JPH04203302A - Ceramic stationary blade - Google Patents

Ceramic stationary blade

Info

Publication number
JPH04203302A
JPH04203302A JP33295990A JP33295990A JPH04203302A JP H04203302 A JPH04203302 A JP H04203302A JP 33295990 A JP33295990 A JP 33295990A JP 33295990 A JP33295990 A JP 33295990A JP H04203302 A JPH04203302 A JP H04203302A
Authority
JP
Japan
Prior art keywords
ceramic
combustion gas
heat insulating
flowing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33295990A
Other languages
Japanese (ja)
Other versions
JP2984767B2 (en
Inventor
Masaaki Nakakado
中門 公明
Takashi Machida
隆志 町田
Hiroshi Miyata
寛 宮田
Noboru Hisamatsu
暢 久松
Noriyuki Mori
森 則之
Isao Yuri
功 百合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2332959A priority Critical patent/JP2984767B2/en
Publication of JPH04203302A publication Critical patent/JPH04203302A/en
Application granted granted Critical
Publication of JP2984767B2 publication Critical patent/JP2984767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms

Abstract

PURPOSE:To reduce a quantity of heat invading into a metal parts and decrease a quantity of cooling air by providing a seal means against combustion gas on an opposite wall portion between mutually adjacent unit stationary blades among ceramic stationary blades for a gas turbine. CONSTITUTION:The cross sectional shape of a seal plate 17 corresponds to the cutting-out shape of the edge surface of outside walls 3, 3'. The seal plate 17 is installed between the mutually adjacent outside walls 3, 3', fills up a space in the circumferential direction, and eliminates a bypass stream caused by a radial flow of combustion gas. A seal plate 18 is installed between mutually adjacent outer heat insulators 9, 9' and outer shrouds 5, 5', so as to block voids in the combustion gas stream flowing in the axial direction, and eliminates any bypass stream caused by the combustion gas which flows out from an upstream side edge surface of stationary blade rows into gaps between the outer side walls 3, 3' and the outer shrouds 5, 5'. A seal plate 19 is provided between the mutually adjacent outer shrouds 5, 5' so as to block voids in the circumferential direction, and eliminates flowing-in of cooling air which is supplied to the outside of the outer shrouds 5, 5' into a combustion gas passage. Subsequently, a quantity of heat flowing in a metal parts can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンにおけるセラミック静翼に係わ
り、特に性能及び信頼性の向上を図るに好適な構造を有
するセラミック静翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic stator blade in a gas turbine, and particularly to a ceramic stator blade having a structure suitable for improving performance and reliability.

〔従来の技術〕[Conventional technology]

従来の金属製ガスタービン用静翼は、翼の内壁や表面を
空気により冷却し、真温度を材料の耐熱温度以下に抑え
ている。耐熱温度の高いセラミックスを用いたセラミッ
クス静翼は、冷却空気が少なくて済むのでガスタービン
の効率向上に有効であると考えられ、開発が進められて
いる。従来の産業用の大容量ガスタービン用のセラミッ
ク静翼は、まだ実用段階に達していないが、例えば特開
昭61−89905号公報、日本機械学会論文集54−
505A、(昭和63−9)1700および第18回ガ
スタービン定期講演会講演論文集(90−6)153に
記載されている。第2図に従来のセラミック静翼の縦断
面概略図を示す。同図の上側がガスタービンの外周側、
下側が同じく内周側に相当する。燃焼ガスに直接曝され
るセラミック部品(セラミックシェル1、内及び外セラ
ミックサイドウオール2,3)及びそのセラミック部品
を断熱部材7,8.9を介して支える金属部品(内及び
外シュラウド4,5、翼芯6)から構成されている。こ
のように、セラミック部品と金属部品の複合構造となっ
ているセラミック静翼では、高温で稼働時に両部品間に
生じる熱変形量の差を吸収して過大な熱応力の発生を避
けるため、あるいはまたセラミック部品を均一な荷重で
保持するために、断熱部材7,8.9は変形能に富む緩
衝機能を具備した材料を用いていた。
Conventional metal stationary blades for gas turbines use air to cool the inner walls and surfaces of the blades, keeping the true temperature below the heat-resistant temperature of the material. Ceramic stator vanes using ceramics with high heat resistance are considered to be effective in improving the efficiency of gas turbines because they require less cooling air, and development is progressing. Conventional ceramic stator vanes for industrial large-capacity gas turbines have not yet reached the practical stage, but for example, Japanese Patent Application Laid-Open No. 61-89905, Transactions of the Japan Society of Mechanical Engineers 54-
505A, (Showa 63-9) 1700 and the 18th Gas Turbine Regular Conference Lecture Proceedings (90-6) 153. FIG. 2 shows a schematic vertical cross-sectional view of a conventional ceramic stator vane. The upper side of the figure is the outer peripheral side of the gas turbine.
The lower side also corresponds to the inner peripheral side. Ceramic parts directly exposed to combustion gases (ceramic shell 1, inner and outer ceramic sidewalls 2, 3) and metal parts (inner and outer shrouds 4, 5) supporting the ceramic parts via heat insulating members 7, 8.9. , a wing core 6). In this way, ceramic stator blades have a composite structure of ceramic and metal parts. Further, in order to hold the ceramic parts with a uniform load, the heat insulating members 7, 8, 9 are made of a material that has a buffering function and is rich in deformability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、セラミック静翼の基本構造について開
示したものであり、静翼翼列を形成するときの隣接翼間
における冷却空気および燃焼ガスのシールについての配
慮がなされていなかった。
The above-mentioned prior art discloses the basic structure of a ceramic stator blade, but does not give consideration to the sealing of cooling air and combustion gas between adjacent blades when forming a row of stator blades.

