JPH04203381A - Oil feeding device for scroll compressor for helium - Google Patents

Oil feeding device for scroll compressor for helium

Info

Publication number
JPH04203381A
JPH04203381A JP32934990A JP32934990A JPH04203381A JP H04203381 A JPH04203381 A JP H04203381A JP 32934990 A JP32934990 A JP 32934990A JP 32934990 A JP32934990 A JP 32934990A JP H04203381 A JPH04203381 A JP H04203381A
Authority
JP
Japan
Prior art keywords
oil
flow rate
amount
oil injection
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32934990A
Other languages
Japanese (ja)
Inventor
Yasushi Izunaga
康 伊豆永
Masao Shiibayashi
正夫 椎林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32934990A priority Critical patent/JPH04203381A/en
Publication of JPH04203381A publication Critical patent/JPH04203381A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce a pressure pulsation in an oil feeding line and further reduce vibration of a compressor and noise by a method wherein the oil feeding line is provided with a flow rate control of controlling an oil feeding amount in proportion to the number of rotation of the compressor. CONSTITUTION:An oil extracting pipe 30 and an oil feeding pipe 31 are connected by an oil feeding line 36. The oil feeding line is provided with an oil cooler 33 and a flow rate control mechanism 35. If an operating frequency is changed by an inverter 38, the number of rotation of a rotary shaft 14 can be varied and a flow rate of helium gas discharged from the compressor can be easily varied in response to a load. An amount of feeding oil is controlled in proportion to an operating frequency by the flow rate control mechanism 35, an amount of feeding oil can be reduced in the case that the operating frequency is low, so that an amount of oil accumulated in a compression chamber communicating with the oil feeding part can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘリウム冷凍装置、特に、ヘリウム液化用冷
凍装置に用いられる注油式スクロール圧縮機の油注入機
構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oil injection mechanism for an oil-filled scroll compressor used in a helium refrigeration system, particularly a refrigeration system for helium liquefaction.

〔従来の技術〕[Conventional technology]

圧縮ガスの冷却のために圧縮ガス中に油を注入する。い
わゆる、油注入方式(油インジェクション方式)を採用
しているものでは、例えば、特開昭61−1.1279
4号公報に開示されたように、密閉容器内を高圧状態に
保った密閉形スクロール圧縮機において、密閉容器底部
に貯留した高圧の油を注入油として用いている。また、
実開昭56−85087号公報に開示された例では、吐
出ラインに設けられた油分離器で分離される高圧の油を
注入油として用いている。これらの例では高圧と油注入
部の差圧を利用して油注入を行っている。
Oil is injected into the compressed gas for cooling the compressed gas. The so-called oil injection method is adopted, for example, in JP-A-61-1.1279.
As disclosed in Publication No. 4, in a closed scroll compressor that maintains the inside of a closed container at a high pressure state, high pressure oil stored at the bottom of the closed container is used as injection oil. Also,
In the example disclosed in Japanese Utility Model Application Publication No. 56-85087, high-pressure oil separated by an oil separator provided in a discharge line is used as injection oil. In these examples, oil injection is performed using the differential pressure between the high pressure and the oil injection part.

