JPH04203202A - Gas turbine moving blade - Google Patents

Gas turbine moving blade

Info

Publication number
JPH04203202A
JPH04203202A JP33254490A JP33254490A JPH04203202A JP H04203202 A JPH04203202 A JP H04203202A JP 33254490 A JP33254490 A JP 33254490A JP 33254490 A JP33254490 A JP 33254490A JP H04203202 A JPH04203202 A JP H04203202A
Authority
JP
Japan
Prior art keywords
sleeve
blade
tip
dividing
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33254490A
Other languages
Japanese (ja)
Inventor
Kenji Matsuura
松浦 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33254490A priority Critical patent/JPH04203202A/en
Publication of JPH04203202A publication Critical patent/JPH04203202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent breakage due to thermal stress of a sleeve by dividing the sleeve provided movable to a blade span direction between a blade tip part and a blade root part into a top end sleeve and an intermediate sleeve, and so forming respective parting faces that their sleeve lengths successively change to the direction of their thicknesses. CONSTITUTION:In the moving blade of a gas turbine, a sleeve 12 constituting a moving blade 4 is loosely fitted in an intermediate part 3 of the supporting member 2 of a blade main body 11 constituted having the supporting member 2, and it is made movable in a blade span direction between a blade tip part 6 and a blade root part 7 provided on the both ends of the intermediate part 3. A duct 8 is formed in an opening between the inner surface of the sleeve 12 and the intermediate part 3 of the supporting member 2. Here, the sleeve 12 is halved in a blade span direction, and constituted from a top end sleeve 13 that constitutes a blade top end side and an intermediate sleeve 14 that constitutes a part ranging from the intermediate part till a blade root side. Respective parting faces 15, 16 are formed over the entire circumference in an inclined face wherein its sleeve length from a sleeve inner surface side to an outer surface side changes in the direction of thickness, so that their facing surfaces become inverse shapes with each other.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、特に翼部の表面をセラミック材料で構成した
高温用のガスタービン動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention particularly relates to a high-temperature gas turbine rotor blade in which the surface of the blade portion is made of a ceramic material.

(従来の技術) 周知の通り、ガスタービンの用力効率を向上させるため
には、タービンの人口ガス温度、すなわちタービンに導
入する燃焼ガス温度をより高くすることか有効である。
(Prior Art) As is well known, in order to improve the utility efficiency of a gas turbine, it is effective to increase the artificial gas temperature of the turbine, that is, the temperature of the combustion gas introduced into the turbine.

そして、人口ガス温度の高温化に対し、直接高温にさら
される翼部の耐熱性を向上させることが行われている。
In response to the rise in artificial gas temperature, efforts are being made to improve the heat resistance of the wing portions that are directly exposed to high temperatures.

このような中に、耐熱性の高いセラミック材料を翼部の
構成材料として用いた高温用のガスタービン動翼がある
Among these, there is a high-temperature gas turbine rotor blade that uses a highly heat-resistant ceramic material as a constituent material of the blade portion.

以下、従来のセラミックを構成材料として用いたガスタ
ービン動翼について、図面を参照して説明する。
Hereinafter, a conventional gas turbine rotor blade using ceramic as a constituent material will be described with reference to the drawings.

第5図はガスタービンの動翼の縦断面の模式図であり、
第6図はスリーブの温度分布を示す特性図である。図に
おいて、]は翼本体であり、これは支持部材2と、この
支持部材2の中間部3に遊嵌されて実質的な翼部4を形
成するスリーブ5を有している。なお翼本体]は支持部
材2のルート部により、図示しないタービンの回転軸に
複数固着して翼列を構成し、運転時にはロータを高速に
回転させ、これにより翼スパン方向の大きな遠心力を受
ける。
FIG. 5 is a schematic diagram of a longitudinal section of a rotor blade of a gas turbine.
FIG. 6 is a characteristic diagram showing the temperature distribution of the sleeve. In the figure, ] is a wing body, which has a support member 2 and a sleeve 5 that is loosely fitted into the intermediate portion 3 of the support member 2 and forms a substantial wing portion 4 . A plurality of blade bodies] are fixed to the rotating shaft of a turbine (not shown) by the root part of the support member 2 to form a blade row, and during operation, the rotor rotates at high speed, thereby receiving a large centrifugal force in the blade span direction. .

また、支持部材2はNi基合金あるいはCo基合金等の
耐熱金属で形成され、この支持部材2の中間部3に遊嵌
され、高温度の燃焼ガスにさらされる翼部4を形成する
スリーブ5は、窒化けい素(S 13N4)あるいは炭
化けい素(S i C)等のセラミック材料でなり、略
等肉厚に形成されている。さらに支持部材2には翼形の
横断面を有する中間部3よりも大きな横断面形状の翼端
部6及び翼根部7が、中間部3の翼スパン方向の両端側
に形成されていて、翼端部6と翼根部7との間で、例え
ば40〜50mmの長さのスリーブ5が翼スパン方向に
、例えば1mm移動可能となるように外嵌されている。
The support member 2 is made of a heat-resistant metal such as a Ni-based alloy or a Co-based alloy, and a sleeve 5 is loosely fitted into the intermediate portion 3 of the support member 2 and forms a wing portion 4 exposed to high-temperature combustion gas. are made of a ceramic material such as silicon nitride (S 13N4) or silicon carbide (S i C), and are formed to have approximately the same thickness. Further, in the support member 2, a blade tip part 6 and a blade root part 7 having an airfoil-shaped cross section and a larger cross-sectional shape than the intermediate part 3 are formed on both end sides of the intermediate part 3 in the blade span direction. A sleeve 5 having a length of, for example, 40 to 50 mm is fitted between the end portion 6 and the blade root portion 7 so as to be movable, for example, by 1 mm in the blade span direction.