従来の金属製静翼では燃焼ガス流路の内、外周壁を構成
するシュラウド部で冷却空気と燃焼ガスのシールを行っ
ていたので、上記の基本構造を持つセラミック静翼にお
いても、従来の金属製静翼と同様に金属製の内、外シュ
ラウド4,5の部分でシールを行う場合について考える
In conventional metal stator vanes, cooling air and combustion gas were sealed in the shroud that formed the outer peripheral wall of the combustion gas flow path. Consider the case where sealing is performed using the inner and outer shrouds 4 and 5, which are made of metal, similar to the case with the stator vanes.

第3図に上記単位静翼を環状に配置して形成したセラミ
ック静翼の翼列の一部を燃焼ガスの上流側からみた外観
図、第4図に第3図のA−A断面矢視図を示す。隣接す
る単位静翼間には熱膨張変形を考慮して、すきまXが設
けられている。翼列の翼間隙間Xを通って高温の燃焼ガ
スが内、外シュラウド4,5の部分に流入する。また、
耐熱性、変形能に優れた断熱部材8,9としてセラミッ
ク織布などが適しているが、通気性を持つために該断熱
部材8,9を通って燃焼ガスが広範囲に侵入してくる。
Fig. 3 is an external view of a part of the blade row of ceramic stator blades formed by arranging the unit stator blades in an annular shape, as seen from the upstream side of the combustion gas, and Fig. 4 is a cross-sectional view taken along the line A-A in Fig. 3. Show the diagram. A gap X is provided between adjacent unit stationary blades in consideration of thermal expansion deformation. High-temperature combustion gas flows into the inner and outer shrouds 4 and 5 through the interblade gap X of the blade row. Also,
Ceramic woven cloth or the like is suitable as the heat insulating members 8 and 9, which have excellent heat resistance and deformability, but combustion gas enters a wide range through the heat insulating members 8 and 9 because of their breathability.

このように、本来の燃焼ガス流路以外を流れるバイパス
流が増加することは、静翼における流体効率の低下と同
時に、金属製の内、外シュラウド4,5を冷却するため
に必要な空気量の増加を招く。すなわち、ガスタービン
の効率が低下する問題があった。
In this way, an increase in the bypass flow that flows outside the original combustion gas flow path causes a decrease in the fluid efficiency in the stator vanes, as well as an increase in the amount of air required to cool the metal inner and outer shrouds 4 and 5. leading to an increase in That is, there was a problem that the efficiency of the gas turbine decreased.

本発明の目的は、上述した問題点を解決し、性能及び信
頼性に優れたセラミック静翼を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a ceramic stator blade with excellent performance and reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のセラミック静翼は
翼列を形成したときに燃焼ガスと冷却空気のシールを適
切に行う構造を有している。すなわち、燃焼ガス流路を
形成し高温9燃焼ガスに直接曝されるセラミック部品と
該セラミック部品を断熱部材を介して保持する金属部品
とからなるセラミック静翼において、燃焼ガスのシール
はセラミック部品、あるいはまた断熱部材の部分で行い
、冷却空気のシールは金属部品の部分で行ったことを特
徴としている。また、該断熱部材は耐熱性に優れるとと
もに、通気性のない断熱板と変形能に富む緩衝材とから
なる多層構造とし、該断熱板の部分における燃焼ガスの
シール効果の向上を図ったことを特徴としている。
In order to achieve the above object, the ceramic stator vane of the present invention has a structure that appropriately seals combustion gas and cooling air when a blade row is formed. That is, in a ceramic stator vane consisting of a ceramic component that forms a combustion gas flow path and is directly exposed to high-temperature combustion gas, and a metal component that holds the ceramic component via a heat insulating member, the combustion gas seal is formed by the ceramic component, Alternatively, it is characterized in that it is done in the heat insulating member part, and the cooling air is sealed in the metal part part. In addition, the heat insulating member has excellent heat resistance and has a multilayer structure consisting of a non-porous heat insulating plate and a highly deformable cushioning material, which improves the sealing effect of combustion gas in the part of the heat insulating plate. It is a feature.