従来、ヘリウム冷凍装置に用いられる圧縮機は定格運転
周波数(50Hzまたは60 Hz )で連続運転し、
冷凍負荷が減少した場合吐出ガスの一部を吐出側(高圧
側)から吸入側(低圧側)へバイパスして対応していた
。これに対して、冷凍負荷に応じて、インバータにより
圧縮機運転周波数を制御することにより省エネルギを図
ることができる。ところで、ヘリウム液化用冷凍装置で
は、バッファタンクを設けて冷凍サイクル内のガス封入
量を調整し、運転中の低圧および高圧がほぼ一定になる
ように制御する。従って、油注入部の圧力も一定になり
、高圧と油注入部の差圧を利用して油注入を行っている
ため、運転周波数を変化させても油注入量はほぼ一定に
なる。
Conventionally, compressors used in helium refrigeration systems operate continuously at the rated operating frequency (50 Hz or 60 Hz).
When the refrigeration load decreased, a portion of the discharged gas was bypassed from the discharge side (high pressure side) to the suction side (low pressure side). On the other hand, energy saving can be achieved by controlling the compressor operating frequency using an inverter depending on the refrigeration load. By the way, in a helium liquefaction refrigeration system, a buffer tank is provided to adjust the amount of gas filled in the refrigeration cycle so that the low pressure and high pressure during operation are controlled to be approximately constant. Therefore, the pressure in the oil injection part is also constant, and since oil is injected using the differential pressure between the high pressure and the oil injection part, the amount of oil injection remains almost constant even if the operating frequency is changed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来技術では、高圧と油注入部の差圧を利用して
油を注入している為、運転周波数を変化させても油注入
量は一定に保たれる。このため、ヘリウムガス中に占め
る油の体積流量比は運転周波数が低い程大きくなる。こ
こで運転停止後、高圧は徐々に低下し、低圧は徐々に上
昇して同一の圧力になりバランスするが、バランスする
までは油注入部に油が注入され続けるので、運転周波数
が低い程油注入部に通じる圧縮室内に溜まる油の量が多
くなる。このため運転周波数が低い程、停止後の再起動
時に、圧縮室内で油圧縮現象を生じ易くなり、スクロー
ルラップ強度上の問題があった。
In the above-mentioned conventional technology, since oil is injected using the differential pressure between the high pressure and the oil injection part, the amount of oil injected is kept constant even if the operating frequency is changed. Therefore, the lower the operating frequency, the greater the volumetric flow rate ratio of oil to helium gas. After the operation is stopped, the high pressure gradually decreases and the low pressure gradually increases until they reach the same pressure and are balanced, but until the balance is reached, oil continues to be injected into the oil injection part, so the lower the operating frequency, the more oil The amount of oil that accumulates in the compression chamber leading to the injection part increases. For this reason, the lower the operating frequency is, the more likely an oil compression phenomenon will occur in the compression chamber when restarting after stopping, posing a problem in terms of scroll wrap strength.

本発明の目的は運転周波数が低い場合では、停止後の再
起動時に圧縮室内で油圧縮現象を生じない信頼性の高い
ヘリウム用スクロール圧縮機の油注入機構を提供するこ
とにある。
An object of the present invention is to provide a highly reliable oil injection mechanism for a helium scroll compressor that does not cause an oil compression phenomenon in the compression chamber when restarting after stopping when the operating frequency is low.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では油注入ラインに
、圧縮機の回転数に比例して油注入量を制御する流量制
御手段を設けた。
In order to achieve the above object, the present invention provides an oil injection line with a flow rate control means for controlling the amount of oil injection in proportion to the rotation speed of the compressor.

〔作用〕[Effect]

圧縮機の回転数に比例して油注入量を制御する流量制御
手段を油注入ラインに設けたので、運転周波数が低い場
合に油注入量を少なくすることができる。従って、運転
停止後、高圧と低圧がバランスして同一の圧力になるま
で油注入部に注入される油の量を少なくすることができ
るので、油注入部に通じる圧縮室内に溜まる油の量を少
なくすることができ、再起動時に油圧縮現象を生じない
信頼性の高いヘリウム用スクロール圧縮機の油注入機構
を提供することができる。
Since the oil injection line is provided with a flow rate control means that controls the amount of oil injected in proportion to the rotational speed of the compressor, the amount of oil injected can be reduced when the operating frequency is low. Therefore, after the operation is stopped, the amount of oil injected into the oil injection part can be reduced until the high pressure and low pressure are balanced and the same pressure is reached, so the amount of oil that accumulates in the compression chamber leading to the oil injection part can be reduced. It is possible to provide an oil injection mechanism for a scroll compressor for helium that is highly reliable and does not cause an oil compression phenomenon upon restart.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図及び第2図により説明
する。第1図は本発明に係る注油式密閉形スクロール圧
縮機の縦断面図及び注油系統図で、圧縮途中の圧縮室へ
注油する場合を示している。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal cross-sectional view and an oil supply system diagram of an oil-lubricated hermetic scroll compressor according to the present invention, and shows a case in which oil is supplied to a compression chamber during compression.

