JPH04203303A - Governor valve opening fixation control method - Google Patents

Governor valve opening fixation control method

Info

Publication number
JPH04203303A
JPH04203303A JP32922990A JP32922990A JPH04203303A JP H04203303 A JPH04203303 A JP H04203303A JP 32922990 A JP32922990 A JP 32922990A JP 32922990 A JP32922990 A JP 32922990A JP H04203303 A JPH04203303 A JP H04203303A
Authority
JP
Japan
Prior art keywords
valve opening
turbine
control
governor valve
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32922990A
Other languages
Japanese (ja)
Inventor
Takao Okada
岡田 恭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP32922990A priority Critical patent/JPH04203303A/en
Publication of JPH04203303A publication Critical patent/JPH04203303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To perform a characteristic collection in a short time accurately by determining an optimum controlled variable for canceling interference among control devices against a manipulated variable from the outside of a turbine equipment which is operated in control of speed and pressure, and rapidly converging a governor valve operation. CONSTITUTION:A turbine measuring point is determined in a turbine characteristics collection function 1 to output a target governor valve opening. The target governor valve opening is inputted to a control error calculation process 2 to determine its difference from a present governor valve opening. The control error becomes a governor valve opening manipulated variable by performing a PID arithmetic 3 and an inner non-interference arithmetic 4. The governor valve opening manipulated variable is converted to a pulse manipulated variable which is outputted to a drive edge motor by a pulse manipulated variable arithmetic 5, and is outputted to a load adjusting device or a pressure adjusting device. Consequently, a turbine control device 6 side can control the governor valve independently without its modification so as to acquire accurate characteristics data in a short time for the purpose of the turbine characteristics collection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自家発プラントのタービン特性収集における
タービン加減弁開度固定制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fixed control system for controlling the opening of a turbine adjustment valve in collecting turbine characteristics of a private power plant.

〔従来の技術〕[Conventional technology]

従来のタービン特性収集に際しては、運転員が手動操作
により測定点までタービン加減弁開度を制御し整定させ
ながら、特性データを収集してい−1= たにのため、運転員の熟練度によりデータのバラツキが
出たり、整定に時間がかかったりして特性収集に多大な
る時間と労力を要していた。また、手動操作時に加減弁
開度ではなく抽(排)気流量又は復水流量で制御してい
たため正確な加減弁特性が得られなかった。
Conventionally, when collecting turbine characteristics, an operator manually controls and stabilizes the turbine adjustment valve opening up to the measurement point while collecting characteristic data. It took a lot of time and effort to collect the characteristics because there were variations in the characteristics and it took a long time to settle. Further, during manual operation, accurate control valve characteristics could not be obtained because control was performed using the bleed (exhaust) air flow rate or the condensate flow rate rather than the control valve opening degree.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は手動操作によるタービン整定及びデータ
採取には多大な労力を要する点や、流量制御では加減弁
開度を一定に制御することにならないため、精度の高い
加減弁開度−流量特性や流量−出力特性を得ることが出
来ない点について配慮がされておらず、経済運用解法に
使用する適確な特性を求めることが出来なかった。
The conventional technology described above requires a great deal of effort to manually set the turbine and collect data, and the flow rate control does not control the regulator valve opening to a constant level, so it is possible to obtain highly accurate regulator valve opening - flow rate characteristics. No consideration was given to the fact that it was not possible to obtain flow rate-output characteristics, and it was not possible to obtain appropriate characteristics for use in the economic operation solution method.

本発明は、自家発プラントの経済運用問題の解法に必要
なタービン特性収集をより短時間にかつ精度よく測定す
ることに有る。さらに、加減弁開度を一定に制御するに
際し下記の様な制御上の問題点が有る。タービン加減弁
開度を負荷調整機。
The present invention aims to collect turbine characteristics necessary for solving economic operation problems of private power plants in a shorter time and with higher accuracy. Furthermore, when controlling the opening degree of the adjusting valve to be constant, there are the following control problems. A load regulator that adjusts the opening of the turbine control valve.

圧力調整機を操作端として制御するに際し、タービン本
体の制御装置の働きは、タービン負荷、抽(排)気圧力
を一定に制御する。この為、加減弁開度と操作端は一対
で制御されるのではなく、複数の操作端で制御すること
となる。
When controlling the pressure regulator using the operating end, the control device of the turbine body controls the turbine load and bleed air pressure to a constant level. Therefore, the adjustment valve opening and the operating end are not controlled as a pair, but are controlled using a plurality of operating ends.