(作用〕 高温の燃焼ガスのシールを耐熱性に優れたセラミック部
品、あるいはまた通気性のない断熱材の部分で行ってい
るため、燃焼ガスの侵入によって耐熱性の比較的低い金
属部品が加熱されて損傷を受けることがなく、したがっ
て冷却空気量を従来の金属製の静翼に比べて大幅に少な
くできる。
(Function) Since the high-temperature combustion gases are sealed using ceramic parts with excellent heat resistance or non-ventilated insulation materials, metal parts with relatively low heat resistance are heated by the intrusion of combustion gases. Therefore, the amount of cooling air can be significantly reduced compared to conventional metal vanes.

更に冷却空気のシールを金属部品の部分で行っているた
め、セラミック部品が冷却されて大きな温度分布、即ち
熱応力が発生することを防止できる。また、断熱部材を
変形能に富む緩衝材を含む多層構造としたので、断熱材
ひいてはセラミック部品の片当たりによる局部応力の発
生を防止することが出来る。このため、セラミック部品
あるいは断熱部材の損傷防止を図ることができる。
Furthermore, since the cooling air is sealed at the metal parts, it is possible to prevent the ceramic parts from being cooled and causing a large temperature distribution, that is, thermal stress. In addition, since the heat insulating member has a multilayer structure including a buffer material with high deformability, it is possible to prevent the occurrence of local stress due to uneven contact of the heat insulating material and, by extension, the ceramic component. Therefore, damage to the ceramic component or the heat insulating member can be prevented.

本発明は上記の効果によって、セラミック静翼の信頼性
の向上とともに、ガスタービンの効率向上を図ることが
できる。
Due to the above effects, the present invention can improve the reliability of ceramic stator vanes and the efficiency of gas turbines.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は第3図に示したガスタービン静翼翼列を構成す
る1枚のセラミック静翼すなわち単位静翼の基本構造を
示す縦断面図であり、図の上側が翼列の外周側、下側が
同内周側である。図示されたセラミック静翼は、図示さ
れていないリテーナリングに嵌合固定される金属製の外
シュラウド5と、該外シュラウド5に対向して配置され
同じく図示されていないサポートリングに嵌合保持され
る内シュラウド4と、該内シュラウド4の前記外シュラ
ウド5に対向する面に形成されている段差部に嵌合され
重ね合わされた内断熱板8と、前記外シュラウド5の前
記内シュラウド4に対向する面に形成されている段差部
に嵌合され重ね合わされた外断熱板9と、前記内断熱板
8の前記外断熱板9と対向する面に重ね合わされている
内セラミックサイドウオール2と、前記外断熱板9の前
記内断熱板8と対向する面に重ね合わされている外セラ
ミックサイドウオール3と、前記内及び外セラミックサ
イドウオール2,3の互いに対向する面に形成されてい
る段差部に両端を嵌合され、核内及び外セラミックサイ
ドウオール2,3に挾持されている。翼形断面を持つセ
ラミックシェル1と、前記金属製外シュラウド5の段差
部が形成されている側の面に突出して一体に形成され、
前記内及び外断熱板8,9、内及び外セラミックサイド
ウオール2,3、セラミックシェル1を貫通して内シュ
ラウド4に連結されている金属製の翼芯6と、該翼芯6
と前記セラミックシェル1の間に介在する断熱部材7と
、を含んで形成されている9内断熱板8と内シュラウド
4の間、及び外断熱板9と外シュラウド5の間には、そ
れぞれ、変形能に富み耐熱性に優れる緩衝材10が、圧
縮変形された状態で装着されている。また、翼芯6、内
及び外断熱板8,9、及び内及び外シュラウド4゜5に
は冷却用気体の流路11,12,13,14゜15が形
成されている。
FIG. 1 is a vertical cross-sectional view showing the basic structure of one ceramic stator blade, that is, a unit stator blade, constituting the gas turbine stator blade cascade shown in FIG. The side is the same inner circumferential side. The illustrated ceramic stator vanes are fitted and held by a metal outer shroud 5 that is fitted and fixed to a retainer ring (not shown), and a support ring (also not shown) that is disposed opposite to the outer shroud 5. an inner shroud 4 , an inner heat insulating plate 8 that is fitted into a stepped portion formed on a surface of the inner shroud 4 facing the outer shroud 5 and overlapped with each other; an outer heat insulating board 9 which is fitted into and overlapped with a stepped portion formed on a surface of the inner ceramic side wall 2 which is superimposed on a surface of the inner heat insulating board 8 that faces the outer heat insulating board 9; The outer ceramic side wall 3 overlaps the surface of the outer heat insulating board 9 facing the inner heat insulating board 8, and the stepped portions formed on the mutually opposing faces of the inner and outer ceramic side walls 2 and 3 have both ends. are fitted and sandwiched between the inner and outer ceramic side walls 2 and 3. A ceramic shell 1 having an airfoil-shaped cross section is integrally formed so as to protrude from the surface of the metal outer shroud 5 on the side where the stepped portion is formed,
A metal wing core 6 that passes through the inner and outer heat insulating plates 8, 9, the inner and outer ceramic sidewalls 2, 3, and the ceramic shell 1 and is connected to the inner shroud 4;
and a heat insulating member 7 interposed between the ceramic shell 1, and between the inner heat insulating board 8 and the inner shroud 4 and between the outer heat insulating board 9 and the outer shroud 5, respectively. The cushioning material 10, which is highly deformable and has excellent heat resistance, is attached in a compressed and deformed state. Cooling gas flow paths 11, 12, 13, 14.degree. 15 are formed in the blade core 6, the inner and outer heat insulating plates 8, 9, and the inner and outer shrouds 4.5.