そしてスリーブ5の内面と支持部材2の中間部3との間
の間隙には冷却空気の流通路8が形成されており、この
流通路8には冷却空気を供給するための支持部材2に形
成された導入路9が開口している。また流通路8はスリ
ーブ5の翼端側の端面及び翼根側の端面と、これらに対
向する支持部材2の翼端部6及び翼根部7の各側面との
間に形成される排出路]0に連接しており、この排出路
10から冷却空気は翼本体]外に排出される。
A cooling air flow path 8 is formed in the gap between the inner surface of the sleeve 5 and the intermediate portion 3 of the support member 2, and a cooling air flow path 8 is formed in the support member 2 for supplying cooling air. The introduced passage 9 is open. In addition, the flow passage 8 is a discharge passage formed between the end face on the blade tip side and the end face on the blade root side of the sleeve 5, and each side surface of the blade tip 6 and the blade root 7 of the support member 2 facing these.] 0, and the cooling air is discharged to the outside of the blade body from this discharge passage 10.

なお導入路9には、翼本体]か植設される回転軸に設け
られた冷却空気の供給路を通じて、冷却空気が供給され
る。
Note that cooling air is supplied to the introduction path 9 through a cooling air supply path provided on a rotating shaft installed in the blade body.

上記の従来のガスタービン動翼では、導入路9を通じて
冷却空気を流通路8に供給し、スリーブ5を冷却しなが
ら運転される。なお流通路8に供給され冷却に供された
冷却空気は排出路10から排出される。この時、スリー
ブ5の端面と支持部材2の翼端部6及び翼根部7の側面
とで形成される排出路10は、スリーブ5が翼スパン方
向に移動可能なため、スリーブ5が回転によって生じる
遠心力で翼端側に押し付けられ、冷却空気がスリーブ5
の端面と支持部材2の翼端部6及び翼根部7の側面とで
形成される排出路10から排出される。すなわち、スリ
ーブ5支持部祠2の翼端部6のわずかな隙間を冷却空気
の圧力で冷却空気が排出されるようになっている。
The conventional gas turbine rotor blade described above is operated while cooling the sleeve 5 by supplying cooling air to the flow path 8 through the introduction path 9. Note that the cooling air supplied to the flow passage 8 and used for cooling is discharged from the discharge passage 10. At this time, since the sleeve 5 is movable in the blade span direction, the discharge path 10 formed by the end surface of the sleeve 5 and the side surfaces of the blade tip 6 and the blade root 7 of the support member 2 is created by rotation of the sleeve 5. The cooling air is pressed against the wing tip side by centrifugal force, and the cooling air flows into the sleeve 5.
and the side surfaces of the blade tip 6 and blade root 7 of the support member 2. In other words, the cooling air is discharged through a small gap between the blade tips 6 of the sleeve 5 support part 2 by the pressure of the cooling air.

運転時、翼部4には燃焼ガスか直接作用しており、スリ
ーブ5のスパン方向の温度分布は第6図に横軸に温度、
縦軸にスリーブ5の部位をとって例示する通りである。
During operation, combustion gas acts directly on the blade section 4, and the temperature distribution in the span direction of the sleeve 5 is shown in FIG.
This is illustrated with the portion of the sleeve 5 plotted on the vertical axis.

すなわち、スリーブ5の最高温度を示す部位は翼端側に
偏ったところにあり、冷却空気かjJP川路用0から排
出されるスリーブ5の翼端側の端面部や翼根側の端面部
で低い温度を示している。このためスリーブ5は、翼端
側の端面部から最高温度を示す部位までの温度勾配が大
きく、最高温度を示す部位から翼根側の端面部までの温
度勾配が小さくなっている。
In other words, the highest temperature of the sleeve 5 is biased toward the blade tip, and the temperature is lower at the end surface of the sleeve 5 on the blade tip side and the end surface on the blade root side, where cooling air is discharged from the jJP river channel 0. Shows temperature. For this reason, the sleeve 5 has a large temperature gradient from the end surface on the blade tip side to the portion exhibiting the highest temperature, and a small temperature gradient from the portion exhibiting the maximum temperature to the end surface portion on the blade root side.