図において、密閉容器1内の上方にはスクロール圧縮機
部2が、下方には電動機部3が収納されている。そして
、密閉容器1内は上部室1aと電動機室1bとに区画さ
れている。スクロール圧縮機部2は固定スクロール部材
5と旋回スクロール部材6を互いに噛合せて圧縮室(密
閉空間)を形成している。
In the figure, a scroll compressor section 2 is housed in the upper part of a closed container 1, and an electric motor part 3 is housed in the lower part. The inside of the closed container 1 is divided into an upper chamber 1a and a motor chamber 1b. The scroll compressor section 2 has a fixed scroll member 5 and an orbiting scroll member 6 that are engaged with each other to form a compression chamber (sealed space).

固定スクロール部材5は、円板状の鏡板5aと、これに
直立し、インポリウド曲線、あるいは、これに近似の曲
線に形成されたラップ5bとからなり、その中心部に吐
出口10、外周部に吸入ロアを備えている。旋回スクロ
ール部材6は円板状の鏡板6aと、これに直立し、固定
スクロールのラップと同一形状に形成されたラップ6b
と5鏡板の反ラツプ面に形成されたボス部6Cとからな
っている。フレーム11は中央部に軸受部を形成し。
The fixed scroll member 5 consists of a disc-shaped end plate 5a and a wrap 5b standing upright on the end plate and formed into an impregnated curve or a curve similar to this. Equipped with a suction lower. The orbiting scroll member 6 includes a disk-shaped mirror plate 6a, and a wrap 6b that stands upright thereon and is formed in the same shape as the wrap of the fixed scroll.
and a boss portion 6C formed on the opposite lap surface of the end plate 5. The frame 11 has a bearing portion formed in the center.

この軸受部に回転軸14が支承され、回転軸先端の偏心
軸14aは、ボス6cに旋回運動が可能なように挿入さ
れている。また、フレーム11には固定スクロール部材
5が複数本のボルトによって固定され、旋回スクロール
部材6はオルダムリングおよびオルダムキーよりなるオ
ルダム機構12によってフレーム11に支承され、旋回
スクロール部材6は固定スクロール部材5に対して、自
転しないで旋回運動をするように形成されている。
A rotating shaft 14 is supported by this bearing portion, and an eccentric shaft 14a at the tip of the rotating shaft is inserted into the boss 6c so as to be able to rotate. Further, a fixed scroll member 5 is fixed to the frame 11 with a plurality of bolts, an orbiting scroll member 6 is supported on the frame 11 by an Oldham mechanism 12 consisting of an Oldham ring and an Oldham key, and the orbiting scroll member 6 is fixed to the fixed scroll member 5. On the other hand, it is formed so that it can rotate without rotating.

回転軸14には下部に電動機軸14bを一体に連接し、
電動機部3を直結している。固定スクロール部材5の吸
入ロアには密閉容器1を貫通して垂直方向の吸入管17
が接続され、吐出口10が開口している上部室1aは通
路18a、18bを介して電動機室1bと連通している
。電動機室1bは密閉容器1を貫通する吐出管19に連
通している。また電動機室1bの上部と下部とは、電動
機ステータ3aと密閉容器1側壁との間の隙間20及び
ステータ3aとロータ3bとの隙間を介して連通してい
る。
A motor shaft 14b is integrally connected to the rotating shaft 14 at the lower part thereof,
It is directly connected to the electric motor section 3. A vertical suction pipe 17 is provided at the suction lower part of the fixed scroll member 5 and extends through the closed container 1.
The upper chamber 1a, to which the discharge port 10 is connected, communicates with the motor chamber 1b via passages 18a and 18b. The motor chamber 1b communicates with a discharge pipe 19 passing through the closed container 1. Further, the upper and lower parts of the motor chamber 1b communicate with each other via a gap 20 between the motor stator 3a and the side wall of the closed container 1 and a gap between the stator 3a and the rotor 3b.