燃焼ガス流路は、内周及び外周の円筒状壁面をなす前記
の内及び外セラミックサイドウオール2゜3と、前記セ
ラミックシェル1により形成され、高圧の燃焼ガスは該
燃焼ガス流路の中を図の矢印の方向に流れる間に、圧力
の低下、流速の増加などを生じて下流に設けられた動翼
(図示せず)に導かれる。上記各セラミック部品は圧力
差による外力を受けるが、金属製部品である翼芯6と内
及び外シュラウド4,5により支えられ、該セラミック
部品には外力による大きな応力は発生しない。
The combustion gas flow path is formed by the inner and outer ceramic side walls 2゜3, which form cylindrical wall surfaces on the inner and outer peripheries, and the ceramic shell 1, and the high-pressure combustion gas flows through the combustion gas flow path. While flowing in the direction of the arrow in the figure, the pressure decreases, the flow velocity increases, etc., and the fluid is guided to a rotor blade (not shown) provided downstream. Although each of the above-mentioned ceramic parts is subjected to an external force due to a pressure difference, the ceramic parts are supported by the blade core 6 and the inner and outer shrouds 4 and 5, which are metal parts, and no large stress is generated in the ceramic parts due to the external force.

また、核内及び外シュラウド4,5は従来と同じ方法で
ケーシングに固定されている。また、燃焼ガスに加熱さ
れて生じる半径方向の熱膨張量が各部材と翼芯6との間
で異なるときにも、その差が前記緩衝材10の変形によ
って自動的に調整され、各部材間の隙間の発生や過大な
圧縮力を生じることなく、密着して保持される。すなわ
ち、本セラミック静翼は強度信頼性の高い基本構造を有
している。
Also, the inner and outer shrouds 4, 5 are fixed to the casing in the same manner as before. Furthermore, even when the amount of radial thermal expansion caused by heating by combustion gas differs between each member and the blade core 6, the difference is automatically adjusted by deformation of the buffer material 10, and the difference between each member is They are held tightly together without any gaps or excessive compressive force. In other words, this ceramic stator blade has a basic structure with high strength and reliability.

次に金属部品の冷却法について説明する。第1図に示さ
れたセラミック静翼はガスタービンの第1段静翼を対象
とした例である。外シュラウド5の外周から有孔板16
を通って流入した冷却空気は、該外シュラウド5の外周
壁に衝突し、該外周壁を冷却する。ついで冷却空気の一
部は翼芯6の内部に設けられた流路12を通り、該翼芯
6を冷却した後、該翼芯6の外周部に設けられた流路1
3を通って、さらに該翼芯6を冷却する。ついで内及び
外断熱板8,9内に設けられた流路14を通った後に燃
焼ガス流路に流出する。なお、流路14の位置は図示の
位置に限らず、セラミックサイドウオールから離れた位
置であれば良く、例えば通気性のある緩衝材10が設置
されている内及び外シュラウド4,5と、内及び外断熱
板8,9の間にまで流路13を延長しても良い。残りの
冷却空気は外シュラウド5の内部に設けられた流路15
を通り、該外シュラウド5を冷却した後、燃焼ガス流路
に流出する。内シュラウド4の内周から導入される冷却
空気の作用は、前述の外シュラウド5の冷却空気の場合
と同様である。
Next, a method for cooling metal parts will be explained. The ceramic stator blade shown in FIG. 1 is an example intended for a first stage stator blade of a gas turbine. From the outer periphery of the outer shroud 5 to the perforated plate 16
The cooling air that has flowed in through the outer shroud 5 impinges on the outer circumferential wall of the outer shroud 5 and cools the outer circumferential wall. A part of the cooling air then passes through a flow path 12 provided inside the blade core 6 to cool the blade core 6, and then passes through a flow path 1 provided on the outer periphery of the blade core 6.
3 to further cool the blade core 6. The gas then flows out into the combustion gas flow path after passing through the flow path 14 provided in the inner and outer heat insulating plates 8 and 9. Note that the position of the flow path 14 is not limited to the illustrated position, but may be any position that is away from the ceramic sidewall, for example, between the inner and outer shrouds 4 and 5 where the breathable cushioning material 10 is installed, and the inner and outer shrouds 4 and 5. The flow path 13 may also be extended between the outer heat insulating plates 8 and 9. The remaining cooling air flows through a flow path 15 provided inside the outer shroud 5.
After cooling the outer shroud 5, it flows out into the combustion gas flow path. The effect of the cooling air introduced from the inner periphery of the inner shroud 4 is similar to that of the cooling air of the outer shroud 5 described above.

