JPH04203464A - Regenerative heat exchanger of external combustion engine - Google Patents

Regenerative heat exchanger of external combustion engine

Info

Publication number
JPH04203464A
JPH04203464A JP33556790A JP33556790A JPH04203464A JP H04203464 A JPH04203464 A JP H04203464A JP 33556790 A JP33556790 A JP 33556790A JP 33556790 A JP33556790 A JP 33556790A JP H04203464 A JPH04203464 A JP H04203464A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
regenerative heat
regenerative
wire mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33556790A
Other languages
Japanese (ja)
Inventor
Keiichi Abe
敬一 阿部
Seiichiro Fujimaki
藤巻 誠一郎
Takeshi Yokoyama
武 横山
Hiroshi Kawamoto
川本 博史
Haruo Kuki
久木 治男
Toshihiro Hoshida
星田 敏博
Toshikazu Ishihara
寿和 石原
Takashi Nakazato
中里 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP33556790A priority Critical patent/JPH04203464A/en
Publication of JPH04203464A publication Critical patent/JPH04203464A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2257/00Regenerators

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the performance of the whole body of a regenerative heat exchanger and to increase the efficiency of the engine by forming numerous sheets of wire-gauzes of two or more sorts with different heat conductivity, which are housed by superposing in a case. CONSTITUTION:In a regenerative heat exchanger 8 for high temperature and a regenerative heat exchanger 11 for low temperature, wire gauzes 36 and 37 formed of metallic wires with different heat conductivity are laminated alternatively, and housed in a case 8a and a case 11a. By using copper gauze 37 with a higher heat conductivity for the regenerative heat exchangers 8 and 11, the heat is transmitted to the inside of the wire-gauze, and the heat is accumulated effectively more than using a stainless gauze 36. Consequently, by superposing the stainless gauzes 36 and the copper gauzes 37 alternatively, the heat conductive loss can be suppressed in a low level as a whole while increasing the heat capacity, and the performance of the regenerative heat exchangers 8 and 11 can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はVM(ブルマイヤ)サイクルを用いる外燃機関
の再生熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a regenerative heat exchanger for an external combustion engine using a VM (Bulmeier) cycle.

〈従来の技術〉 従来この種の外燃機関の再生熱交換器には、ステンレス
或いは黄銅の金網のいずれかを用0て、これを積層した
ものをケース内に収納しているのが一般的であり(例え
ば、特公昭63−12240号公報参照)、その材質に
は、高温用との共Hを図るため、低温用でもステンレス
材を用いていた。又、従来はその中でメツシュの重ね方
や形状に1夫をしたりするものが主であった。
<Prior art> Conventionally, regenerative heat exchangers for external combustion engines of this type have generally used either stainless steel or brass wire mesh, and a laminated layer of these wire meshes is housed in a case. (See, for example, Japanese Patent Publication No. 63-12240), and stainless steel has been used for low-temperature use as well, in order to achieve the same H value as for high-temperature use. Furthermore, in the past, the main method was to change the way the mesh was stacked and its shape.

〈発明か解決しようとする課題〉 しかし、前記のように耐熱性を重視して用いられてきた
ステンレス性の金網では、熱伝導率か低く、金網線の内
部まで有効に蓄熱するためには、線径を小さくしなけれ
ばならず、圧力損失の増大につながっている。
<Problem to be solved by the invention> However, as mentioned above, stainless steel wire mesh, which has been used with emphasis on heat resistance, has low thermal conductivity, and in order to effectively store heat inside the wire mesh, it is necessary to The wire diameter must be reduced, leading to an increase in pressure loss.

一方、銅だけを再生熱交換器に用いれば金網同士の熱伝
導が高いため、高温部分から低温部分への熱伝導損失が
増大する。即ち、一種類の金属よりなる熱交換金網の使
用では各種の欠点を含むものである。
On the other hand, if only copper is used in the regenerative heat exchanger, the heat conduction between the wire meshes is high, which increases the heat conduction loss from the high-temperature part to the low-temperature part. That is, the use of a heat exchange wire mesh made of one type of metal has various drawbacks.