また、旋回スクロール部材6の鏡板の背面には、フレー
ム11で囲まれた空間23(以下背圧室と呼ぶ)が形成
され、この背圧室には旋回スクロールの鏡板に穿設した
細孔6mを介し、吸入圧力と吐出圧力の中間の圧力が導
入され、旋回スクロール部材6を固定スクロール部材5
に押し付ける軸方向の付与力を与えている。
Further, a space 23 (hereinafter referred to as a back pressure chamber) surrounded by a frame 11 is formed on the back side of the end plate of the orbiting scroll member 6, and this back pressure chamber has a 6 m pore hole drilled in the end plate of the orbiting scroll. A pressure between the suction pressure and the discharge pressure is introduced through the orbiting scroll member 6 to the fixed scroll member 5.
It applies an applied force in the axial direction that presses against the

潤滑油24は密閉容器1の底部に溜められており、この
油は密閉容器内の高圧圧力と、背圧室の中間圧力との差
圧により油吸上管14dから吸上げられた後1回転軸1
4内の吸上孔14c内を上昇し、旋回軸受25.主軸受
26および補助軸受27へ給油される。各軸受部へ給油
された油は背圧室23を経てスクロールラップの圧縮室
へ注入された圧縮ガスと混合され、次いで吐出ガスと共
に上部室1aへ吐出される。尚、28は油24の油面上
に配設されたホーミング防止板を示す。
Lubricating oil 24 is stored at the bottom of the sealed container 1, and this oil is sucked up from the oil suction pipe 14d due to the pressure difference between the high pressure inside the sealed container and the intermediate pressure in the back pressure chamber, and then rotates once. axis 1
The suction hole 14c in the swivel bearing 25. The main bearing 26 and the auxiliary bearing 27 are supplied with oil. The oil supplied to each bearing portion passes through the back pressure chamber 23, mixes with the compressed gas injected into the compression chamber of the scroll wrap, and is then discharged together with the discharge gas into the upper chamber 1a. Note that 28 indicates a homing prevention plate disposed on the oil surface of the oil 24.

密閉容器1の底部には、底部の油24を器外へ取出す油
抽出管30が開口している。また密閉容器1の上部には
、スクロール圧縮機部2の圧縮途中の圧縮室2aへ油を
注入する油注入管31が設けられている。この油注入管
31は固定スクロール部材5の鏡板5aに穿設したボー
ト32を介して圧縮室2aに連通している。
An oil extraction pipe 30 is opened at the bottom of the closed container 1 to take out the oil 24 at the bottom to the outside of the container. Furthermore, an oil injection pipe 31 is provided in the upper part of the closed container 1 for injecting oil into the compression chamber 2a of the scroll compressor section 2 during compression. This oil injection pipe 31 communicates with the compression chamber 2a via a boat 32 bored in the end plate 5a of the fixed scroll member 5.

油抽出管30と油注入管31とは、油注入ライン36に
より接続され、この油注入ラインには油冷却器33と流
量制御機構35が設けられている。
The oil extraction pipe 30 and the oil injection pipe 31 are connected by an oil injection line 36, and this oil injection line is provided with an oil cooler 33 and a flow rate control mechanism 35.

次に本実施例の作用について説明する。電動機ロータ3
bに直結した回転軸14bが回転して偏心軸14aが偏
心回転すると、旋回軸受25を介して旋回スクロール部
材6は旋回運動を行う。この旋回運動により、圧縮室2
aを次第に中心に移動して容積が減少する。作動ガスは
吸入管17から吸入ロアを経て吸入室2Cへ入ると共に
、軸受を潤滑した油が旋回スクロール部材6の外周部隙
間から吸入室2cへ流入して作動ガスに混入する。
Next, the operation of this embodiment will be explained. electric motor rotor 3
When the rotating shaft 14 b directly connected to the rotation shaft 14 b rotates and the eccentric shaft 14 a rotates eccentrically, the orbiting scroll member 6 performs an orbiting motion via the orbiting bearing 25 . This rotational movement causes the compression chamber 2
a gradually moves toward the center and the volume decreases. The working gas enters the suction chamber 2C from the suction pipe 17 via the suction lower, and the oil that has lubricated the bearing flows into the suction chamber 2c from the outer peripheral gap of the orbiting scroll member 6 and mixes with the working gas.

油を含んだ作動ガスは圧縮室で圧縮されて吐出口10か
ら上部室1aへ吐出され、通路18a。
The working gas containing oil is compressed in the compression chamber and discharged from the discharge port 10 to the upper chamber 1a, and then to the passage 18a.