一方、金属部品である翼芯6と内及び外シュラウド4,
5に流入する熱量は断熱部材7あるいは内及び外断熱板
8,9と緩衝材1oにより遮られる。さらに、流入熱量
の低減のため、翼列における隣接翼間にシール構造を設
けた。第5図は外周壁における該シール構造を燃焼ガス
流の上流側からみた外観図である。第6図(a)は第5
図におけるB−B断面矢視図、第6図(b)は同B’−
B′断面矢視図である6シール板17は、断面形状が外
サイドウオール3,3′の端面に設けた切欠きの形状に
対応しており、隣接する外サイドウオール3,3′間に
設置して円周方向の隙間を塞いでいる。このため、燃焼
ガスがガス流路から半径方向に流出してバイパス流を生
じることがない。
On the other hand, the blade core 6 and the inner and outer shrouds 4, which are metal parts,
The amount of heat flowing into the housing 5 is blocked by the heat insulating member 7 or the inner and outer heat insulating plates 8 and 9 and the buffer material 1o. Furthermore, to reduce the amount of heat flowing in, a seal structure was provided between adjacent blades in the blade row. FIG. 5 is an external view of the seal structure on the outer peripheral wall as seen from the upstream side of the combustion gas flow. Figure 6(a) shows the fifth
B-B sectional arrow view in the figure, FIG. 6(b) is the same
The seal plate 17 shown in the cross-sectional view of B' corresponds to the shape of the notch provided in the end face of the outer side walls 3, 3', and has a cross-sectional shape corresponding to the shape of the notch provided in the end face of the outer side walls 3, 3'. It is installed to close the gap in the circumferential direction. Therefore, the combustion gas does not flow out of the gas flow path in the radial direction to create a bypass flow.

なお、断面形状が三角形の実施例を示したが、そのほか
に長方形、扇型などでも良い。
Although the embodiment has shown a triangular cross-sectional shape, it may also have a rectangular shape, a fan shape, or the like.

シール板18は隣接する外断熱材9.9’ 、外シュラ
ウド5,5′間に設置して、燃焼ガス流の軸方向への流
れの隙間を塞いでいる。また、外断熱板9,9′は通気
性がない。このため、静翼翼列の上流側端面から燃焼ガ
スが外サイドウオール3.3′と外シュラウド5,5′
間に流出してバイパス流を生じることがない。なお、シ
ール板18は下流側端部、及び上流側端部と下流側端部
の間に増設すれば(図示せず>、m焼ガスのバイパス流
防止効果を増すことができる。
The seal plate 18 is installed between the adjacent external heat insulating materials 9,9' and the outer shrouds 5, 5' to close the gap in the axial direction of the combustion gas flow. Further, the outer heat insulating plates 9, 9' have no air permeability. Therefore, combustion gas flows from the upstream end face of the stator blade row to the outer sidewall 3.3' and the outer shroud 5, 5'.
There will be no leakage between them and a bypass flow. If the seal plate 18 is additionally installed at the downstream end and between the upstream end and the downstream end (not shown), the effect of preventing the bypass flow of the burning gas can be increased.

次に、シール板19は、隣接する外シュラウド5.5′
間に設置して、円周方向の隙間を塞いでいる。このため
、該外シュラウド5,5′外側に供給されている冷却空
気が燃焼ガス流路に流入することがない0以上、外周側
のシール構造について説明したが、内周側のシール構造
についても同様である。
The seal plate 19 then seals the adjacent outer shroud 5.5'
It is installed in between to close the gap in the circumferential direction. For this reason, although the seal structure on the outer circumference side has been described above, where the cooling air supplied to the outside of the outer shrouds 5, 5' does not flow into the combustion gas flow path, the seal structure on the inner circumference side has also been described. The same is true.

上記の遮熱構造、シール構造により金属部品への流入熱
量は大幅に低減されるため、従来の金属製翼に比べ約1
/1oの冷却空気量によって所要の低温に保たれる。ま
た、バイパス流が防止されるため、静翼の流体性能が低
下することがない。
The heat shielding structure and sealing structure described above greatly reduce the amount of heat flowing into metal parts, so compared to conventional metal blades, the amount of heat flowing into metal parts is significantly reduced.
The required low temperature is maintained by the amount of cooling air of /1o. Furthermore, since bypass flow is prevented, the fluid performance of the stationary blades does not deteriorate.

