bed furnace 1 was controlled based on the measured data. In the figure, 9 indicates dust, 3 indicates a fluidized bed, and 5 indicates a primary air supply pipe. In such a fluidized bed furnace, the composition of the flue gas varies depending on the location within the furnace due to changes in the quality and quantity of input waste, and also changes over time.

このようにして二次燃焼室7を通る排ガス中には第6図
Bの斜線部に示すように時間的なごみ質の変動による高
−酸化炭素(CO)ガス部分が生成したり、第6図Cに
示すように投入したごみの分布により位置的に高い一酸
化炭素濃度のガスが炉内に偏在するといった現象を生し
る。さらにこのような炉では、一般に二次空気等の注入
速度が3Om/sec以下と低いので、燃焼排ガスとの
混合が悪く、また二次燃焼室7のガス温度も任意に上げ
ることができないので、−酸化炭素等の未燃ガスの濃度
を低下させるには限界があった。
In this way, in the exhaust gas passing through the secondary combustion chamber 7, a high carbon oxide (CO) gas portion is generated due to temporal fluctuations in waste quality, as shown in the shaded area in FIG. As shown in C, a phenomenon occurs in which gas with a high carbon monoxide concentration is unevenly distributed in the furnace due to the distribution of the input garbage. Furthermore, in such a furnace, the injection speed of secondary air, etc. is generally as low as 3 Om/sec or less, so mixing with the combustion exhaust gas is poor, and the gas temperature in the secondary combustion chamber 7 cannot be increased arbitrarily. - There was a limit to reducing the concentration of unburned gas such as carbon oxide.

〔発明が解決しようとする課題] 本発明の目的は、上記従来技術の欠点を解消し、ごみ焼
却炉等のように、原料の性質および量が経時的または炉
内で場所的に変動し、このため炉内のフリーボード部に
一酸化炭素等の未燃ガスが偏在し、高濃度の有害ガスが
炉外に排出されるのを防止するようにした燃焼炉の二次
燃焼室制御方法および装置を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to solve the problem in that the nature and amount of raw materials vary over time or from place to place within the furnace, such as in a waste incinerator, etc. For this reason, unburned gas such as carbon monoxide is unevenly distributed in the freeboard part of the furnace, and a secondary combustion chamber control method for a combustion furnace is provided to prevent highly concentrated harmful gases from being discharged outside the furnace. The goal is to provide equipment.

〔課題を解決するための手段] 上記目的を達成するために、本発明者等は、二次燃焼室
の二次空気が吹き込まれる燃焼空間を小区画からなる多
数の仮想セグメント(仕切り壁のない区画)に分割し、
この小区画の空間毎に二次空気の供給手段およびこれに
付随して二次空気供給手段の後流側に特定ガス、例えば
酸素の濃度計および/または温度計を設置し、これらの
セグメント毎に該ガス濃度計および/または温度計の計
測値が所定値になるよう乙こ二次空気の供給量を制御し
、燃焼ガス空間における未燃ガスの偏在を解消し、その
完全燃焼を図るようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventors created a combustion space into which the secondary air of the secondary combustion chamber is blown into a large number of virtual segments (without partition walls) consisting of small sections. partition) into
A secondary air supply means and a specific gas, for example, an oxygen concentration meter and/or thermometer are installed in each space of this small section, and a concentration meter and/or thermometer for a specific gas, such as oxygen, is installed on the downstream side of the secondary air supply means, and The amount of secondary air supplied is controlled so that the measured value of the gas concentration meter and/or thermometer becomes a predetermined value, thereby eliminating uneven distribution of unburned gas in the combustion gas space and achieving complete combustion. This is what I did.