このようにスリーブ5には翼端側の部位に大きな温度勾
配が生じているため、翼端側に端面部から中間部の最高
温度を示す部位の方向への引張力が熱応力として、温度
勾配か小さい翼根側の逆向きの熱応力よりも大きく作用
し、特に曲率の小さい前縁部や後縁部では大きく作用す
る。このため、運転中にスリーブ5が破損する虞かあり
、人ロガス温度の高温化や大1引力化に対しスリーブ5
の強度の面から信頼性の高い十分な対応が出来ず、ガス
タービンの運転条件に制限を加えなければならない状況
が生じたりする。
In this way, since a large temperature gradient occurs in the sleeve 5 at the blade tip side, the tensile force from the end surface area to the area showing the highest temperature in the intermediate area on the blade tip side acts as thermal stress, causing a temperature gradient. It acts more strongly than the opposite thermal stress on the blade root side, where the curvature is small, and it acts particularly strongly on the leading and trailing edges where the curvature is small. For this reason, there is a risk that the sleeve 5 may be damaged during operation, and the sleeve 5 may
Due to the strength of gas turbines, it is not possible to provide a reliable and sufficient measure, and a situation may arise where restrictions must be placed on the operating conditions of the gas turbine.

(発明が解決しようとする課題) 上記のような翼部を形成するスリーブに熱応力による問
題がある状況に鑑みて本発明はなされたもので、その目
的とするところは運転中にスリーブが破損する虞がなく
、入口ガス温度の高温化や大出力化に対しても強度の面
から十分に高い信頼性をもって対応することが出来るガ
スタービン動翼を提供することにある。
(Problems to be Solved by the Invention) The present invention was made in view of the above-mentioned situation where the sleeve forming the wing section has a problem due to thermal stress, and its purpose is to prevent the sleeve from being damaged during operation. It is an object of the present invention to provide a gas turbine rotor blade that can cope with high temperature inlet gas temperature and high output with sufficiently high reliability from the viewpoint of strength.

[発明の構成コ (課題を解決するための手段) 本発明のガスタービン動翼は、セラミック材料で形成さ
れたスリーブと、このスリーブを中間部に遊嵌した支持
部材とを設けた翼本体を備え、中間部の両端に形成した
翼端部と翼根部との間にスリーブを翼スパン方向に移動
可能となるように設けたものにおいて、スリーブは、少
なくとも先端スリーブと中間スリーブとに分割されたも
のであり、これらの先端スリーブ及び中間スリーブの各
分割面はスリーブ長さがその厚さ方向に連続的に変化す
るように形成された形状を成し、がっ各分割面は互いに
対向する面が逆形状を成すものであることを特徴とする
ものである。
[Configuration of the Invention (Means for Solving the Problems) The gas turbine rotor blade of the present invention includes a blade body including a sleeve formed of a ceramic material and a support member in which the sleeve is loosely fitted in the intermediate portion. A sleeve is provided between the wing tip and the wing root formed at both ends of the intermediate section so as to be movable in the wing span direction, and the sleeve is divided into at least a tip sleeve and an intermediate sleeve. The dividing surfaces of these tip sleeves and intermediate sleeves are shaped so that the length of the sleeve changes continuously in the thickness direction, and each dividing surface is a surface that faces each other. is characterized in that it has an inverted shape.

(作用) 上記のように構成されたカスタービン動翼は、翼部を形
成するセラミック材料のスリーブを温度勾配か大きくな
るような部位に分割位置をとって、少なくとも先端スリ
ーブと中間スリーブとに分割し、これらのスリーブの各
分割面を互いに対向する面か逆形状を成すようにし、か
つスリーブ長さが厚さ方向に連続的に変化するように構
成しているため、分割部分で先端スリーブと中間スリー
ブが互いに拘束されることなく自由に膨張1収縮できる
ものとなり、また分割したことによる両スリーブの位置
ずれを起こすことがない。そして運転中にスリーブが破
損する虞がなく、強度の面がらち十分に高い信頼性をも
ってガスタービンの入口ガス温度の高温化や大出力化に
対応することか出来る。
(Function) The cast turbine rotor blade configured as described above is divided into at least a tip sleeve and an intermediate sleeve by dividing the sleeve of ceramic material forming the blade portion into parts where the temperature gradient becomes large. However, since the divided surfaces of these sleeves are configured to face each other or have opposite shapes, and the length of the sleeve changes continuously in the thickness direction, there is no difference between the tip sleeve and the sleeve at the divided portion. The intermediate sleeves can freely expand and contract without being restrained by each other, and there is no possibility that the sleeves will be misaligned due to division. There is no risk that the sleeve will be damaged during operation, and in terms of strength, it is possible to respond to high temperature inlet gas temperatures and high output of the gas turbine with sufficiently high reliability.

(実施例) 以下、本発明の実施例を図面を参照して説明する。尚、
従来と同一部分は同一符号を付して説明を省略し、従来
と異なる本発明の構成について説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. still,
Components that are the same as those in the prior art are denoted by the same reference numerals and explanations are omitted, and the configuration of the present invention that is different from the prior art will be described.

先ず、第1の実施例を第1図及び第2図により説明する
First, a first embodiment will be explained with reference to FIGS. 1 and 2.