18bを通って電動機室1bへ流入する。実線の矢印は
作動ガスの流れを、破線の矢印は油の流れをそれぞれ示
している。狭い通路18a、1.8b=7− から広い空間の電動機室1bに流入した作動ガスは、そ
の流速が息下に低下し、かつ流れ方向が変わるため、ガ
ス中に含まれる油の大部分が分離され、作動ガスは吐出
管19内へ流出し、油は電動機ロータ外周部の隙間20
を通って流下して密閉容器1底部に溜まる。密閉容器1
の底部に溜められた油24は、密閉容器1内の圧力(吐
出圧力)と圧縮室2aの圧力(吐出圧力以下の圧力)と
の差圧によって油抽出管3oから油注入ライン36へ流
入し油冷却器33へ至り、ここで、適宜、冷却された後
、流量制御機構35を通り、油注入ライン36.油注入
管31及びボート32を経て圧縮室2aへ注入される。
18b and flows into the motor room 1b. Solid arrows indicate the flow of working gas, and dashed arrows indicate the flow of oil. The working gas flowing from the narrow passages 18a, 1.8b = 7- into the wide space of the motor room 1b decreases in flow velocity and changes its flow direction, so that most of the oil contained in the gas is lost. The working gas flows into the discharge pipe 19, and the oil flows into the gap 20 on the outer periphery of the motor rotor.
It flows down through the air and accumulates at the bottom of the sealed container 1. Airtight container 1
The oil 24 stored at the bottom of the container flows into the oil injection line 36 from the oil extraction pipe 3o due to the differential pressure between the pressure inside the closed container 1 (discharge pressure) and the pressure in the compression chamber 2a (pressure below the discharge pressure). The oil reaches the oil cooler 33, where it is appropriately cooled, and then passes through the flow rate control mechanism 35 and the oil injection line 36. The oil is injected into the compression chamber 2a through the oil injection pipe 31 and boat 32.

圧縮室2aに注入された油は、圧縮室内で作動ガスの冷
却作用及びスクロールラップ先端部等の摺動部を潤滑す
る役目を果す。そして、この油は作動ガスと共に圧縮さ
れた後、吐出口10より上部室1aへ吐出され、前述と
同様に、電動機室1bで作動ガスから分離して密閉容器
1の底部に溜まる。尚、各軸受25゜26.27への給
油は、密閉容器1内の圧力と背−8= 圧室23内の圧力(中間圧力)との差圧により、油吸上
管14d2回転軸14a内の給油孔14cを介して行わ
れる。
The oil injected into the compression chamber 2a serves to cool the working gas within the compression chamber and to lubricate sliding parts such as the tip of the scroll wrap. After this oil is compressed together with the working gas, it is discharged from the discharge port 10 into the upper chamber 1a, separated from the working gas in the motor chamber 1b, and collected at the bottom of the closed container 1, as described above. In addition, oil is supplied to each bearing 25° 26.27 by the pressure difference between the pressure inside the closed container 1 and the pressure inside the back pressure chamber 23 (intermediate pressure). This is done through the oil supply hole 14c.

圧縮機電源取出し部37はインバータ38と電気的に接
続されており、インバータ38で運転周数を変えれば、
回転軸14の回転数を変えることができ、負荷に応じて
圧縮機から吐出されるヘリウムガス流量を容易に変える
ことができる。
The compressor power outlet 37 is electrically connected to an inverter 38, and if the operating frequency is changed by the inverter 38,
The rotation speed of the rotating shaft 14 can be changed, and the flow rate of helium gas discharged from the compressor can be easily changed depending on the load.

第2図は、第1図の注油系統図で、油注入ライン36に
設けた流量制御機構35により、運転周波数に比例して
油注入量Q i nを制御した場合のヘリウムガス中に
占める油の体積流量比Xを示す。
FIG. 2 is a lubrication system diagram shown in FIG. 1, and shows the amount of oil occupied in helium gas when the oil injection amount Q in is controlled in proportion to the operating frequency by the flow rate control mechanism 35 provided in the oil injection line 36. The volumetric flow rate ratio X is shown.

第3図は、第1図の注油系統図で、油注入ライン36に
流量制御機構を設けない場合の油注入量Q + nと油
の体積流量比を示す。
FIG. 3 is the oil injection system diagram of FIG. 1, and shows the oil injection amount Q + n and the oil volumetric flow rate ratio when the oil injection line 36 is not provided with a flow rate control mechanism.