すなわち、本発明方法は、燃焼炉内の二次空気が吹き込
まれる燃焼室空間を小区画からなる多数の仮想セグメン
トに分割し、この小区画の空間毎に二次空気の供給手段
およびその後流に特定ガス、濃度計および/または温度
計を設置し、これらのセグメント毎に該ガス濃度計およ
び/または温度計の計測値が所定値になるように二次空
気の供給量、および必要に応じて燃料量を制御する燃焼
炉の二次燃焼室制御方法である。
That is, the method of the present invention divides the combustion chamber space in the combustion furnace into which secondary air is blown into a large number of virtual segments consisting of small sections, and for each space of the small sections, a secondary air supply means and its downstream are connected. A specific gas, a concentration meter, and/or a thermometer are installed, and the supply amount of secondary air is adjusted as necessary so that the measured value of the gas concentration meter and/or thermometer becomes a predetermined value for each segment. This is a method for controlling a secondary combustion chamber of a combustion furnace to control the amount of fuel.

また本発明装置は、二次空気の吹き込みノズルと、該吹
き込みノズルの近傍の燃焼ガス後流に設けられた特定ガ
ス成分の濃度計および/または温度計と、前記吹き込み
ノズルの近傍の燃焼排ガス前流に必要に応じて設けられ
る燃料の供給ノズルとからそれぞれ構成され、かつ燃焼
排ガス流路を多数区分する所定の仮想セグメント空間毎
に配置される二次空気吹き込み制御ユニシト群と、前記
各制御ユニットのガス濃度計および/または温度計の計
測値に基づき該計測値が設定値になるように各制御ユニ
ットの二次空気吹き込み量を調節する制御手段とを有す
る燃焼炉の二次燃焼室制御装置である。
Further, the device of the present invention includes a secondary air blowing nozzle, a concentration meter and/or a temperature meter for a specific gas component provided downstream of the combustion gas in the vicinity of the blowing nozzle, and a concentration meter and/or temperature meter of a specific gas component provided in the downstream of the combustion gas near the blowing nozzle. a secondary air blowing control unit group, which is arranged in each predetermined virtual segment space that divides the combustion exhaust gas flow path into a number of sections, and each of the control units described above; A secondary combustion chamber control device for a combustion furnace, comprising: control means for adjusting the amount of secondary air blown into each control unit so that the measured value becomes a set value based on the measured value of the gas concentration meter and/or thermometer. It is.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

[実施例] 第1図は、本発明の一実施例を示す燃焼炉の二次燃焼室
制御方法および装置の説明図である。この燃焼炉は流動
層炉であり、炉本体1と、その底部に設けられた一次空
気の供給管5より吹き込まれる空気により流動媒体が流
動化して形成される流動層3と、被焼却物であるごみ9
の投入口10と、流動層3の上方に設けられた二次空気
15の供給管17と、該二次空気供給管の燃焼ガス後流
に設けられた検出部29および31をそれぞれ有する温
度計13および酸素濃度計11と、炉出口30に設けら
れた検出部29および31をそれぞれ有する温度計13
および酸素濃度計11、およびこれらの信号を後述する
制御装置へ伝達する制御ライン23と、前記二次空気1
5に排ガス15Aを供給してその酸素濃度を調節するた
めの調節弁2LAと、最下段の二次空気供給管17の直
下にそれぞれ設けられた燃料19の供給ノズル27と、
前記各個所の温度および酸素濃度が所定値になるように
燃料19、二次空気15、排ガス15Aの各供給管に調
節バルブ22.21.21Aおよび制御ライン24.2
5および26を介して流量信号を与える制御装置35と
から構成される。
[Embodiment] FIG. 1 is an explanatory diagram of a method and apparatus for controlling a secondary combustion chamber of a combustion furnace, showing an embodiment of the present invention. This combustion furnace is a fluidized bed furnace, which consists of a furnace body 1, a fluidized bed 3 formed by fluidizing a fluidized medium by air blown in from a primary air supply pipe 5 provided at the bottom, and a fluidized bed 3 formed by fluidizing the fluidized medium with the Garbage 9
, a supply pipe 17 for secondary air 15 provided above the fluidized bed 3, and detection units 29 and 31 provided in the combustion gas downstream of the secondary air supply pipe, respectively. 13 and an oxygen concentration meter 11, and a thermometer 13 having detection parts 29 and 31 provided at the furnace outlet 30, respectively.
and an oxygen concentration meter 11, a control line 23 that transmits these signals to a control device to be described later, and the secondary air 1.
A control valve 2LA for supplying the exhaust gas 15A to the air conditioner 5 to adjust its oxygen concentration, and a fuel 19 supply nozzle 27 provided immediately below the lowermost secondary air supply pipe 17,
Regulating valves 22, 21, 21A and control lines 24.2 are installed in the supply pipes of the fuel 19, secondary air 15, and exhaust gas 15A so that the temperature and oxygen concentration at each location are at predetermined values.
5 and 26 for providing a flow signal.

