JPH04202806A - Method and spinneret for preparing sheath-core conjugate fiber - Google Patents

Method and spinneret for preparing sheath-core conjugate fiber

Info

Publication number
JPH04202806A
JPH04202806A JP32584190A JP32584190A JPH04202806A JP H04202806 A JPH04202806 A JP H04202806A JP 32584190 A JP32584190 A JP 32584190A JP 32584190 A JP32584190 A JP 32584190A JP H04202806 A JPH04202806 A JP H04202806A
Authority
JP
Japan
Prior art keywords
core
sheath
spinneret
sheath type
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32584190A
Other languages
Japanese (ja)
Other versions
JP2540384B2 (en
Inventor
Eiji Akiba
英治 秋庭
Takashi Ito
隆 伊東
Eiichi Sasagawa
笹川 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2325841A priority Critical patent/JP2540384B2/en
Publication of JPH04202806A publication Critical patent/JPH04202806A/en
Application granted granted Critical
Publication of JP2540384B2 publication Critical patent/JP2540384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To prepare the subject conjugate fiber having a high strength and free from the ununiform thickness and eccentricity of a sheath component by joining plural melted polymer flows into a sheath-core type flow, and subsequently melt-spinning the melted polymer flow through a conical passageway tapered from the inlet toward the spinning opening. CONSTITUTION:When two or more kinds of melted polymer flows are joined into a sheath-core type flow to prepare a sheath-core type conjugate fiber, polyethylene terephthalate, etc., as a core polymer A and polyethylene, etc., as a sheath polymer B are melted, joined to each other through the distribution plates 1,2 of a spinneret, and melt-spun through a spinneret 3 having a conical counter bore 4 tapered from the inlet toward the spinning opening 6 or a place near the spinning opening 6 to provide the objective sheath-core type conjugate fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、芯鞘型複合繊維の製造方法、ならびにその際
に使用する口金板および口金装置に関する。詳細には、
鞘部分の厚みが均一で、特に同心円型複合繊維の場合は
偏芯のない芯鞘型複合繊維の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a core-sheath composite fiber, and a cap plate and a cap device used therein. For details,
The present invention relates to the production of core-sheath type composite fibers in which the thickness of the sheath portion is uniform, and in particular, in the case of concentric circular type composite fibers, there is no eccentricity.

[従来の技術] 近年、2種以上の重合体を芯鞘型に配置した芯鞘型複合
繊維が数多く開発、製造されており、このような芯鞘型
複合繊維は、単一の重合体から製造された繊維の持たな
い種々の優れた特性を備えている。例えば、高融点のポ
リプロピロピレンまたはポリエチレンテレフタレートを
君側成分とし低融点のポリエチレンを鞘側成分とした芯
鞘型複合繊維を使用すると、鞘側(外側)の低融点ポリ
エチレンが繊維同士を容易に熱融着させることができ且
つ芯鋼の高融点ポリプロピレンまたはポリエチレンテレ
フタレートの強度が大きいことにより、高強度の不織布
を熱融着法によって容易に製造することができる。
[Prior art] In recent years, many core-sheath type composite fibers in which two or more types of polymers are arranged in a core-sheath type have been developed and manufactured. It has various excellent properties that other manufactured fibers do not have. For example, when using a core-sheath type composite fiber with high melting point polypropylene or polyethylene terephthalate as the main component and low melting point polyethylene as the sheath component, the low melting point polyethylene on the sheath side (outside) easily heats the fibers together. Since it can be fused and the strength of the high melting point polypropylene or polyethylene terephthalate core steel is high, a high strength nonwoven fabric can be easily produced by a heat fusion method.

芯鞘型複合繊維の製造技術について、重合体Aからなる
君側成分と重合体Bからなる鞘側成分との同心円状芯鞘
型複合繊維を例に挙げて説明すると、従来は例えば第1
図に示すような口金装置を使用して溶融紡糸することに
より製造されている。そこでは分配板1を通過した2種
の溶融重合体流AおよびBを分配板2で同心円状にし、
同心円状を保ったまま口金板3に設けられた入口から絞
り部5の前面まで同じ内径を有する筒状のカウンターボ
ア4を通って、絞り部5で絞り込まれて紡糸口6より紡
出されて芯鞘型複合繊維が製造されている。
Regarding the manufacturing technology of core-sheath type conjugate fibers, we will explain it by taking as an example a concentric core-sheath type conjugate fiber with a main component made of polymer A and a sheath component made of polymer B.
It is manufactured by melt spinning using a spinneret as shown in the figure. There, two types of molten polymer streams A and B that passed through the distribution plate 1 are made into concentric circles by the distribution plate 2,
While maintaining a concentric circular shape, the yarn passes through a cylindrical counterbore 4 having the same inner diameter from the inlet provided in the spinneret plate 3 to the front surface of the throttle part 5, is narrowed in the throttle part 5, and is spun out from the spinneret 6. Core-sheath type composite fibers are manufactured.