本発明は上記実情に鑑み、熱伝導率の異なる2種類以上
の金属による金網を用いて、これらを交互に配置するこ
とで、再生熱交換器全体の性能を改善し、機関の効率を
向上させる外燃機関の再生熱交換器を提供することを目
的とじたものである。
In view of the above circumstances, the present invention improves the performance of the entire regenerative heat exchanger and improves the efficiency of the engine by using wire meshes made of two or more types of metals with different thermal conductivities and arranging them alternately. The purpose of this invention is to provide a regenerative heat exchanger for an external combustion engine.

〈課題を解決するための手段〉 本癲明は、外燃機関の再生熱交換器を、ケースと、この
ケース内に重ね合わせて収納される多数枚の金網とから
構成され、この多数枚の金網を熱伝導性か異なる2種類
以上の金属で形成したものである。
<Means for solving the problem> The present invention consists of a regenerative heat exchanger for an external combustion engine, which consists of a case and a number of wire meshes that are stacked and stored inside the case. A wire mesh made of two or more metals with different thermal conductivity.

〈作 用〉 上記のように、熱伝導性の低い金属(例えばステンレス
)の金網と熱伝導性の高い金属(例えば銅)の金網とが
交互に重ね合わされているため、金網の内部まで有効な
蓄熱がなされ、熱容量を高くしながら、全体の熱伝導損
失か低く抑えられる。
<Function> As mentioned above, wire meshes made of a metal with low thermal conductivity (e.g. stainless steel) and wire meshes made of a metal with high thermal conductivity (e.g. copper) are layered alternately, so that the inside of the wire meshes can be effectively Heat is stored, increasing the heat capacity while keeping the overall heat conduction loss low.

〈実施例〉 以下、本発明を実施例の図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on drawings of embodiments.

第1図はVMサイクル駆動方式の外燃機関(ヒートポン
プ)を示し、1は外燃式エンジンで、このピストン3を
内装した高温側シリンダ2とピストン5を内装した低温
側シリンダ4を直角位置に配設すると共に、双方のピス
トン3゜5のピストンロット21,22はクランクケー
ス25内の回転軸24に取付けたクランク23に連結杆
19.20で連結され、位相がずれて往復動するように
しており、目、つ前記に温調シリンダ2には高温度レベ
ルの作動ガスを加熱するフィン7をもつヒータチューブ
6を接続し、該ヒータチューブ6に高温用再生熱交換器
8と中温ガスが放熱する中温側熱交換器9を配設し、又
、前記低温側シリンダ4に低温ガスのチューブ13を介
して低温側熱交換器12を接続し、該低温側熱交換器1
2には低温用再生熱交換器11と中温側熱交換器10を
配設し、又、この中温側熱交換器10と前記中温側熱交
換器9とは連通管14て連通している。更に、前記低温
側熱交換器12には冷水管路I8により循環ポンプ27
を介して冷却器17を接続し、中温側熱交換器9と中温
側熱交換器10には温水管路16により循環ポンプ26
を介して加熱器15を接続しており、この加熱器15と
冷却器17とは室内ユニット30内に設けである。28
は温水管路16に設けた暖房用三方弁゛う1,32より
分岐接続した排熱用熱交換器、2つは冷水管路18に設
けた冷却用三方弁33−、’34より分岐接続した排熱
用熱交換器である。35はヒータチューブ6を加熱する
バーナーである。この場合、高温用再生熱交換器8と低
温用再生熱交換器11は、ケース8a、lla内に少な
くとも熱伝導性の異なる金属線より形成した金網36.
37を交互に積層したものが収容されている(第4図A
、B参照)。
Fig. 1 shows a VM cycle drive type external combustion engine (heat pump), in which 1 is an external combustion engine, and the high-temperature side cylinder 2 containing the piston 3 and the low-temperature side cylinder 4 containing the piston 5 are arranged at right angles. At the same time, the piston rods 21 and 22 of both pistons 3.5 are connected to a crank 23 attached to a rotating shaft 24 in a crankcase 25 by a connecting rod 19.20, so that they reciprocate out of phase. Firstly, a heater tube 6 having fins 7 for heating working gas at a high temperature level is connected to the temperature control cylinder 2, and a high temperature regenerative heat exchanger 8 and medium temperature gas are connected to the heater tube 6. A medium-temperature heat exchanger 9 for dissipating heat is provided, and a low-temperature heat exchanger 12 is connected to the low-temperature cylinder 4 via a low-temperature gas tube 13.
2 is provided with a low temperature regenerative heat exchanger 11 and a medium temperature heat exchanger 10, and this medium temperature heat exchanger 10 and the medium temperature heat exchanger 9 are communicated through a communication pipe 14. Furthermore, a circulation pump 27 is connected to the low temperature side heat exchanger 12 through a cold water pipe I8.
A cooler 17 is connected via
A heater 15 is connected via the heater 15, and the heater 15 and cooler 17 are provided within the indoor unit 30. 28
1 is a heat exchanger for exhaust heat that is branch-connected from the heating three-way valves 1 and 32 provided in the hot water pipe 16, and two are branch-connected from the cooling three-way valves 33- and 34 provided in the cold water pipe 18. This is a heat exchanger for waste heat. 35 is a burner that heats the heater tube 6. In this case, the high-temperature regenerative heat exchanger 8 and the low-temperature regenerative heat exchanger 11 are installed in the cases 8a and lla with a wire mesh 36.
37 stacked alternately (Fig. 4A)
, see B).