この装置においては、炉内二次燃焼室には燃料供給ノズ
ル27、二次空気供給管17、温度検出部25および酸
素濃度検出部31から構成される制御ユニ・7トを有す
る小区画(コントロールセグメント)37および39が
流路断面方向に4列、上下2段にわたって設けられ、こ
れらの列の間にはガスを分割するだめのパイプ33が1
列設けられた構成になっている。なお、下段のコントロ
ールセグメント39には燃料供給ノズル27を含んでい
るが、これは必要に応じて設ければよく、上段のコント
ロールセグメントでは省略されている。
In this device, the secondary combustion chamber in the furnace has a small section (control unit 7) comprising a fuel supply nozzle 27, a secondary air supply pipe 17, a temperature detection section 25, and an oxygen concentration detection section 31. Segments 37 and 39 are provided in four rows in the cross-sectional direction of the flow path, spanning two stages above and below, and one pipe 33 for dividing the gas is provided between these rows.
It is arranged in rows. Note that the lower control segment 39 includes the fuel supply nozzle 27, but this may be provided as needed and is omitted in the upper control segment.

また、各セグメント内の温度計13および酸素濃度計1
1は、求める制御性能によって両方またはいずれか一方
を設ければよい。二次空気供給管17は、第2回に詳細
を示したように、下方に角度θ(好ましくは90〜18
0度)をなすようにノズル17Aが設けられており、こ
のノズルは管の軸方向に例えば約201の間隔で設けら
れ、高速度■で二次空気が噴出するようになっている。
In addition, a thermometer 13 and an oxygen concentration meter 1 in each segment
1, both or either one may be provided depending on the desired control performance. As shown in detail in Part 2, the secondary air supply pipe 17 is directed downward at an angle θ (preferably 90 to 18
Nozzles 17A are provided so as to form an angle of 0 degrees), and these nozzles are provided at intervals of, for example, about 201 degrees in the axial direction of the tube, so that secondary air is ejected at a high velocity (2).

この二次空気甲乙こは調節バルブ21Aにより排ガス1
5Aを適宜混合してもよく、以下、二次空気なる用語は
排ガスを含んでいてもよいものとする。
This secondary air is controlled by the control valve 21A to control the exhaust gas 1.
5A may be mixed as appropriate, and hereinafter, the term "secondary air" may include exhaust gas.

このような構成において、被焼却物であるごみ9は投入
口10から流動層3に投入され、ここで−次空気5の吹
き込み下に流動媒体とともに流動燃焼される。燃焼排ガ
スは流動層上方の二次燃焼室を通るが、その際流路断面
方向に設けられた第1段のセグメント39の列、ガス流
を分割するための管列33および第2段のセグメント3
7の列を通過する間に二次空気供給管自体によるガス流
の分割効果に加えて後流に設けられた温度計13および
酸素濃度計11による計測値が設定値になるように各供
給管の二次空気供給量を調節することにより、各セグメ
ント毎に所定温度および未燃分の完全燃焼を達成する空
気量が供給されるので、二次燃焼室全体にわたって一酸
化炭素ガス等が偏在することなく、これらの未燃分の完
全燃焼および温度制御を達成することができる。この場
合所定セグメントの温度が所定値にならない時には、燃
料噴出ノズル27から燃料が噴出され、所定温度になる
ように制御することができる。この実施例では各セグメ
ント列は2段に設けられているが、これは1段または3
段以上設けてもよいことは勿論である。
In such a configuration, the waste 9 to be incinerated is charged into the fluidized bed 3 from the input port 10, where it is fluidized and combusted together with a fluidized medium under the blowing of secondary air 5. The combustion exhaust gas passes through the secondary combustion chamber above the fluidized bed, during which a row of first-stage segments 39 provided in the cross-sectional direction of the flow path, a row of tubes 33 for dividing the gas flow, and a second-stage segment are used. 3
In addition to the splitting effect of the gas flow by the secondary air supply pipe itself while passing through the row No. 7, each supply pipe By adjusting the amount of secondary air supplied to each segment, the amount of air that achieves a predetermined temperature and complete combustion of unburned matter is supplied to each segment, so carbon monoxide gas etc. are unevenly distributed throughout the secondary combustion chamber. Complete combustion of these unburned substances and temperature control can be achieved without In this case, when the temperature of a predetermined segment does not reach a predetermined value, fuel is ejected from the fuel injection nozzle 27, and control can be performed so that the temperature reaches a predetermined temperature. In this embodiment, each segment row is provided in two stages, but this may be one stage or three stages.
Of course, more than one stage may be provided.