このことを第2図のタービン制御装置概略図により説明
する。
This will be explained with reference to the schematic diagram of the turbine control device shown in FIG.

負荷調整機11が設定を増操作すると高圧加減弁14が
開方向に動作するとともに中圧加減弁15低圧加減弁1
6も同一方向に動作する。
When the load regulator 11 increases the setting, the high pressure regulating valve 14 operates in the opening direction, and the intermediate pressure regulating valve 15 and the low pressure regulating valve 1
6 also moves in the same direction.

中圧抽気圧力調整機12の設定を増操作すると、高圧加
減弁14が開方向に動作するとともに中圧加減弁15.
低圧加減弁16が閉方向に動作する。
When the setting of the intermediate pressure bleed pressure regulator 12 is increased, the high pressure regulating valve 14 moves in the opening direction and the intermediate pressure regulating valve 15.
The low pressure regulating valve 16 operates in the closing direction.

以上より、タービン高圧加減弁14のみを開操作するた
めには、負荷調整機11と中圧調整機12を同時に適量
増操作すれば良いことが判る。
From the above, it can be seen that in order to open only the turbine high pressure regulating valve 14, it is sufficient to increase the load regulator 11 and the intermediate pressure regulator 12 by an appropriate amount at the same time.

この様に一つの加減弁開度を開閉操作する場合には、同
時に複数の操作端を増減操作する必要があり、このこと
をタービン内容干渉と呼ぶ。
When opening/closing one regulating valve opening in this way, it is necessary to simultaneously increase/decrease a plurality of operating ends, and this is called turbine content interference.

本発明のもう一つの目的は、タービン内部干渉を考慮し
たタービン加減弁開度制御を行なうことに有る。
Another object of the present invention is to perform turbine adjustment valve opening control in consideration of turbine internal interference.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、タービン特性収集機能によ
り、目標加減弁開度を受は取り、加減弁開度を制御量と
した制御方式を発明したものである。また、加減弁開度
制御上支障となるタービン内部干渉を考慮した操作量算
出演算を設けたものである。
In order to achieve the above object, the present invention has invented a control method in which a turbine characteristic collection function receives and receives a target adjustment valve opening and uses the adjustment valve opening as a control variable. Further, a manipulated variable calculation calculation is provided that takes into account internal interference in the turbine, which may be a hindrance in controlling the opening degree of the adjusting valve.

〔作用〕[Effect]

タービン特性収集は、測定点となる目標加減弁開度を求
める。加減弁開度固定制御は目標加減弁開度と現在加減
弁開度の偏差より操作量を算出して制御するので加減弁
開度を一定に制御することが出来るため、運転員の負担
を軽減出来る。
Turbine characteristic collection determines the target control valve opening, which is the measurement point. Adjustment valve opening fixed control calculates and controls the operation amount from the deviation between the target adjustment valve opening and the current adjustment valve opening, so the adjustment valve opening can be controlled at a constant level, reducing the burden on the operator. I can do it.

また、タービンの内部干渉はタービン本体の制御機構に
より起こるものである為、その干渉ゲイン特性は測定司
能であり再現性がある6相互干渉の関係及びゲインは操
作端を個々に操作した時、加減弁開度に与える影響をす
べての組み合わせとして表わせるよう行列の形式で表現
する、制御対象が加減弁開度であるから干渉ゲインの測
定は加減弁開度を基準として行う、さらにゲインの無次
元化をはかる為、変化量を比率で表わすこととする。下
記の干渉行列を示す。
In addition, since the internal interference of the turbine is caused by the control mechanism of the turbine body, its interference gain characteristics are measurable and reproducible. The influence on the adjustment valve opening is expressed in matrix form so that all combinations can be expressed.Since the controlled object is the adjustment valve opening, the interference gain is measured based on the adjustment valve opening.In addition, the interference gain is measured based on the adjustment valve opening. In order to achieve dimensionalization, the amount of change will be expressed as a ratio. The interference matrix is shown below.

行列の要素a、Jは、操作端jから加減弁iに与える干
渉ゲインを表わす。
Elements a and J of the matrix represent interference gains given to control valve i from operating end j.

(式1)の干渉行列を用いて操作量と制御量(加減弁開
度)の関係を以下の様に表わせる。
Using the interference matrix of (Equation 1), the relationship between the manipulated variable and the controlled variable (adjustment valve opening) can be expressed as follows.

C=A −M              (式2)但
し、Cは制御変化量行列、Mは操作量行列を表わす。
C=A −M (Formula 2) where C represents a control change amount matrix and M represents a manipulated amount matrix.