例えば、実施例として第5図に示す如く内部の金網詳細
は、従来の金網式と基本的には同様の構造であるがステ
ンレス製金網36と銅製金網37を交−互に重ねたもの
、第6図に示すようにステンレス製金網36と銅製金網
37を11枚ごとに交互に積層しないで、2に3枚ごと
に交互に積層したものとしても良い。
For example, as shown in FIG. 5 as an example, the details of the internal wire mesh are basically the same structure as the conventional wire mesh type, but stainless steel wire mesh 36 and copper wire mesh 37 are alternately stacked. As shown in FIG. 6, the stainless steel wire mesh 36 and the copper wire mesh 37 may not be alternately laminated every 11 sheets, but may be alternately laminated every 2 to 3 sheets.

又、ステンレスと銅との組合わせ以外に、ステンレスと
アルミ (M伝導率? 7.5 kcal/*l+℃)
、又は黄銅(85kcal/+h ’C)とのM1合わ
せでも良く、更に、これら金属を3種以上組合わせても
良い。
In addition to the combination of stainless steel and copper, stainless steel and aluminum (M conductivity? 7.5 kcal/*l+℃)
, or brass (85 kcal/+h'C), or a combination of three or more of these metals.

次にこの作用を説明すると、外燃機関は、回転軸24が
回転しクランク23が回動すれば直交位置に配設した高
温側シリンダ2のピストン3と低温側シリンダ4のピス
トン5が交互に一定の位相差をもって往復連動をするこ
とにより運転が行われる。
Next, to explain this operation, in an external combustion engine, when the rotating shaft 24 rotates and the crank 23 rotates, the piston 3 of the high-temperature side cylinder 2 and the piston 5 of the low-temperature side cylinder 4, which are arranged at right angles, alternate. Operation is performed by reciprocating and interlocking with a constant phase difference.

ここにおいて、高温側シリンダ2を出た作動ガスはヒー
タチューブ6て加熱され高温用再生熱交換器8から中温
側熱交換器9へと流れる。
Here, the working gas exiting the high-temperature side cylinder 2 is heated by the heater tube 6 and flows from the high-temperature regenerative heat exchanger 8 to the medium-temperature side heat exchanger 9.

ここで、暖房時においては中温側熱交換器9゜10から
加熱用媒体を取り出し加熱器15へ導き暖房をすると共
に、低温側熱交換器12から冷却用媒体を取り出し排熱
用“熱交換器29へ導き室外からの熱を汲み上げる。5
<1冷房時にあっては、低温側熱交換器12から冷却用
媒体を冷却器17へ導き冷房をすると共に、中温側熱交
換59.10から加熱用媒体を取り出して排熱用熱交換
器28へ導き、この媒体の熱を室外へ排出するものであ
る。
During heating, a heating medium is taken out from the medium-temperature side heat exchanger 9 and 10 and guided to the heater 15 for heating, and a cooling medium is taken out from the low-temperature side heat exchanger 12 and transferred to the exhaust heat "heat exchanger". 29 and pumps up heat from outside.5
<1 During cooling, the cooling medium is guided from the low-temperature side heat exchanger 12 to the cooler 17 for cooling, and the heating medium is taken out from the medium-temperature side heat exchanger 59.10 and transferred to the exhaust heat heat exchanger 28. The heat of this medium is discharged outside.