第3図は、本発明の他の一実施例を示すもので、実施例
1の装置と異なる点は、燃焼炉の二次燃焼室に垂直の仕
切41および45を設け、垂直方向にU字型の屈曲部を
有する流路を形成し、該流路に温度検出部29、酸素濃
度検出部31および二次空気供給ノズル17Bからなる
コントロールセグメント57を2段にわたって設けたこ
とである。
FIG. 3 shows another embodiment of the present invention, which differs from the apparatus of embodiment 1 in that vertical partitions 41 and 45 are provided in the secondary combustion chamber of the combustion furnace, and a U-shape is formed in the vertical direction. A flow path having a bent portion of a mold is formed, and a control segment 57 consisting of a temperature detection section 29, an oxygen concentration detection section 31, and a secondary air supply nozzle 17B is provided in the flow path in two stages.

なお、第1図の実施例におけるガス分割用のパイプ33
の列は省略され、その代わりに燃料19の供給部の下方
にガス混合用の排ガス39の供給口が設けられている。
In addition, the pipe 33 for gas division in the embodiment shown in FIG.
The column is omitted, and instead, a supply port for exhaust gas 39 for gas mixing is provided below the supply section for fuel 19.

またこの実施例では前記ガス流路の出口30に最も近い
流路47に熱交換器49が設けられ、さらにその底部に
モーター55に連結されたスクリュー53を有する灰5
2の抜き出し管51が設けられている。
Further, in this embodiment, a heat exchanger 49 is provided in the flow path 47 closest to the outlet 30 of the gas flow path, and an ash 53 having a screw 53 connected to a motor 55 at the bottom of the heat exchanger 49 is provided.
Two extraction pipes 51 are provided.

このような構成において、流動層3で発生した燃焼排ガ
スは二次燃焼室の垂直のU字型屈曲通路43および47
を通過する間に前記温度検出部29、酸素濃度検出部3
1および二次空気供給ノズル17Bからなるコン、トロ
ールセグメント57を順次通過し、各セグメントの計測
値が設定値に合致するように各セグメントへの二次空気
の供給量が制御装置35により制御されて供給され、そ
れぞれの個所における温度制御を行うとともに、未燃分
の偏在が解消され、さらに流路47を通過する間に熱交
換器49で熱回収が行われ、炉出口30から排出される
。この最後の排ガス流路を通る間に灰は下方に落下し、
抜き出し管53のスクリュー51の回転によって外部に
取り呂される。
In such a configuration, the combustion exhaust gas generated in the fluidized bed 3 flows through the vertical U-shaped bent passages 43 and 47 of the secondary combustion chamber.
The temperature detection section 29 and the oxygen concentration detection section 3
1 and the secondary air supply nozzle 17B, and the amount of secondary air supplied to each segment is controlled by the control device 35 so that the measured value of each segment matches the set value. The temperature is controlled at each location, the uneven distribution of unburned components is eliminated, and heat is recovered by the heat exchanger 49 while passing through the flow path 47, and the heat is discharged from the furnace outlet 30. . While passing through this final exhaust gas flow path, the ash falls downward,
The extraction pipe 53 is taken out to the outside by rotating the screw 51.