第2図と第3図を比べてわかるように、第2図のように
流量制御機構35により運転周波数に比例して油注入量
QInを制御することにより、運転周波数が低い場合に
油注入量を少なくすることができるので、運転停止後、
高圧と低圧がバランスし同一の圧力になるまで油注入部
に注入される油の量を少なくすることができ、油注入部
に通じる圧縮室(第1図の2a)内に溜まる油の量を少
なくすることができる。従って、再起動時に油圧縮現象
を生じないヘリウム用スクロール圧縮機の油注入機構を
提供することができる。
As can be seen by comparing FIG. 2 and FIG. 3, by controlling the oil injection amount QIn in proportion to the operating frequency by the flow rate control mechanism 35 as shown in FIG. After stopping operation,
The amount of oil injected into the oil injection part can be reduced until the high pressure and low pressure are balanced and the same pressure is reached, and the amount of oil accumulated in the compression chamber (2a in Figure 1) leading to the oil injection part can be reduced. It can be reduced. Therefore, it is possible to provide an oil injection mechanism for a helium scroll compressor that does not cause an oil compression phenomenon when restarted.

また、運転周波数が低い場合に油注入量QInを少なく
できるので、油注入ラインの圧力脈動を小さくすること
ができ、圧縮機の振動及び騒音を低減することができる
Furthermore, since the oil injection amount QIn can be reduced when the operating frequency is low, pressure pulsations in the oil injection line can be reduced, and vibrations and noise of the compressor can be reduced.

第4図は本発明の他の実施例を示したもので、第2図と
異なる点は、第1図における流量制御機構として段階制
御流量制御機構を設けた場合を示す。第4図では油注入
量Q Inを3段階に制御する場合を示す。この場合も
第2図の流量制御機構のない場合と比べて明らかなよう
に、運転周波数が低い場合に油注入量を少なくすること
ができるので、運転停止後、高圧と低圧がバランスし同
一のの圧力になるまで油注入部に注入される油の量を少
なくすることができ、油注入部に通じる圧縮室内に溜ま
る油の量を少なくすることができる。従って、再起動時
に油圧縮現象を生じないヘリウム用スクロール圧縮機の
油注入機構を提供することができる。また、運転周波数
が低い場合に油注入量を少なくできるので、油注入ライ
ンの圧力脈動を小さくすることができ、圧縮機の振動及
び騒音を低減することができる。また、段階制御流量制
御機構は、第1図及び第2図に示す無段階制御の流量制
御機構より価格を低減することができる。
FIG. 4 shows another embodiment of the present invention, which differs from FIG. 2 in that a stepwise control flow rate control mechanism is provided as the flow rate control mechanism in FIG. 1. FIG. 4 shows a case where the oil injection amount Q In is controlled in three stages. In this case as well, as is clear compared to the case without the flow rate control mechanism shown in Figure 2, the amount of oil injected can be reduced when the operating frequency is low, so after the operation is stopped, high and low pressures are balanced and the same level of pressure is maintained. The amount of oil injected into the oil injection part can be reduced until the pressure reaches , and the amount of oil that accumulates in the compression chamber communicating with the oil injection part can be reduced. Therefore, it is possible to provide an oil injection mechanism for a helium scroll compressor that does not cause an oil compression phenomenon when restarted. Furthermore, since the amount of oil injection can be reduced when the operating frequency is low, pressure pulsations in the oil injection line can be reduced, and vibrations and noise of the compressor can be reduced. Further, the stepwise control flow rate control mechanism can be lower in price than the stepless control flow rate control mechanism shown in FIGS. 1 and 2.