第1図はガスタービンの動翼の縦断面の模式図であり、
第2図はスリーブの斜視図である。図において、11は
従来例と同様に支持部材2を有して構成される翼本体で
ある。この翼本体11の支持部材2の中間部3には、翼
部4を構成する、例えば長さが40+nmのスリーブ1
2か遊嵌されていて、中間部3の両端に設けられた翼端
部6と翼根部7との間を翼スパン方向に1mmの範囲で
移動可能となるように設けられている。なお、スリーブ
12の内面と支持部材2の中間部3との間隙には流通路
8が形成され、またスリーブ12の翼端側の端面及び翼
根側の端面と、これらに対向する支持部材2の翼端部6
及び翼根部7の各側面との間に排出路10か形成されて
いる。
Figure 1 is a schematic diagram of a vertical cross section of a rotor blade of a gas turbine.
FIG. 2 is a perspective view of the sleeve. In the figure, reference numeral 11 denotes a wing body having a support member 2 as in the conventional example. At the intermediate portion 3 of the support member 2 of the wing body 11, a sleeve 1 having a length of 40+nm, for example, which constitutes the wing portion 4 is provided.
2 are loosely fitted, and are provided so as to be movable within a range of 1 mm in the blade span direction between a blade tip 6 and a blade root 7 provided at both ends of the intermediate portion 3. Note that a flow path 8 is formed in the gap between the inner surface of the sleeve 12 and the intermediate portion 3 of the support member 2, and a flow path 8 is formed in the gap between the inner surface of the sleeve 12 and the intermediate portion 3 of the support member 2. wing tip 6
A discharge passage 10 is formed between the blade root portion 7 and each side surface of the blade root portion 7.

また、スリーブ12は翼スパン方向に2分割されており
、翼先端側を構成する先端スリーブ13と、この先端ス
リーブ13と同じ翼形状の中間部から翼根側にかけての
部分を構成する中間スリーブ】4とで構成される。先端
スリーブ13と中間スリーブ14との分割位置は、第6
図で例示した運転中の温度分布の特性曲線で、温度勾配
が大きい翼端側の端面部から中間部分の最高温度を示す
部位の間の中間部にあって、各スリーブ13.14の変
形量が強度上許容される範囲内となるような位置にとっ
である。そして先端スリーブ13の分割面15は全周に
わたり、厚さ方向にスリーブ内面側から外面側にかけて
のスリーブ長さ、すなわちスパン方向の長さが直線的に
減少するように傾斜した面の形状となっている。これに
対し中間スリーブ14の分割面16は全周にわたり、厚
さ方向にスリーブ内面側から外面側にかけてのスリーブ
長さが先端スリーブ13一  8 − とは逆に、直線的に増加するように傾斜した面の形状と
なっている。なお、先端スリーブ13の分割面15と中
間スリーブ14の分割面16の傾斜した面形状は、それ
ぞれの分割面]、5. ]、6を合わせて先端スリーブ
13と中間スリーブ14とで一体のスリーブ12を構成
するようにしたとき対向面が一致するよう互いに逆形状
に形成されている。
Furthermore, the sleeve 12 is divided into two parts in the blade span direction, with a tip sleeve 13 forming the blade tip side and an intermediate sleeve forming the part from the middle part to the blade root side of the same blade shape as this tip sleeve 13.] It consists of 4. The division position between the tip sleeve 13 and the intermediate sleeve 14 is the sixth
In the characteristic curve of the temperature distribution during operation illustrated in the figure, the amount of deformation of each sleeve 13, 14 is in the intermediate part between the end face part on the blade tip side where the temperature gradient is large and the part showing the highest temperature in the middle part. It should be placed in a position where the strength is within the allowable range. The dividing surface 15 of the tip sleeve 13 has an inclined surface shape over the entire circumference so that the length of the sleeve from the inner surface to the outer surface of the sleeve in the thickness direction, that is, the length in the span direction, decreases linearly. ing. On the other hand, the dividing surface 16 of the intermediate sleeve 14 is inclined so that the length of the sleeve from the inner surface to the outer surface increases linearly in the thickness direction, contrary to the tip sleeve 13. It has a curved surface shape. Note that the sloped surface shapes of the dividing surface 15 of the distal sleeve 13 and the dividing surface 16 of the intermediate sleeve 14 are the respective dividing surfaces], 5. ], 6 are formed in opposite shapes to each other so that when the distal end sleeve 13 and the intermediate sleeve 14 constitute an integral sleeve 12, the opposing surfaces coincide with each other.

」二紀の構成の本実施例では、ガスタービンの運転時に
、導入路9を通じて冷却空気を流通路8に供給してスリ
ーブ12、すなイっち先端スリーブ13と中間スリーブ
】4とか冷却されながら運転される。
In this embodiment, which has a secondary configuration, during operation of the gas turbine, cooling air is supplied to the flow passage 8 through the introduction passage 9 to cool the sleeve 12, that is, the tip sleeve 13 and the intermediate sleeve 4. being driven while

この時、スリーブ12は従来例と同様に遠心力で翼端側
に押付けられ、冷却空気がスリーブj2と支持部材2の
隙間から排出される状態となっている。
At this time, the sleeve 12 is pressed against the blade tip side by centrifugal force as in the conventional example, and cooling air is discharged from the gap between the sleeve j2 and the support member 2.