上記実施例によれば、二次燃焼室を複数のコントロール
セグメント、第1図の場合は流路断面方向に2段に設け
られたコントロールセグメント37の列、および第3図
の場合にはガス流れ方向に2段に設けられたコントロー
ルセグメント57の列を設けたことにより、各々のセグ
メントの温度、酸素濃度を独立してコントロールするこ
とができるため、−酸化炭素濃度、窒素酸化物(NOx
、N20等)の低減に最適な燃焼温度および酸素濃度の
空間を形成することができる。例えば投入されるごみの
質や量が1〜2分間のタイムスパンで変動し、この変動
が流動層から二次燃焼空間に流入するガス組成に直接影
響する場合(例えば第6図B)においても、そのガスが
各セグメントを通過する際に均一化され、低NOx化を
達成する最適温度およびCOの完全燃焼のだめの最適酸
素濃度に到達させることができる。また同様に第6図C
に示すようにごみ投入位置の変動によって水平方向のガ
ス組成が変動する場合においても、前記と同様に各セグ
メントの温度および酸素濃度を所定値に調節することに
より、均一化を図ることができる。さらに燃焼空間を細
かく分割して制御するため、過剰酸素濃度を低くするこ
とができ、これにより熱回収炉型に通用した場合でもそ
の効率を向上させることが可能になる。
According to the above embodiment, the secondary combustion chamber is formed by a plurality of control segments, in the case of FIG. 1 a row of control segments 37 provided in two stages in the cross-sectional direction of the flow path, and in the case of FIG. By providing two rows of control segments 57 in the direction, the temperature and oxygen concentration of each segment can be independently controlled.
, N20, etc.) can create a space with optimal combustion temperature and oxygen concentration. For example, even if the quality and quantity of input waste fluctuates over a time span of 1 to 2 minutes, and this fluctuation directly affects the gas composition flowing from the fluidized bed into the secondary combustion space (for example, Fig. 6B), As the gas passes through each segment, it is homogenized and can reach the optimum temperature to achieve low NOx and the optimum oxygen concentration for complete combustion of CO. Similarly, Figure 6C
Even when the gas composition in the horizontal direction fluctuates due to fluctuations in the garbage input position as shown in FIG. 2, uniformity can be achieved by adjusting the temperature and oxygen concentration of each segment to predetermined values in the same way as described above. Furthermore, since the combustion space is finely divided and controlled, the excess oxygen concentration can be lowered, making it possible to improve the efficiency even if it is used as a heat recovery furnace.

上記実施例において、酸素濃度計は、二酸化炭素濃度計
、レザー光による成分分析計のような他のガス濃度計に
置き換えてもよい。また温度計は、熱電対、放射温度計
等が用いられる。
In the above embodiments, the oxygen concentration meter may be replaced with another gas concentration meter such as a carbon dioxide concentration meter or a component analyzer using laser light. Further, as the thermometer, a thermocouple, a radiation thermometer, etc. are used.

本発明装置における燃焼条件は、特に限定されるもので
はないが、低COおよび低NOx燃焼のためには、流動
層の燃焼温度650〜700 ’C1空気比0.7−0
.9、−次空気温度200〜300°C1二次空気温度
200″C以上、二次空気吹込速度10m/sec以上
、二次燃焼室の温度700〜950″C1炉出ロ酸素濃
度5〜6%等の諸条件が好適であり、また低空気比のた
めに、二次空気中に排ガスを含有させて混合に充分なガ
ス量を確保することが望ましい。
The combustion conditions in the apparatus of the present invention are not particularly limited, but for low CO and NOx combustion, the combustion temperature of the fluidized bed is 650-700'C1 air ratio 0.7-0
.. 9. Secondary air temperature 200-300°C1 Secondary air temperature 200"C or more, secondary air blowing speed 10m/sec or more, secondary combustion chamber temperature 700-950"C1 furnace outlet oxygen concentration 5-6% The following conditions are preferable, and in order to maintain a low air ratio, it is desirable to include exhaust gas in the secondary air to ensure a sufficient amount of gas for mixing.