ところで、芯鞘型複合繊維においては、複数の重合体間
の溶融粘度差、重合体流が合流する地点での各重合体流
の圧力バランス等が鞘部分の厚さの不均一、偏芯、単繊
維間のデニールのばらつき等に大きな影響を及ぼすこと
が知られているが、カウンターボアの内径がその入口か
ら絞り部前面まで等しい筒状構造となっている第1図に
示したような従来の口金装置を使用した場合には、閉側
成分の厚み斑が生じ易く、また同心円型複合繊維にあっ
ては偏芯を生ずるという欠点があった。
By the way, in core-sheath type composite fibers, differences in melt viscosity between multiple polymers, pressure balance of each polymer flow at the point where the polymer flows merge, etc. may cause uneven thickness of the sheath portion, eccentricity, It is known that this has a large effect on the variation in denier between single fibers, but the conventional method shown in Fig. 1 has a cylindrical structure in which the inner diameter of the counterbore is equal from the entrance to the front of the constriction part. When using the cap device, the thickness of the closed side component tends to be uneven, and concentric composite fibers have the disadvantage of causing eccentricity.

芯鞘型複合繊維における閉側成分の厚み斑および偏芯は
、閉側成分の損傷、剥離、脱落、および君側成分の露出
を引き起こし易く、芯鞘型複合繊維が本来有しているは
ずの特性を示さないことが多い。更に、閉側成分の厚み
斑や偏芯は、紡糸工程や最終製品に至る種々の製造工程
や加工工程において、閉側成分の脱落によるヒータ、ロ
ーラ等の機器の汚れ、およびその他各種のトラブルを生
じ易く、重大な工程通過性不良問題を引き起こしている
Thickness unevenness and eccentricity of the closed side component in core-sheath type composite fibers tend to cause damage, peeling, and falling off of the closed side component, and exposure of the outer side component. often exhibits no characteristics. Furthermore, uneven thickness and eccentricity of the closed-side component can cause contamination of equipment such as heaters and rollers due to falling of the closed-side component, and various other troubles during various manufacturing and processing processes from the spinning process to the final product. This easily occurs and causes serious process passability problems.

し発明が解決しようとする課題] 本発明の目的は、芯鞘型複合繊維における上記した欠点
のない、閉側成分の厚み斑かなく、しかも同心円型複合
繊維にあっては偏芯のない芯鞘型複合繊維を安定して製
造できる方法および装置を提供することである。
[Problems to be Solved by the Invention] The object of the present invention is to provide a core that is free from the above-mentioned drawbacks in core-sheath type composite fibers, has no uneven thickness of the closed side component, and has no eccentricity in concentric type composite fibers. An object of the present invention is to provide a method and an apparatus that can stably produce sheath-type composite fibers.

[課題を解決するための手段] 本発明者らが上記目的を達成するために研究を続けてき
た結果、芯鞘型複合繊維製造用の口金装置において、そ
の口金板のカウンターボアの内径を入口から絞り部また
は入口から紡糸口まで同じにせずに、入口から絞り部ま
たは紡糸口に向かって徐々に細くなる錐状の形状として
芯鞘型複合繊維の溶融紡糸を行うと上記目的を達成でき
ることを見出した。
[Means for Solving the Problems] As a result of continuous research by the present inventors to achieve the above object, in a die device for manufacturing core-sheath type composite fibers, the inner diameter of the counterbore of the die plate is It has been found that the above objective can be achieved by melt spinning a core-sheath type composite fiber in a conical shape that gradually becomes thinner from the inlet to the constriction part or the spinneret, instead of being uniform from the constriction part or inlet to the spinneret. I found it.