またスリーブ12は先端スリーブ13と中間スリーブ1
4とに分割され、支持部材2に遊嵌されているゆえに、
両スリーブ13□14相互の間で位置ずれを生じること
か考えられるか、各分割面1.5.113の形状か全周
にわたってスリーブの厚さ方向に直線的に変化した傾斜
面で有って、遠心力によって分割面−] O− 16か分割面15に押し付けられることより、両スリー
ブ1.3. ]4相互の位置ずれは生じることかない。
In addition, the sleeve 12 includes a tip sleeve 13 and an intermediate sleeve 1.
Since it is divided into 4 and loosely fitted to the support member 2,
Is it possible that a positional shift occurs between both sleeves 13□14?The shape of each dividing surface 1.5.113 is an inclined surface that changes linearly in the thickness direction of the sleeve over the entire circumference. , both sleeves 1.3. are pressed against the dividing surface 15 by centrifugal force. ]4 Mutual positional deviation will not occur.

このため運転中においてスリーブ12は所定の翼形状を
維持することができる。
Therefore, the sleeve 12 can maintain a predetermined wing shape during operation.

そして、スリーブ12か先端スリーブ13と中間スリー
ブJ4とに分割されていることから各分割面15゜16
において滑りを生じることができる。このため分割した
各スリーブ13.14の翼スパン方向の温度勾配に依存
した変形か各スリーブ13.1.4の拘束なしに自由に
膨張、収縮できる。それゆえ、各スリーブ13.1.4
の拘束かなくなり熱応力が大ぎく作用することかない。
Since the sleeve 12 is divided into the distal end sleeve 13 and the intermediate sleeve J4, each dividing surface is 15° and 16°.
Slippage can occur at Therefore, each divided sleeve 13.14 can be deformed depending on the temperature gradient in the blade span direction, and can freely expand and contract without being constrained by each sleeve 13.1.4. Therefore, each sleeve 13.1.4
The thermal stress does not act too strongly.

上記のように、先端スリーブ13と中間スリーブ14と
は運転中の温度が異なるため熱膨張の状況も異なり、よ
り高温度となる中間スリーブ14では翼形の横断面形状
が大きくなる方向に変形し、また翼スパン方向に伸長す
るように変形する。これにより運転停止時の先端スリー
ブ13と中間スリーブ14の翼形状が同形状の場合は、
運転時には分割面15と分割面]6の接触する位置は厚
さ方向にずれた位置になり、分割面16での中間スリー
ブ14の内面側の角部か分割面15を、また分割面15
での先端スリーブ13の外面側の角部が分割面16を遠
心力で押圧し、大きな応力集中が起こることが考えられ
るが、分割面16と中間スリーブ14の内面とで成す角
が鈍角で有り、また分割面15と先端スリーブ13の外
面とで成す角が鈍角で有り、これらの角部による応力集
中は大きなものではない。なお、高温となる中間スリー
ブ14の翼スパン方向の伸びは、翼スパン方向に移動可
能に設けられているために拘束を受けない。
As mentioned above, the tip sleeve 13 and the intermediate sleeve 14 have different temperatures during operation, so the thermal expansion conditions are also different, and the intermediate sleeve 14, which has a higher temperature, deforms in the direction of increasing the cross-sectional shape of the airfoil. , and also deforms to elongate in the wing span direction. As a result, if the blade shapes of the tip sleeve 13 and the intermediate sleeve 14 are the same when the operation is stopped,
During operation, the contact position between the dividing surface 15 and the dividing surface 6 is shifted in the thickness direction, so that the dividing surface 15 is in contact with the inner corner of the intermediate sleeve 14 at the dividing surface 16, or the dividing surface 15 is in contact with the dividing surface 15.
It is conceivable that the outer corner of the tip sleeve 13 presses the dividing surface 16 with centrifugal force and a large stress concentration occurs, but the angle formed by the dividing surface 16 and the inner surface of the intermediate sleeve 14 is an obtuse angle. Moreover, the angle formed by the dividing surface 15 and the outer surface of the tip sleeve 13 is an obtuse angle, and stress concentration at these corners is not large. Note that the expansion of the intermediate sleeve 14 in the blade span direction, which becomes hot, is not restricted because it is provided movably in the blade span direction.

このように本実施例によれば、翼部4を形成するスリー
ブ12を分割したものとしても、分割した両スリーブ1
.3.14の間で位置ずれを生じることがなく所望の翼
形状を得ることができ、熱膨張や遠心力による大きな応
力集中が生じる虞もなく、応力集中による破損も起きな
い。そして、スリーブ12の翼端側の部位に大きな温度
勾配が生じることかなく、曲率の小さい前縁部や後縁部
でも熱応力か大きく作用することがない。
In this way, according to this embodiment, even if the sleeve 12 forming the wing section 4 is divided, both the divided sleeves 1
.. A desired blade shape can be obtained without positional deviation between 3 and 14, there is no risk of large stress concentration due to thermal expansion or centrifugal force, and no damage will occur due to stress concentration. Further, a large temperature gradient does not occur in the blade tip side portion of the sleeve 12, and thermal stress does not act to a large extent even in the leading edge and trailing edge having a small curvature.