さらにN20低減のためには、流動層温度を500〜6
00 ’C3空気比014−0.5程度とし、二次燃焼
室の温度を700〜1100°Cと高目に設定し、均一
に二次空気を供給して燃焼させることが好ましい。
To further reduce N20, the fluidized bed temperature should be set to 500-6
It is preferable to set the air ratio to about 014-0.5, set the temperature of the secondary combustion chamber as high as 700 to 1100°C, and uniformly supply secondary air for combustion.

本発明における各セグメント空間の温度および特定ガス
濃度の設定は、炉の性能および上述のような目的とする
制御条件に応じてそれぞれ設定される。
In the present invention, the temperature and specific gas concentration of each segment space are set depending on the performance of the furnace and the target control conditions as described above.

以上は、流動層炉を例にとって説明したが、本発明は、
二次燃焼空間が必要な他の燃焼炉にも適用可能である。
The above has been explained using a fluidized bed furnace as an example, but the present invention
It is also applicable to other combustion furnaces that require a secondary combustion space.

また被燃焼物もごみ以外の可燃物に適用可能である。Moreover, the combustible material can also be applied to combustible materials other than garbage.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃焼炉の二次燃焼空間を多数のコント
ロールセグメントに分割し、各々のセグメントの温度お
よび/またはガス濃度を独立してコントロールすること
により、燃焼炉内のCO等の未燃ガスの局部的な偏在を
なくし、その均一化を図るとともに、COの発生を抑制
し、ダイオキシン対策の1つとして考えられている一酸
化酸素の総量規制にも対応することができる。また温度
制御も同時に行うことができるので、NOxの発生を防
止するとともに、比較的低温燃焼のためにN20の生成
も抑制することができる。
According to the present invention, the secondary combustion space of the combustion furnace is divided into a large number of control segments, and the temperature and/or gas concentration of each segment is independently controlled. It is possible to eliminate local uneven distribution of gas, to make it uniform, to suppress the generation of CO, and to comply with regulations on the total amount of oxygen monoxide, which is considered as one of the countermeasures against dioxin. Furthermore, since temperature control can be performed at the same time, it is possible to prevent the generation of NOx and also to suppress the generation of N20 due to relatively low temperature combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す流動層燃焼炉の二次
空気制御方法および装置の説明図、第2図は、前記燃焼
炉の燃焼空間に配置される二次空気の供給管の断面図、
第3図は、本発明の他の実施例を示す燃焼炉の二次空気
制御方法および装置の説明図、第4図は、第3図におけ
る■−■線に沿った矢視方向の断面図、第5図は、第3
図のV−V線に沿った矢視方向断面図および第6図A、
BおよびCは、従来の流動層燃焼炉の燃焼状態を示す説
明図である。 1・・・燃焼炉本体、3・・・流動層、5・・・−次空
気、9・・・ごみ、11・・・酸素濃度計、13・・・
温度計、15・・・二次空気、15A・・・排ガス、1
7・・・二次空気供給管、19・・・燃料、21・・・
二次空気調節バルブ、21A・・・排ガス調節バルブ、
22・・・燃料調節バルブ、23.24.25および2
6・・・制御ライン、27・・・燃料供給ノズル、29
・・・温度検出部、31・・・酸素濃度検出部、30・
・・炉出口、33・・・ガス分割用パイプ、35・・・
制御装置(コンピュータ)、37・・・コントロールセ
グメント、39・・・排ガス、41および45・・・仕
切、43・・・燃焼空間部、47・・・ガス流路、49
・・・熱交換部、51・・・灰抜き出し管、52・・・
灰、53・・・スクリュー、55・・・モーター、57
・・・コントロールセグメント。
FIG. 1 is an explanatory diagram of a secondary air control method and apparatus for a fluidized bed combustion furnace showing one embodiment of the present invention, and FIG. 2 is a secondary air supply pipe arranged in the combustion space of the combustion furnace. A cross-sectional view of
FIG. 3 is an explanatory diagram of a secondary air control method and apparatus for a combustion furnace showing another embodiment of the present invention, and FIG. 4 is a sectional view taken along the line ■-■ in FIG. 3 in the direction of the arrow. , Figure 5 shows the third
A cross-sectional view along the line V-V in the figure and FIG. 6A,
B and C are explanatory diagrams showing the combustion state of a conventional fluidized bed combustion furnace. DESCRIPTION OF SYMBOLS 1... Combustion furnace main body, 3... Fluidized bed, 5... Secondary air, 9... Garbage, 11... Oxygen concentration meter, 13...
Thermometer, 15...Secondary air, 15A...Exhaust gas, 1
7... Secondary air supply pipe, 19... Fuel, 21...
Secondary air control valve, 21A...exhaust gas control valve,
22...Fuel control valve, 23.24.25 and 2
6... Control line, 27... Fuel supply nozzle, 29
...Temperature detection section, 31...Oxygen concentration detection section, 30.
...Furnace outlet, 33...Gas division pipe, 35...
Control device (computer), 37... Control segment, 39... Exhaust gas, 41 and 45... Partition, 43... Combustion space section, 47... Gas flow path, 49
...Heat exchange section, 51...Ash extraction pipe, 52...
Ash, 53...Screw, 55...Motor, 57
...control segment.