これらの結果、本セラミック静翼はガスタービンの効率
向上の効果がある。さらに、冷却空気の燃焼ガス流路へ
の流入が防止されるため、セラミック部品が冷却されて
大きな温度分布、すなわち熱応力が生じて破損すること
がない。この結果、セラミック静翼の信頼性向上を図る
ことができる。
As a result, the present ceramic stator vane has the effect of improving the efficiency of a gas turbine. Furthermore, since the cooling air is prevented from flowing into the combustion gas flow path, the ceramic component is not cooled and damaged due to large temperature distribution, that is, thermal stress. As a result, the reliability of the ceramic stator blade can be improved.

直接、高温の燃焼ガスに曝されるシェル1及びうち、外
サイドウオール2,3は、耐熱性に優れた構造用セラミ
ックスで製造される。内及び外断熱板8,9は、耐熱性
、断熱性に優れ通気性のない無機材料、たとえば繊維強
化セラミックスで製造される。断熱部材7は耐熱性、断
熱性に優れると共に、狭い隙間に充填できることが必要
なため。
The shell 1 and the outer sidewalls 2 and 3, which are directly exposed to high-temperature combustion gas, are made of structural ceramics with excellent heat resistance. The inner and outer heat insulating plates 8 and 9 are made of an inorganic material with excellent heat resistance and heat insulation properties and no air permeability, such as fiber-reinforced ceramics. This is because the heat insulating member 7 is required to have excellent heat resistance and heat insulation properties, and to be able to fill a narrow gap.

無機材質充填材、例えばアルミナ系充填材で製造される
。なお、翼芯6との境界部に後述の緩衝材を設置した二
重構造とすると、該翼芯6の空冷効果が向上する。変形
能に富む緩衝材10は、耐熱性と共に、弾性変形能に優
九でいることが必要であり、柔軟な無機材料、例えばセ
ラミック繊維による織物で製造される。シール板17.
18は通気性がなく、耐熱性に富む無機材料、例えば構
造用セラミックス、繊維強化セラミックス、断熱材など
で製造され、シール板19は耐熱性の金属で製造される
翼芯6及び内、外シュラウド4,5は耐熱合金で製造さ
れるが、従来の金属製静翼に比べ、耐熱温度の低い普及
形のグレード、例えばステンレス鋼でよく、製造が容易
である。
Manufactured using an inorganic filler, such as an alumina filler. Note that if a double structure is provided in which a buffer material, which will be described later, is provided at the boundary with the blade core 6, the air cooling effect of the blade core 6 will be improved. The highly deformable cushioning material 10 needs to have excellent elastic deformability as well as heat resistance, and is manufactured from a fabric made of a flexible inorganic material, such as ceramic fiber. Seal plate 17.
Reference numeral 18 is made of a non-breathable, heat-resistant inorganic material such as structural ceramics, fiber-reinforced ceramics, heat insulating material, etc., and the seal plate 19 is made of a heat-resistant metal for the blade core 6 and inner and outer shrouds. 4 and 5 are manufactured from a heat-resistant alloy, but compared to conventional metal stator blades, a popular grade with a lower heat resistance, such as stainless steel, can be used, and manufacturing is easy.

セラミック静翼の他の実施例を第7図により説明する。Another embodiment of the ceramic stator vane will be described with reference to FIG.

第7図は、第1図の上側の半分に相当し。FIG. 7 corresponds to the upper half of FIG. 1.

下半分は第1図と同様のため省略しである。内シュラウ
ド4(省略)と翼芯6は一体で形成され、該翼芯6は外
シュラウド5と嵌合したのちに該外シュラウド5の外側
に設けた有孔板16、バネ20を介してナツト21によ
り締め付けられ、内、外シュラウド4,5間の部品は圧
縮力を受けて密着状態で保持されている。該翼芯6と内
、外シュラウド4,5間の部品との熱膨張量の差は該バ
ネ20の弾性変形によって調整される。このため、本実
施例では緩衝材を省略している。なお、第1図と同様に
部品間に緩衝材10を設置することによって、均一な当
たりの圧縮力を得ることが出来る。また、シール構造は
前述の実施例と同様である。
The lower half is omitted because it is similar to FIG. 1. The inner shroud 4 (omitted) and the blade core 6 are integrally formed, and after the blade core 6 is fitted with the outer shroud 5, it is connected to a nut via a perforated plate 16 and a spring 20 provided on the outside of the outer shroud 5. 21, and the parts between the inner and outer shrouds 4, 5 are held in close contact by compressive force. The difference in thermal expansion between the blade core 6 and the parts between the inner and outer shrouds 4 and 5 is adjusted by elastic deformation of the spring 20. Therefore, the cushioning material is omitted in this embodiment. Incidentally, by installing the cushioning material 10 between the parts as in FIG. 1, a uniform compressive force can be obtained. Furthermore, the seal structure is the same as in the previous embodiment.