このため、運転中にスリーブ】2が破損する虞がなくな
り、入口ガス温度の高温化や大出力化に対しスリーブ1
2の強度の面での信頼性が高いものとなって、ガスター
ビンの運転条件に制限を加える必要もなくなる。
For this reason, there is no risk that sleeve 2 will be damaged during operation, and sleeve
2, the reliability is high in terms of strength, and there is no need to impose restrictions on the operating conditions of the gas turbine.

次に、第2の実施例を第3図により説明する。Next, a second embodiment will be explained with reference to FIG.

第3図はスリーブの部分縦断面図であり、図において、
]8は第1の実施例と同様に翼部を形成するセラミック
材料で形成され、翼スパン方向に2分割されたスリーブ
で、翼先端側を構成する先端スリーブ19と、この先端
スリーブ19と同じ翼形状の中間部から翼根側にかけて
の部分を構成する中間スリーブ20とで構成される。先
端スリーブ19と中間スリーブ20との分割位置は、第
1の実施例と同様に温度勾配が大きい翼端側の端面部か
ら中間部分の最高温度を示す部位の間の中間部にとっで
ある。そして先端スリーブ19の分割面21は全周にわ
たり、厚さ方向にスリーブ内面側から外面側にかけての
スリーブ長さが曲線的に連続増加するように傾斜した曲
面で、かつ端部が内、外面との成 1B − す角が略直角となるような形状となっている。これに対
し中間スリーブ20の分割面22は全周にわたり、厚さ
方向にスリーブ内面側から外面側にかけてのスリーブ長
さが先端スリーブ19とは逆に、曲線的に連続減少する
ように傾斜した曲面で、かつ端部が内、外面との成す角
が略直角となるような形状となっている。なお、先端ス
リーブ19の分割面21と中間スリーブ20の分割面2
2の面形状は、それぞれの分割面21.22を合わせて
先端スリーブ19と中間スリーブ20とで一体のスリー
ブ18を構成するようにしたとき対向面が一致するよう
互いに逆形状に形成されいる。
FIG. 3 is a partial vertical sectional view of the sleeve, and in the figure,
] 8 is a sleeve made of a ceramic material that forms the wing part as in the first embodiment, and is divided into two in the wing span direction, including a tip sleeve 19 that makes up the tip side of the wing, and a sleeve that is the same as this tip sleeve 19. It is composed of an intermediate sleeve 20 that constitutes a portion from the middle part of the blade shape to the blade root side. The dividing position of the tip sleeve 19 and the intermediate sleeve 20 is set at the intermediate portion between the end surface portion on the blade tip side where the temperature gradient is large and the portion exhibiting the highest temperature in the intermediate portion, as in the first embodiment. The dividing surface 21 of the tip sleeve 19 is a curved surface that is inclined so that the length of the sleeve increases continuously in a curved manner from the inner surface to the outer surface in the thickness direction over the entire circumference, and the ends are the inner and outer surfaces. 1B - The shape is such that the angles formed are approximately right angles. On the other hand, the dividing surface 22 of the intermediate sleeve 20 is a curved surface that is inclined so that the length of the sleeve from the inner surface to the outer surface in the thickness direction continuously decreases in a curved manner, contrary to the tip sleeve 19. The end portion is shaped so that the angle formed by the inner and outer surfaces is approximately a right angle. Note that the dividing surface 21 of the tip sleeve 19 and the dividing surface 2 of the intermediate sleeve 20
The shapes of the two surfaces are opposite to each other so that when the distal end sleeve 19 and the intermediate sleeve 20 constitute an integral sleeve 18 by combining the dividing surfaces 21 and 22, the opposing surfaces coincide with each other.

上記の構成の本実施例でも、第1の実施例と同様の作用
、効果が得られるものである。
This embodiment with the above configuration also provides the same functions and effects as the first embodiment.

更に、第3の実施例を第4図により説明する。Furthermore, a third embodiment will be explained with reference to FIG.

第4図はスリーブの部分縦断面図であり、図において、
25は第1の実施例と同様に翼部を形成するセラミック
材料で形成され、翼端側の端面部と最高温度を示す部位
との中間部に分割位置をとり翼スパン方向に2分割され
たスリーブである。このスリーブ25は翼先端側を構成
する先端スリーブ26と中間部から翼根側にかけての部
分を構成する中間スリーブ27とで構成され、中間スリ
ーブ27は運転時に先端スリーブ26と同じ翼形状とな
るよう熱膨張を見込んだ小さな翼形状に形成されている
FIG. 4 is a partial vertical sectional view of the sleeve, and in the figure,
25 is made of a ceramic material that forms the wing section as in the first embodiment, and is divided into two parts in the span direction with a dividing position located midway between the end surface section on the wing tip side and the area exhibiting the highest temperature. It's a sleeve. This sleeve 25 is composed of a tip sleeve 26 that makes up the blade tip side and an intermediate sleeve 27 that makes up the part from the middle part to the blade root side.The intermediate sleeve 27 is designed to have the same blade shape as the tip sleeve 26 during operation. It is formed into a small wing shape that allows for thermal expansion.