Claims (4)

【特許請求の範囲】[Claims] (1)燃焼炉内の二次空気が吹き込まれる燃焼室空間を
小区画からなる多数の仮想セグメントに分割し、この小
区画の空間毎に二次空気の供給手段およびその後流に特
定ガス、濃度計および/または温度計を設置し、これら
のセグメント毎に該ガス濃度計および/または温度計の
計測値が所定値になるように二次空気の供給量、および
必要に応じて燃料量を制御する燃焼炉の二次燃焼室制御
方法。
(1) The combustion chamber space into which secondary air is blown in the combustion furnace is divided into a large number of virtual segments consisting of small sections, and each space of the small section has a secondary air supply means and a specific gas, concentration, etc. A meter and/or thermometer is installed, and the amount of secondary air supplied and, if necessary, the amount of fuel is controlled so that the measured value of the gas concentration meter and/or thermometer becomes a predetermined value for each segment. A method for controlling the secondary combustion chamber of a combustion furnace.
(2)二次空気の吹き込みノズルと、該吹き込みノズル
の近傍の燃焼ガス後流に設けられた特定ガス成分の濃度
計および/または温度計と、前記吹き込みノズルの近傍
の燃焼排ガス前流に必要に応じて設けられる燃料の供給
ノズルとからそれぞれ構成され、かつ燃焼排ガス流路を
多数区分する所定の仮想セグメント空間毎に配置される
二次空気吹き込み制御ユニット群と、前記各制御ユニッ
トのガス濃度計および/または温度計の計測値に基づき
該計測値が設定値になるように各制御ユニットの二次空
気吹き込み量を調節する制御手段とを有する燃焼炉の二
次燃焼室制御装置。
(2) A secondary air blowing nozzle, a specific gas component concentration meter and/or thermometer installed in the downstream of the combustion gas near the blowing nozzle, and a necessary device in the upstream of the combustion exhaust gas near the blowing nozzle. a group of secondary air blowing control units arranged in each predetermined virtual segment space that divides the combustion exhaust gas flow path into multiple sections; and a group of secondary air blowing control units each consisting of a fuel supply nozzle provided according to A control device for controlling a secondary combustion chamber of a combustion furnace, comprising: control means for adjusting the amount of secondary air blown into each control unit based on the measured value of a thermometer and/or a thermometer so that the measured value becomes a set value.
(3)前記燃焼排ガス流路を区分するセグメント空間お
よび該空間に設けられる前記制御ユニットが流路断面方
向に複数列および複数段形成される請求項2記載の燃焼
炉の二次燃焼室制御装置。
(3) The secondary combustion chamber control device for a combustion furnace according to claim 2, wherein the segment space that divides the flue gas flow path and the control unit provided in the space are formed in multiple rows and stages in a cross-sectional direction of the flow path. .
(4)前記燃焼排ガスが二次燃焼室空間をU字型屈曲部
を通って流れるように燃焼空間部に仕切りが設けられ、
かつこのように形成された流路内に前記セグメント空間
および制御ユニットが複数個所定間隔で形成される請求
項2記載の燃焼炉の二次燃焼室制御装置。
(4) A partition is provided in the combustion space so that the combustion exhaust gas flows through the U-shaped bent part in the secondary combustion chamber space,
3. The secondary combustion chamber control device for a combustion furnace according to claim 2, wherein a plurality of said segment spaces and control units are formed at predetermined intervals in the flow path formed in this way.
JP33664990A 1990-11-30 1990-11-30 Method and apparatus for controlling secondary combustion chamber of combustion furnace Pending JPH04203802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33664990A JPH04203802A (en) 1990-11-30 1990-11-30 Method and apparatus for controlling secondary combustion chamber of combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33664990A JPH04203802A (en) 1990-11-30 1990-11-30 Method and apparatus for controlling secondary combustion chamber of combustion furnace