即ち、再生熱交換器8,11は、ピストン3゜5の動き
に合わせて作動ガスか往復し、高温側と低温側のガスの
移動によって、吸熱、放熱を繰り返している。その時間
は非常に短くピストン回転数が1000 rpmのとき
、ガスと金網との熱交換に要する時間は30 m5ec
となる(第2図参照)。
That is, in the regenerative heat exchangers 8 and 11, the working gas reciprocates in accordance with the movement of the piston 3.degree. 5, and heat absorption and heat radiation are repeated by the movement of the gas on the high temperature side and the low temperature side. The time is very short; when the piston rotation speed is 1000 rpm, the time required for heat exchange between the gas and the wire mesh is 30 m5ec.
(See Figure 2).

このため、再生熱交換器8,11にはガスとすばやく熱
交換すると、表面の熱がすばやく金網線の芯部に達して
有効に蓄熱することが求められる。
For this reason, the regenerative heat exchangers 8 and 11 are required to quickly exchange heat with the gas so that the heat on the surface quickly reaches the core of the wire mesh and efficiently stores heat.

この再生熱交換器8.11に、熱伝導性の高い銅製金網
37を用いれば、ステンレス製金網36に比べて、金網
の内部まで熱が伝わり有効に蓄熱さされる(第3図参照
)。従って、ステンレス製金網36と銅製金網37とを
交互に重ねることによって、熱容量を高くしながら、全
体の熱伝導損失を低く抑えることができ、再生熱交換器
8.11の性能を高くすることかできる。
If a copper wire mesh 37 with high thermal conductivity is used in the regenerative heat exchanger 8.11, heat will be transmitted to the inside of the wire mesh and stored more effectively than a stainless steel wire mesh 36 (see FIG. 3). Therefore, by alternately stacking the stainless steel wire mesh 36 and the copper wire mesh 37, it is possible to increase the heat capacity while keeping the overall heat conduction loss low, thereby increasing the performance of the regenerative heat exchanger 8.11. can.

藺、ステンレスと銅との物性値の比較を示せば第1表の
ようになる。
Table 1 shows a comparison of the physical properties of stainless steel and copper.