そして先端スリーブ26の分割面28は全周にわたり、
厚さ方向にスリーブ内面側から外面側にかけてのスリー
ブ長さが直線的に増加するように傾斜した面の形状とな
っている。これに対し中間スリーブ27の分割面29は
全周にわたり、厚さ方向にスリーブ内面側から外面側に
かけてのスリーブ長さが先端スリーブ26とは逆に、直
線的に減少するように傾斜した面の形状となっている。
The dividing surface 28 of the tip sleeve 26 extends over the entire circumference.
The surface is inclined so that the length of the sleeve increases linearly from the inner surface to the outer surface in the thickness direction. On the other hand, the dividing surface 29 of the intermediate sleeve 27 is an inclined surface extending over the entire circumference such that the length of the sleeve from the inner surface to the outer surface in the thickness direction decreases linearly, contrary to the tip sleeve 26. It has a shape.

なお、先端スリーブ26の分割面28と中間スリーブ2
7の分割面29の面形状は、それぞれの分割面28.2
9を合イっせたとき対向面が一致するよう互いに逆形状
に形成されている。
Note that the dividing surface 28 of the tip sleeve 26 and the intermediate sleeve 2
The surface shape of the dividing surface 29 of No. 7 is the same as that of each dividing surface 28.2.
9 are formed in opposite shapes to each other so that when they are aligned, the opposing surfaces coincide with each other.

上記の構成の本実施例では、運転中、先端スリーブ26
より高温度となる中間スリーブ27は、翼形状か大きく
なって先端スリーブ26と同じ形状となる。このため両
分割面28.29での遠心力による応力集中は起きない
。また運転の立ち上げ時においては分割面28と分割面
29の接触する位置が厚さ方向にずれた位置になり、分
割面29での中間スリーブ27の外面側の角部が分割面
28を、また分割面28での先端スリーブ26の内面側
の角部が分割面29を遠心力で押圧するが、回転数か低
く、角部の成す角が鈍角であるために大きな応力集中は
起きない。
In this embodiment with the above configuration, during operation, the tip sleeve 26
The intermediate sleeve 27, which has a higher temperature, becomes larger in the shape of a wing and has the same shape as the tip sleeve 26. Therefore, stress concentration due to centrifugal force does not occur at both dividing surfaces 28 and 29. Further, at the time of starting up the operation, the contact position between the dividing surface 28 and the dividing surface 29 is shifted in the thickness direction, and the outer corner of the intermediate sleeve 27 at the dividing surface 29 touches the dividing surface 28. Further, the inner corner of the tip sleeve 26 at the dividing surface 28 presses the dividing surface 29 by centrifugal force, but since the rotation speed is low and the angle formed by the corner is obtuse, no large stress concentration occurs.

そして本実施例でも、第1の実施例と同様の作用、効果
が得られるものである。
Also in this embodiment, the same functions and effects as in the first embodiment can be obtained.

尚、本発明は上記の実施例のみに限定されるものではな
くい。つまり、スリーブの分割数は3つ以上に分割して
もよく、また、全周にわたって傾斜した分割面を設ける
必要もなく、また全周にわたって同じ形状の分割面であ
る必要もなく、さらに分割面と内、外面との成す角の大
きさは鈍角であることが望ましいが、傾斜方向と共に強
度的に許容される範囲で設定すればよい等、要旨を逸脱
しない範囲内で適宜変更して実施し得るものである。
Note that the present invention is not limited to the above embodiments. In other words, the number of divisions of the sleeve may be three or more, there is no need to provide an inclined division surface all around the circumference, there is no need for the division surface to have the same shape all around the circumference, and the division surface The size of the angle formed by the inner and outer surfaces is preferably an obtuse angle, but it may be set within the strength-permissible range along with the direction of inclination. It's something you get.