Publications (1)

Publication Number Publication Date
JPH04203802A true JPH04203802A (en) 1992-07-24

Family

ID=18301352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33664990A Pending JPH04203802A (en) 1990-11-30 1990-11-30 Method and apparatus for controlling secondary combustion chamber of combustion furnace

Country Status (1)

Country Link
JP (1) JPH04203802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894041A (en) * 1994-09-21 1996-04-12 Nkk Corp Waste gasification melting furnace
JP2011214773A (en) * 2010-03-31 2011-10-27 Metawater Co Ltd Device and method of controlling temperature of sludge incinerator
JP2015114077A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894041A (en) * 1994-09-21 1996-04-12 Nkk Corp Waste gasification melting furnace
JP2011214773A (en) * 2010-03-31 2011-10-27 Metawater Co Ltd Device and method of controlling temperature of sludge incinerator
JP2015114077A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Boiler

Similar Documents

Publication Publication Date Title
US5950417A (en) Topping combustor for low oxygen vitiated air streams
US3880570A (en) Method and apparatus for reducing nitric in combustion furnaces
US5241916A (en) Procedure for supplying combustion air and a furnace therefor
US4135874A (en) Two stage combustion furnace
US4056068A (en) Process for conditioning flue gases in waste material incineration plants with heat utilization
JP2004205161A (en) Solid fuel boiler and boiler combustion method
SK5112002A3 (en) Solid fuel burner and combustion method using solid fuel burner
JPS5837415A (en) Nox decreasing incinerator
US6558153B2 (en) Low pollution emission burner
US6938561B1 (en) Device for producing a rotating flow
EP1726877B1 (en) Method and device for controlling injection of primary and secondary air in an incineration system
JPH04203802A (en) Method and apparatus for controlling secondary combustion chamber of combustion furnace
US5395416A (en) Regenerative glass melting furnace with reduced NOx emission
US20230213185A1 (en) Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion
CN113574320B (en) Incinerator with a heat exchanger
JP3308618B2 (en) Low NOx combustion method and apparatus
JP2007232328A (en) Air port for dual-stage combustion, its operation method, and boiler
CS327791A3 (en) System for the supply of combustion air and method for nox generation control
JPH07217843A (en) Incinerator and method of controlling flame in same
JPH064172Y2 (en) Reactor pressure control device for fluidized bed combustor
JP3339324B2 (en) Combustion control method for regenerative burners
JPH01139915A (en) Control method of slurry burner
JPH0247649B2 (en) ROOTARIKIRUNNIOKERUNENSHOHAIGASUOMOCHIITANENSHOSEIGYOHOHO
JPH0328624A (en) Multi-stage combustion method
JPS5974408A (en) Combustion device