第5図は本発明の他の実施例を示したもので、第1図と
異なるのは流量制御機構として、電磁弁などの開閉弁3
9とキャピラリなどの減圧装置4oを直列に接続した管
路を複数個並列に油注入ライン36に接続したものであ
り、第5図では三列設けている。この場合、周波数が低
くなると、開閉弁39を1個閉路し、さらに低周波数に
なれば、開閉弁39を二個閉路する。その場合の周波数
に対する油の体積流量比Xと油注入量QInの変化は第
4図の段階制御流量制御機構を用いた場合と同様になる
。従って、この場合も、再起動時に=11− 油圧縮現象を生じないヘリウム用スクロール圧縮機の油
注入機構を提供することができ、信頼性を向上させるこ
とができると共に、圧縮機の振動及び騒音を低減できる
。さらに、段階制御流量制御機構を用いる場合に比へて
価格を低減することができる。
FIG. 5 shows another embodiment of the present invention, which differs from FIG. 1 in that the flow control mechanism includes an on-off valve such as a solenoid valve.
9 and a pressure reducing device 4o such as a capillary in series are connected in parallel to the oil injection line 36, and in FIG. 5, three lines are provided. In this case, when the frequency becomes low, one on-off valve 39 is closed, and when the frequency becomes even lower, two on-off valves 39 are closed. In this case, changes in the oil volumetric flow rate ratio X and the oil injection amount QIn with respect to the frequency are similar to those in the case where the stepwise control flow rate control mechanism shown in FIG. 4 is used. Therefore, in this case as well, it is possible to provide an oil injection mechanism for a helium scroll compressor that does not cause the oil compression phenomenon at the time of restart, improving reliability and reducing vibration and noise of the compressor. can be reduced. Furthermore, the cost can be reduced compared to when using a stepwise flow rate control mechanism.

尚、前述した実施例は、いずれも圧縮室2aに油を注入
する場合の効果を述べた、吸入管17へ油を注入する場
合でも1本発明により前述と同様の効果を達成できる。
Incidentally, in all of the embodiments described above, the effects when oil is injected into the compression chamber 2a are described, but even when oil is injected into the suction pipe 17, the same effects as described above can be achieved by the present invention.

さらに、前述した実施例は、いずれも−本の油注入管3
1を介して油を注入する場合を述べたが、複数の油注入
管を介して圧縮室へ油を注入する場合でも本発明により
同様の効果を達成できる。
Furthermore, in each of the above-mentioned embodiments, the oil injection pipe 3 is
Although the case has been described in which oil is injected into the compression chamber through a plurality of oil injection pipes, similar effects can be achieved by the present invention even when oil is injected into the compression chamber through a plurality of oil injection pipes.

また、前述した実施例は、いずれも密閉容器底部に貯留
した高圧の油を注入油として用いたが、吐出ラインに設
けられた油分離器で分離した高圧の油を注入油として用
いても本発明により同様の効果を達成できる。
In addition, in the above-mentioned embodiments, high-pressure oil stored at the bottom of a closed container was used as the injection oil, but it is also possible to use high-pressure oil separated by an oil separator installed in the discharge line as the injection oil. A similar effect can be achieved by the invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、油注入ラインに設けた流量制御機構に
より運転周波数に比例して油注入量髪制御することによ
り、運転周波数が低い場合に油注入量を少なくすること
ができるので、停止後の再起動時に油圧縮現象を生じな
いヘリウム用スクロール圧縮機の油注入機構を提供する
ことができる。
According to the present invention, by controlling the amount of oil injection in proportion to the operating frequency using a flow rate control mechanism provided in the oil injection line, the amount of oil injection can be reduced when the operating frequency is low. It is possible to provide an oil injection mechanism for a helium scroll compressor that does not cause an oil compression phenomenon when restarting.