第8図は第6図に相当する断面矢視図である。FIG. 8 is a cross-sectional view in the direction of the arrows corresponding to FIG. 6.

第7図に示した第2の実施例とは、外シュラウド5と外
断熱板9との組合せ構造が異なる他の実施例である。外
シュラウド5と外断熱板9は緩衝材を介在させずに重ね
合わせた構造であり、嵌合部のない単純な形状のため製
造が容易である。シール構造は第一の実施例と同様であ
る。
The second embodiment shown in FIG. 7 is another embodiment in which the combination structure of the outer shroud 5 and the outer heat insulating board 9 is different. The outer shroud 5 and the outer heat insulating board 9 have a structure in which they are stacked one on top of the other without intervening a cushioning material, and are easy to manufacture because of their simple shape without a fitting part. The seal structure is the same as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セラミック部品を断熱部材を介して金
属部品により保持したセラミック静翼において、金属部
品に侵入する熱量を低減できるため、従来の金属製翼に
比べて冷却空気量を大幅に少なく出来る。また、燃焼ガ
スのバイパス流を防止できるため、従来のセラミック静
翼に比べて流体性能の向上が図れる。この結果、ガスタ
ービンの効率向上の効果がある。さらに、セラミック部
品あるいは断熱部材の破損を防止し、セラミック静翼の
信頼性向上の効果がある。
According to the present invention, in a ceramic stator vane in which a ceramic part is held by a metal part via a heat insulating member, the amount of heat penetrating into the metal part can be reduced, so the amount of cooling air is significantly reduced compared to conventional metal blades. I can do it. Furthermore, since bypass flow of combustion gas can be prevented, fluid performance can be improved compared to conventional ceramic stator vanes. As a result, there is an effect of improving the efficiency of the gas turbine. Furthermore, damage to ceramic parts or heat insulating members is prevented, and the reliability of ceramic stator blades is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す縦断面概略図、第2
図は従来の静翼の縦断面概略図、第3図は静翼翼列の一
部を示す外観斜視図、第4図は第3図のA−A断面矢視
図、第5図は本発明の第一実施例のシール構造を示す翼
列一部分の外観斜視図、第6図(a)(b)は第5図の
B−B断面矢視図及びB’−B’断面矢視図、第7図は
本発明の第二の実施例を示す縦断面概略図、第8図は本
発明の第三の実施例を示す断面矢視図である。 1・・・セラミック部品(セラミックシェル)、2.3
・・・セラミック部品(内、外セラミックサイドウオー
ル)、4.5・・・内、外シュラウド、6・・・翼芯、
7・・・断熱部材、8,9・・・内、外断熱板、10・
・・緩衝材、17,18.19・・・シール板。
FIG. 1 is a schematic vertical cross-sectional view showing the first embodiment of the present invention, and FIG.
The figure is a schematic vertical cross-sectional view of a conventional stator blade, Figure 3 is an external perspective view showing a part of a stator blade row, Figure 4 is a cross-sectional view taken along line A-A in Figure 3, and Figure 5 is the invention according to the present invention. An external perspective view of a part of the blade row showing the seal structure of the first embodiment, FIG. FIG. 7 is a schematic vertical cross-sectional view showing a second embodiment of the present invention, and FIG. 8 is a cross-sectional view in the direction of arrows showing a third embodiment of the present invention. 1... Ceramic parts (ceramic shell), 2.3
... Ceramic parts (inner and outer ceramic side walls), 4.5... Inner and outer shrouds, 6... Wing core,
7... Heat insulation member, 8, 9... Inner and outer heat insulation board, 10.
...Cushioning material, 17,18.19...Seal plate.

Claims (1)