(式2)を操作量を求める式とし、Cを制御偏差と考え
ると以下の様になる。
If (Formula 2) is used as a formula for calculating the manipulated variable, and C is considered as a control deviation, the following equation is obtained.

M=A−”・C(弐3) 但し、A−’はAの逆行列を表わす。M=A-”・C (23) However, A-' represents the inverse matrix of A.

(式3)により加減弁開度制御の操作量を求めることに
よって内部干渉を打ち消すような操作量を算出できるの
でタービン内部干渉を考慮した加減弁開度制御が実現で
きる。
By determining the manipulated variable for the adjustment valve opening control using (Equation 3), it is possible to calculate the operation amount that cancels the internal interference, so it is possible to realize the adjustment valve opening control that takes into account the turbine internal interference.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1の
タービン特性収集機能においてタービン測定点を求め、
目標加減弁開度を出力する。
An embodiment of the present invention will be described below with reference to FIG. Obtain the turbine measurement point in the turbine characteristic collection function of 1,
Outputs the target adjustment valve opening.

目標加減弁開度は2の制御偏差計算に入力され、現在加
減弁開度との差が求められる。制御偏差は3のPID演
算、4の内部非干渉演算を行なうことによって加減弁開
度操作量となり、5のパルス操作量算出にて加減弁開度
操作量から駆動端モータに出力されるパルス操作量に換
算され負荷調整装置や圧力調整装置に出力される。
The target adjustment valve opening is input to the control deviation calculation in step 2, and the difference from the current adjustment valve opening is determined. The control deviation is determined by performing the PID calculation in 3 and the internal non-interference calculation in 4 to obtain the control valve opening manipulated variable, and by calculating the pulse control amount in 5, the pulse operation is output from the control valve opening manipulated variable to the drive end motor. It is converted into a quantity and output to a load adjustment device or pressure adjustment device.

第3図は内部非干渉演算のフローチャートを示すボック
スAにてPID演算藻の操作量行列を作成し、ボックス
Bにて干渉ゲイン行列を取込む。
FIG. 3 shows a flowchart of internal non-interference calculation. Box A creates a manipulated variable matrix for PID calculation, and box B takes in an interference gain matrix.

ボックスCにて干渉ゲイン逆行列を求め、ボックスDに
て干渉ゲイン逆行列とボックスAの操作量行列の積を求
める。この結果が内部非干渉操作量となる。ボックスE
にて結果を格納する。
In box C, the interference gain inverse matrix is determined, and in box D, the product of the interference gain inverse matrix and the manipulated variable matrix of box A is determined. This result becomes the internal non-interference manipulated variable. Box E
Store the results in .

本実施例によれば、タービン制御装置側は改造すること
なく独立に加減弁を制御することが可能となるので、加
減弁開度制御の追従性が向上できる。
According to this embodiment, since the turbine control device side can independently control the adjustment valve without modification, followability of adjustment valve opening degree control can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タービン特性収集のための加減弁開度
制御が自動で行なえるため、手動操作に比べてより短時
間で精度の良い特性データが得られる。
According to the present invention, since the control valve opening degree for collecting turbine characteristics can be automatically performed, highly accurate characteristic data can be obtained in a shorter time than with manual operation.

また、タービン内部干渉を考慮しているため、無駄な操
作が無い追従性の良い制御を提供できる。
Furthermore, since the turbine internal interference is taken into account, control with good followability without unnecessary operations can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の内部非干渉流量制御の制御
ブロック図、第2図はタービン制御装置概略図、第3図
は内部非干渉演算部のフローチャート図である。 1・・・タービン特性収集機能、2・・・制御偏差計算
、3・・・PID演算、4・・・タービン内部非干渉演
算、5・・・パルス操作量算出、6・・・タービン制御
装置、11・・・負荷調整器、12・・・中圧抽気調圧
機、13−7= ・・低圧油気調圧機、14・・・高圧加減弁、15・・
・中圧加減弁、16・・・低圧加減弁、17・・・高圧
タービン、18・・中圧タービン、19・・・低圧ター
ビン、20・・・発電機、21・・・復水器、22・・
・中圧抽気流量、23・・・低圧抽気流量、24・・・
復水流量。
FIG. 1 is a control block diagram of internal non-interference flow control according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a turbine control device, and FIG. 3 is a flowchart of an internal non-interference calculating section. 1... Turbine characteristic collection function, 2... Control deviation calculation, 3... PID calculation, 4... Turbine internal non-interference calculation, 5... Pulse operation amount calculation, 6... Turbine control device , 11...Load regulator, 12...Medium pressure bleed air pressure regulator, 13-7=...Low pressure oil pressure regulator, 14...High pressure regulating valve, 15...
- Medium pressure regulating valve, 16... Low pressure regulating valve, 17... High pressure turbine, 18... Medium pressure turbine, 19... Low pressure turbine, 20... Generator, 21... Condenser, 22...
・Medium pressure bleed air flow rate, 23...Low pressure bleed air flow rate, 24...
Condensate flow rate.