また、運転周波数が低い場合に油注入量を少なくできる
ので、油注入ラインの圧力脈動を小さくすることができ
、圧縮機の振動及び騒音を低減できる。
Furthermore, since the amount of oil injection can be reduced when the operating frequency is low, pressure pulsations in the oil injection line can be reduced, and vibrations and noise of the compressor can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のスクロール圧縮機の注油系
統図、第2図は第1図の実施例における運転周波数に対
する油の体積流量比及び油注入量を示す説明図、第3図
は流量制御機構がない場合の運転周波数に対する油の体
積流量比及び油注入量を示す説明図、第4図は本発明の
他の実施例における運転周波数に対する油の体積流量比
及び油注入量を示す説明図、第5図は本発明の他の実施
例のスクロール圧縮機の注油系統図である。
Fig. 1 is an oil supply system diagram of a scroll compressor according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the oil volumetric flow rate and oil injection amount with respect to the operating frequency in the embodiment of Fig. 1, and Fig. 3 4 is an explanatory diagram showing the oil volume flow rate ratio and oil injection amount with respect to the operating frequency in the case where there is no flow rate control mechanism, and FIG. The explanatory diagram shown in FIG. 5 is a lubrication system diagram of a scroll compressor according to another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1.インバータにより回転数可変に制御され、高圧部の
油を油冷却器を介して吸入管または圧縮途中の圧縮室へ
注入するヘリウム用スクロール圧縮機において、 油注入ラインに、圧縮機の回転数に比例して油注入量を
制御する流量制御手段を設けたことを特徴とするヘリウ
ム用スクロール圧縮機の油注入機構。
1. In a scroll compressor for helium, which is controlled to have a variable rotation speed by an inverter and injects oil from the high-pressure section through an oil cooler into the suction pipe or into the compression chamber during compression, there is an oil injection line in the oil injection line that is proportional to the rotation speed of the compressor. An oil injection mechanism for a helium scroll compressor, characterized in that it is provided with a flow rate control means for controlling the amount of oil injection.
JP32934990A 1990-11-30 1990-11-30 Oil feeding device for scroll compressor for helium Pending JPH04203381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32934990A JPH04203381A (en) 1990-11-30 1990-11-30 Oil feeding device for scroll compressor for helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32934990A JPH04203381A (en) 1990-11-30 1990-11-30 Oil feeding device for scroll compressor for helium

Publications (1)

Publication Number Publication Date
JPH04203381A true JPH04203381A (en) 1992-07-23

Family

ID=18220465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32934990A Pending JPH04203381A (en) 1990-11-30 1990-11-30 Oil feeding device for scroll compressor for helium

Country Status (1)

Country Link
JP (1) JPH04203381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053715A (en) * 1997-09-30 2000-04-25 Matsushita Electric Industrial Co., Ltd. Scroll type compressor
US6135739A (en) * 1997-10-01 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Scroll compressor
US6293776B1 (en) * 2000-07-12 2001-09-25 Scroll Technologies Method of connecting an economizer tube
CN108591064A (en) * 2018-04-23 2018-09-28 珠海格力电器股份有限公司 The control method of compressor and air conditioner and compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053715A (en) * 1997-09-30 2000-04-25 Matsushita Electric Industrial Co., Ltd. Scroll type compressor
US6135739A (en) * 1997-10-01 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Scroll compressor
US6293776B1 (en) * 2000-07-12 2001-09-25 Scroll Technologies Method of connecting an economizer tube
CN108591064A (en) * 2018-04-23 2018-09-28 珠海格力电器股份有限公司 The control method of compressor and air conditioner and compressor

Similar Documents

Publication Publication Date Title
US7229261B2 (en) Scroll compressor having an annular recess located outside an annular seal portion and another recess communicating with suction port of fixed scroll
JP3876335B2 (en) Scroll compressor for helium
KR970000342B1 (en) Horizontal multi-cylinder rotary compressor
MXPA01001069A (en) Horizontal scroll compressor.
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
JPH11241682A (en) Compressor for co2
KR920003593B1 (en) Scroll fluid machine with bearing lubrication
JPH08319965A (en) Hermetic motor-driven compressor
JP2557533B2 (en) Hermetic variable speed scroll compressor
JPH07109195B2 (en) Scroll gas compressor
JPH1037868A (en) Scroll compressor
JP3045961B2 (en) Scroll gas compression
JPH04203381A (en) Oil feeding device for scroll compressor for helium
JP2511863B2 (en) Scroll gas compressor
KR100557061B1 (en) Scroll compressor
JP2001041162A (en) Displacement fluid machinery
JPS6210487A (en) Scroll compressor
JPH02227583A (en) Scroll compressor
JPH08303369A (en) Scroll gas compressor
JP2870489B2 (en) Scroll gas compressor
JPH0559278B2 (en)
US11933306B2 (en) Scroll compressor and refrigeration cycle apparatus
JPH11324944A (en) Scroll compressor
JPH08303370A (en) Scroll gas compressor
CN100396930C (en) Scroll compressor