【特許請求の範囲】 1、燃焼ガス流路を形成するセラミック部材を断熱部材
を介して金属部材により保持する単位静翼が環状に配列
されて成るガスタービン用セラミック静翼において、隣
接する単位静翼間の対向壁部に燃焼ガスに対するシール
手段を設けたことを特徴とするセラミック静翼。 2、請求項1において、シール手段は、隣接する単位静
翼間の隙間を通って半径方向に流れる燃焼ガスが金属部
材側へ流れるのを防止する第1シールと、隣接する単位
静翼間の隙間を通って軸方向に流れる燃焼ガスが断熱部
材に向って流れるのを防止する第2シールとから成るセ
ラミック静翼。 3、請求項1又は2において、シール手段は通気性のな
い耐熱性の構造用セラミックス、繊維強化セラミックス
等の無機材料で形成されているセラミック静翼。 4、請求項1〜3のいずれかにおいて、断熱部材は翼芯
の両端部に設けられるものは通気性に乏しく且つ変形能
の少ない断熱部材と変形能に富み耐熱性の緩衝材とから
成るセラミック静翼。 5、請求項4において、緩衝材の代りに、翼芯を前記金
属部材に締結する付勢手段が設けられているセラミック
静翼。 6、請求項1〜5のいずれかにおいて、冷却空気が隣接
する単位静翼間の隙間を通ってセラミック部材に向って
流れるのを防止する空気シール手段が設けられているセ
ラミック静翼。
[Scope of Claims] 1. In a ceramic stator vane for a gas turbine in which unit stator vanes are arranged in an annular manner, in which a ceramic member forming a combustion gas flow path is held by a metal member via a heat insulating member, adjacent unit stator vanes are A ceramic stationary vane characterized in that a sealing means against combustion gas is provided on the opposing wall between the vanes. 2. In claim 1, the sealing means includes a first seal that prevents combustion gas flowing in the radial direction through the gap between adjacent unit stator blades from flowing toward the metal member, and a second seal that prevents combustion gases flowing axially through the gap from flowing toward the insulation member. 3. The ceramic stator vane according to claim 1 or 2, wherein the sealing means is made of an inorganic material such as non-porous heat-resistant structural ceramics or fiber-reinforced ceramics. 4. In any one of claims 1 to 3, the heat insulating member provided at both ends of the blade core is made of ceramic comprising a heat insulating member with poor air permeability and low deformability and a shock absorbing material with high deformability and heat resistance. Static wings. 5. The ceramic stationary blade according to claim 4, wherein instead of the buffer material, urging means for fastening the blade core to the metal member is provided. 6. A ceramic stator vane according to any one of claims 1 to 5, further comprising an air sealing means for preventing cooling air from flowing toward the ceramic member through the gap between adjacent unit stator vanes.
JP2332959A 1990-11-29 1990-11-29 Ceramic stationary blade Expired - Lifetime JP2984767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332959A JP2984767B2 (en) 1990-11-29 1990-11-29 Ceramic stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332959A JP2984767B2 (en) 1990-11-29 1990-11-29 Ceramic stationary blade

Publications (2)

Publication Number Publication Date
JPH04203302A true JPH04203302A (en) 1992-07-23
JP2984767B2 JP2984767B2 (en) 1999-11-29

Family

ID=18260727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332959A Expired - Lifetime JP2984767B2 (en) 1990-11-29 1990-11-29 Ceramic stationary blade

Country Status (1)

Country Link
JP (1) JP2984767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041003A (en) * 1999-07-16 2001-02-13 General Electric Co <Ge> Prestressed gas turbine nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041003A (en) * 1999-07-16 2001-02-13 General Electric Co <Ge> Prestressed gas turbine nozzle

Also Published As

Publication number Publication date
JP2984767B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP5033407B2 (en) Ceramic matrix composite nozzle structure
JP4212156B2 (en) Flexible cloth seal assembly
JP4139213B2 (en) Seal for the interface between the gas turbine nozzle and the shroud
JP3984101B2 (en) Mounting for turbomachine CMC combustion chamber with flexible coupling sleeve
US8210799B1 (en) Bi-metallic strip seal for a turbine shroud
US7234306B2 (en) Gas turbine combustion chamber made of CMC and supported in a metal casing by CMC linking members
JP4268800B2 (en) Auxiliary seal for string hinge seal in gas turbine
US6527274B2 (en) Turbine rotor-stator leaf seal and related method
US3314648A (en) Stator vane assembly
US5868553A (en) Exhaust gas turbine of an exhaust gas turbocharger
US5090866A (en) High temperature leading edge vane insert
JPH10103014A (en) Gas turbine shroud structure
JP2005299666A (en) Flexible seal assembly between gas turbine structural components and its mounting method
JP2007107524A (en) Assembly for controlling thermal stress in ceramic matrix composite article
JP4494658B2 (en) Gas turbine stationary blade shroud
JPH07217452A (en) Brush sealing device and balance piston device
JP2003035418A (en) Connecting part for two-part cmc combustion chamber
JP2000008879A (en) Cooling system for honeycomb packing in part applyed with high temperature gas of gas turbine
EP1132576B1 (en) Turbine shroud comprising an apparatus for minimizing thermal gradients and method for assembling a gas turbine engine including such a shroud
JP2981557B2 (en) Ceramic gas turbine
JP2003161106A (en) Cooling aperture diffuser of turbine shroud and related method thereof
JP2511618B2 (en) A vane liner with axially arranged heat shields
JPH11117707A (en) Double cross-sealing device for gas turbine stator blade
JPH11336506A (en) Seal divided surface joining structure of gas turbine
JP2010159756A (en) Split impeller configuration for synchronizing thermal response between turbine wheels

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12