〈発明の効果〉 上述のように、本発明の外燃機関の再生熱交換器は内部
に収納する熱伝導部材を熱伝導率の高い金網と熱伝導率
の低い金網とを交互に重ね合わせたことにより、金網の
内部まで熱が伝わり、有効に蓄熱させ、その熱容量を高
くしながら熱伝導損失は低く抑えることができ、その性
能を高くすることかできる。
<Effects of the Invention> As described above, in the regenerative heat exchanger for an external combustion engine of the present invention, the heat conductive member housed inside is made of alternating layers of wire mesh with high thermal conductivity and wire mesh with low thermal conductivity. As a result, heat is transmitted to the inside of the wire mesh, and the heat is stored effectively, and the heat conduction loss can be kept low while increasing the heat capacity, and its performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は外燃機関
の概略図、第2図は同機関回転数10 (10rpmの
ときの再生熱交換器を通過するガスの速度のモデル説明
図、第3図は再生熱交換器を構成する金網かステンレス
の場合と銅の場合の内部への熱伝導の比較を示す温度変
化説明図、第4図A、Bは再生熱交換器の平面図及び縦
断面図、第5図はステンレス金網と銅金網の重ね状態を
示す説明図、第6図は同ステンレス金網と銅金網を複数
枚ずつ積層した説明図である。 1・・・外燃機関、8・・・高温用再生熱交換器、8a
・・・ケース、11・・・低温用再生熱交換器、11a
・・・ケース、36・・・ステンレス製金網、37・・
・銅製金網。 第2図 wC3図 沼崩 第4図(A) 第4面(B) m5図 第6図
The drawings show an embodiment of the present invention, and Fig. 1 is a schematic diagram of an external combustion engine, and Fig. 2 is a model explanation of the velocity of gas passing through the regenerative heat exchanger when the engine speed is 10 (10 rpm). Figure 3 is a temperature change explanatory diagram showing a comparison of heat conduction to the inside of the regenerative heat exchanger made of wire mesh or stainless steel and copper, and Figure 4 A and B are plane views of the regenerative heat exchanger. Fig. 5 is an explanatory diagram showing a stacked state of a stainless wire mesh and a copper wire mesh, and Fig. 6 is an explanatory diagram showing a stacked state of a plurality of stainless steel wire meshes and copper wire meshes. 1... External combustion Engine, 8... High temperature regenerative heat exchanger, 8a
...Case, 11...Low temperature regenerative heat exchanger, 11a
...Case, 36...Stainless steel wire mesh, 37...
・Copper wire mesh. Fig. 2 wC3 Fig. Numazure Fig. 4 (A) Page 4 (B) m5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 1、ケースと、このケース内に重ね合わせて収納される
多数枚の金網とから構成された外燃機関の再生熱交換器
において、この多数枚の金網を熱伝導性が異なる2種類
以上の金属で形成したことを特徴とする外燃機関の再生
熱交換器。
1. In a regenerative heat exchanger for an external combustion engine, which is composed of a case and a number of wire meshes that are stacked and stored in the case, the multiple wire meshes are made of two or more types of metals with different thermal conductivities. A regenerative heat exchanger for an external combustion engine, characterized in that it is formed of:
JP33556790A 1990-11-30 1990-11-30 Regenerative heat exchanger of external combustion engine Pending JPH04203464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33556790A JPH04203464A (en) 1990-11-30 1990-11-30 Regenerative heat exchanger of external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33556790A JPH04203464A (en) 1990-11-30 1990-11-30 Regenerative heat exchanger of external combustion engine

Publications (1)

Publication Number Publication Date
JPH04203464A true JPH04203464A (en) 1992-07-24

Family

ID=18290029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33556790A Pending JPH04203464A (en) 1990-11-30 1990-11-30 Regenerative heat exchanger of external combustion engine

Country Status (1)

Country Link
JP (1) JPH04203464A (en)

Similar Documents

Publication Publication Date Title
El-Ehwany et al. Development of the performance of an alpha-type heat engine by using elbow-bend transposed-fluids heat exchanger as a heater and a cooler
US4442670A (en) Closed-cycle heat-engine
JP4897335B2 (en) Stirling engine
US5214923A (en) Vuilleumier heat pump
CA2765439C (en) Heat exchanger and associated method employing a stirling engine
US6715285B2 (en) Stirling engine with high pressure fluid heat exchanger
US3991457A (en) Heater tube arrangements
EP0162868B1 (en) Stirling cycle engine and heat pump
JPH04203464A (en) Regenerative heat exchanger of external combustion engine
JPS6122132B2 (en)
JP4232399B2 (en) Waste heat recovery equipment for automobiles
JPS62190391A (en) Heat exchanger
RU2788798C1 (en) Stirling engine thermal block
Hirao et al. Improvement in specific power of Stirling engine by using a new heat exchanger
JP4929470B2 (en) Stirling engine heat exchanger
JPH09329366A (en) Heat exchanger of external combustion type heat gas engine
JPH01240760A (en) Regenerator for stirling engine
JPS6179843A (en) Cooler for liquid type stirling engine
JPS6048625B2 (en) Stirling engine high temperature heat exchanger
Rix An investigation into the potential of the reversed Stirling cycle heat pump
JPH01244151A (en) High temperature heat exchanger for stirling engine
JPH0631692B2 (en) Heat exchanger
JPH074762A (en) Heat loss reducing structure for stirling cycle engine
Gheith et al. Study of the regenerator porosity influence on gamma type Stirling engine performances
JPS5914617B2 (en) Heater head of series double-acting hot gas engine