[発明の効果コ 以上の説明から明らかなように本発明は、スリーブを少
なくとも先端スリーブと中間スリーブとに分割し、これ
らのスリーブの各分割面をスリーブ長さか厚さ方向に連
続的に変化するように成し、かつ互いに対向する面か逆
形状を成すように構成としたことにより、次のような効
果か得られる。即ちセラミック材料により形成してもス
リーブか運転中に破損する虞かなく、より高速な回転や
ロータをより大形のものとすることが可能であり、また
ガスタービンの入口ガス温度の高温化や大出力化に対し
ても強度の面から十分に高い信頼性をもって対応するこ
とが出来る。
[Effects of the Invention] As is clear from the above description, the present invention divides the sleeve into at least a distal end sleeve and an intermediate sleeve, and changes the dividing plane of each of these sleeves continuously in the sleeve length or thickness direction. By constructing them in this manner and configuring the surfaces facing each other to have opposite shapes, the following effects can be obtained. In other words, even if the sleeve is made of ceramic material, there is no risk of damage to the sleeve during operation, it is possible to rotate at higher speeds, the rotor can be made larger, and it is also possible to increase the temperature of the gas at the inlet of the gas turbine. It can handle increased output with sufficiently high reliability in terms of strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す縦断面の模式図、
第2図は第1図におけるスリーブの斜視図、第3図は第
2の実施例のスリーブの部分縦断面図、第4図は第3の
実施例のスリーブの部分縦断面図、第5図は従来例を示
す縦断面の模式図、第6図はスリーブの温度分布を示す
特性図である。 2・・・支持部材、    3・中間部、6・翼端部、
     7・・・翼根部、11・・翼本体、12・・
・スリーブ、13・・先端スリーブ、   14・・・
中間スリーブ、1、.5 、 i、 6・・分割面。 代理人  弁理士  大 胡 典 夫 −へ   −<l ■ ×      円   ω ■ ビ トIj−)C
D   寸
FIG. 1 is a schematic longitudinal cross-sectional view showing a first embodiment of the present invention;
2 is a perspective view of the sleeve in FIG. 1, FIG. 3 is a partial vertical sectional view of the sleeve of the second embodiment, FIG. 4 is a partial vertical sectional view of the sleeve of the third embodiment, and FIG. 5 6 is a schematic longitudinal cross-sectional view showing a conventional example, and FIG. 6 is a characteristic diagram showing the temperature distribution of the sleeve. 2... Supporting member, 3. Intermediate portion, 6. Wing tip portion,
7... Wing root, 11... Wing body, 12...
・Sleeve, 13...Tip sleeve, 14...
Intermediate sleeve, 1, . 5, i, 6... Division plane. Agent Patent Attorney Norihiro Ogo −<l ■ × Yen ω ■ Bit Ij−)C
D size

Claims (1)

【特許請求の範囲】[Claims] セラミック材料で形成されたスリーブと、このスリーブ
を中間部に遊嵌した支持部材とを設けた翼本体を備え、
前記中間部の両端に形成した翼端部と翼根部との間に前
記スリーブを翼スパン方向に移動可能となるように設け
たものにおいて、前記スリーブは、少なくとも先端スリ
ーブと中間スリーブとに分割されたものであり、これら
の先端スリーブ及び中間スリーブの各分割面はスリーブ
長さがその厚さ方向に連続的に変化するように形成され
た形状を成し、かつ各分割面は互いに対向する面が逆形
状を成すものであることを特徴とするガスタービン動翼
The blade body includes a sleeve made of a ceramic material and a support member in which the sleeve is loosely fitted in the middle part,
The sleeve is provided between a wing tip portion and a wing root portion formed at both ends of the intermediate portion so as to be movable in the wing span direction, wherein the sleeve is divided into at least a tip sleeve and an intermediate sleeve. The dividing surfaces of the tip sleeve and the intermediate sleeve are shaped so that the length of the sleeve changes continuously in the thickness direction, and each dividing surface is a surface that faces each other. A gas turbine rotor blade characterized in that the blades have an inverted shape.
JP33254490A 1990-11-29 1990-11-29 Gas turbine moving blade Pending JPH04203202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33254490A JPH04203202A (en) 1990-11-29 1990-11-29 Gas turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33254490A JPH04203202A (en) 1990-11-29 1990-11-29 Gas turbine moving blade

Publications (1)

Publication Number Publication Date
JPH04203202A true JPH04203202A (en) 1992-07-23

Family

ID=18256106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33254490A Pending JPH04203202A (en) 1990-11-29 1990-11-29 Gas turbine moving blade

Country Status (1)

Country Link
JP (1) JPH04203202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169843A (en) * 2007-01-11 2008-07-24 General Electric Co <Ge> Gas turbine blade device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169843A (en) * 2007-01-11 2008-07-24 General Electric Co <Ge> Gas turbine blade device

Similar Documents

Publication Publication Date Title
US4741667A (en) Stator vane
EP3436668B1 (en) Turbine airfoil with turbulating feature on a cold wall
US6398489B1 (en) Airfoil shape for a turbine nozzle
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
US3966357A (en) Blade baffle damper
US8245519B1 (en) Laser shaped film cooling hole
US6709233B2 (en) Aerofoil for an axial flow turbomachine
JP7237441B2 (en) System for Cooling Seal Rails of Turbine Blade Tip Shrouds
JP4311919B2 (en) Turbine airfoils for gas turbine engines
EP3088675B1 (en) Rotor blade and corresponding gas turbine
US9022737B2 (en) Airfoil including trench with contoured surface
US10619491B2 (en) Turbine airfoil with trailing edge cooling circuit
US20050129515A1 (en) Airfoil cooling holes
EP3184743B1 (en) Turbine airfoil with trailing edge cooling circuit
KR20020083498A (en) A turbine blade having a cooled tip shroud
EP3734015A1 (en) Airfoil and corresponding gas turbine engine
JP2017125501A (en) Gas turbine blade and manufacturing method
JP2017160905A (en) System and method for cooling leading edge and/or trailing edge of hot gas flow path component
EP3690190B1 (en) Gas turbine engine components having interlaced trip strip arrays
JPH04203202A (en) Gas turbine moving blade
JP5770970B2 (en) Turbine nozzle for gas turbine engine
JP2019031973A (en) Engine component with uneven chevron pin
JPH0223683B2 (en)
WO2019035800A1 (en) Turbine blades
US20210301668A1 (en) Gas turbine engine components having interlaced trip strip arrays