Claims (1)

【特許請求の範囲】[Claims] 1、調速・調圧運転をするタービン設備において、外部
からの操作量に対して調速制御装置、調圧制御装置への
無駄な制御量を回避すべく、各々の制御装置間の干渉量
を打ち消すように最適な制御量を決定し、タービン加減
弁の動作を早く収れんさせることを特徴とする加減弁開
度固定制御方式。
1. In turbine equipment that performs speed regulating and pressure regulating operations, in order to avoid unnecessary control amounts to the speed regulating control device and pressure regulating control device in response to external operation amounts, the amount of interference between each control device is determined. This is a fixed control valve opening control system that determines the optimal control amount to cancel out the turbulence and quickly converges the operation of the turbine control valve.
JP32922990A 1990-11-30 1990-11-30 Governor valve opening fixation control method Pending JPH04203303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32922990A JPH04203303A (en) 1990-11-30 1990-11-30 Governor valve opening fixation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32922990A JPH04203303A (en) 1990-11-30 1990-11-30 Governor valve opening fixation control method

Publications (1)

Publication Number Publication Date
JPH04203303A true JPH04203303A (en) 1992-07-23

Family

ID=18219097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32922990A Pending JPH04203303A (en) 1990-11-30 1990-11-30 Governor valve opening fixation control method

Country Status (1)

Country Link
JP (1) JPH04203303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014514A (en) * 2016-06-24 2016-10-12 南京化学工业园热电有限公司 Heat and power joint debugging control system and method
CN107035430A (en) * 2017-05-26 2017-08-11 国家电网公司 A kind of steam turbine valve flowrate characteristic parameter optimization method analyzed based on big data
CN108708775A (en) * 2018-05-07 2018-10-26 华北电力大学 Cogeneration units quick load change control method based on thermoelectricity load transition model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014514A (en) * 2016-06-24 2016-10-12 南京化学工业园热电有限公司 Heat and power joint debugging control system and method
CN107035430A (en) * 2017-05-26 2017-08-11 国家电网公司 A kind of steam turbine valve flowrate characteristic parameter optimization method analyzed based on big data
CN108708775A (en) * 2018-05-07 2018-10-26 华北电力大学 Cogeneration units quick load change control method based on thermoelectricity load transition model
CN108708775B (en) * 2018-05-07 2021-01-01 华北电力大学 Quick load change control method of cogeneration unit based on thermoelectric load conversion model

Similar Documents

Publication Publication Date Title
KR890015122A (en) Process Controls and Methods
JPH06119001A (en) Controller
JPH04203303A (en) Governor valve opening fixation control method
JP2000338008A (en) System and method for controlling vehicle automatic drive device
JPH0434766B2 (en)
JP4698026B2 (en) Improved servo mechanism control method
JPH06318102A (en) Sensor compensating device
US6847851B1 (en) Apparatus for improved general-purpose PID and non-PID controllers
EA005895B1 (en) Method and apparatus for steam turbine speed control
JPS60173603A (en) Controller of servomotor
JPH09146610A (en) Multivariable nonlinear process controller
JPS629405A (en) Process controller
JPS638802A (en) Method for automatically adjusting control constant of pid controller
KR100786010B1 (en) Dynamometer control system with P.I.DProportional Integral Derivative control algorithm
JP4378903B2 (en) PID adjustment device
JPS6014302A (en) Automatic control method of pi control parameter
SU870764A1 (en) Method of automatic controlling of pressure at the output of two-stage compressor unit
JPH0563803B2 (en)
JPS6337241B2 (en)
JPH0666041B2 (en) Two degree of freedom sampled value PID controller
JPH0217386A (en) Vacuum degree control device for condenser
JPH0578041B2 (en)
SU777131A1 (en) Apparatus for automatic control of technological parameter
JPH0415705A (en) Fuzzy controller
SU802919A1 (en) Relay regulation system