したがって、本発明は、2種以上の溶融重合体流を芯鞘
型に合流させて溶融紡糸する芯鞘型複合繊維の製造方法
において、合流した溶融重合体流を入口から紡糸口また
は紡糸口近傍に向かって細くなってゆく錐状の通路を通
して溶融紡糸することを特徴とする芯鞘型複合繊維の製
造方法である。
Therefore, the present invention provides a method for producing a core-sheath type composite fiber in which two or more types of molten polymer streams are merged into a core-sheath type and melt-spun, in which the merged molten polymer streams are passed from an inlet to a spinneret or a vicinity of the spinneret. This is a method for producing core-sheath type composite fibers, which is characterized by performing melt spinning through a conical passage that becomes narrower towards the end.

更に、本発明は、入口から紡糸口または紡糸口近傍に向
かって細くなってゆく錐状のカウンターボアを有する芯
鞘型複合繊維製造用の口金板、および該口金板を備えて
いる芯鞘型複合繊維製造用口金装置を包含する。
Furthermore, the present invention provides a spindle plate for producing a core-sheath type composite fiber having a conical counterbore that tapers from an inlet toward a spinneret or the vicinity of the spinneret, and a core-sheath type composite fiber comprising the spinneret plate. Includes a die device for manufacturing composite fibers.

そして、上記本発明において錐状の通路を設ける場所(
錐状通路の終点)を、「紡糸口または紡糸口近傍に向か
って」としているが、これは錐状通路の終点が口金板の
紡糸口(吐出口)であっても、紡糸口の少し上流側に設
けるいわゆる絞り部の上流側前面であっても、またはそ
れより更に多少上流側であってもよいことを意味する。
In the present invention, the location where the conical passage is provided (
Although the end point of the conical passage is ``toward the spinneret or the vicinity of the spinneret'', this means that even if the end point of the conical passage is the spinneret (discharge port) of the spinneret plate, it is slightly upstream of the spinneret. This means that it may be at the front surface on the upstream side of a so-called constriction section provided on the side, or it may be further upstream to some extent.

更に、本発明における「錐状」とは、典型的には円錐状
をいうが、それ以外にも角錐状、例えば三角錐状、四角
錐状、五角錐状以上の多角錐状をいう。一般には円錐状
が望ましい。
Further, the term "pyramidal" in the present invention typically refers to a conical shape, but also includes a pyramidal shape, such as a triangular pyramidal shape, a quadrangular pyramidal shape, a polygonal pyramidal shape or more than a pentagonal pyramidal shape. Generally, a conical shape is desirable.

本発明を君側成分Aからなる1個の芯の周囲を閉側成分
Bが同心円状に包囲している単芯型の芯鞘型複合繊維の
製造を例に挙げて、従来の技術と対比しながら第1図〜
第3図によって具体的に説明する。
The present invention will be compared with the conventional technology by taking as an example the manufacture of a single-core type core-sheath type composite fiber in which a single core consisting of a side component A is surrounded by a closed side component B concentrically. Figure 1~
This will be explained in detail with reference to FIG.

単芯型の芯鞘型複合繊維を製造する場合、分配板2で2
種の溶融重合体AとBが出会い、芯鞘型の溶融重合体流
を形成するが、この場合両者の圧力差を適正な範囲にお
くことが必要であり、両型合体流AとBの圧力差が大き
いと低圧側の重合体流路に高圧側の溶融重合体が逆流し
て正常な芯鞘構造を形成しない。溶融重合体流AIl!
:Bは、適正な圧力バランスを保ちながら口金板3のカ
ウンターボア4上で芯鞘状の重合体流を形成し、層流状
態でカウンターボア4を通過して紡糸口6に至るが、分
配板2と口金板3との接合組立て時のわずかなズレ、分
配板2における君側重合体Aの鞘側重合体B中への射出
方向のわずかなズレ等によって、カウンターボア4内の
層流状態の芯鞘型重合体流を常に同心円状態に保つのは
難しい。
When manufacturing a single-core type core-sheath type composite fiber, the distribution plate 2
The seed molten polymers A and B meet to form a core-sheath type molten polymer flow, but in this case, it is necessary to keep the pressure difference between the two within an appropriate range, and the If the pressure difference is large, the molten polymer on the high pressure side will flow back into the polymer flow path on the low pressure side, and a normal core-sheath structure will not be formed. Molten polymer stream AIl!
: B forms a core-sheath polymer flow on the counterbore 4 of the spinneret plate 3 while maintaining an appropriate pressure balance, passes through the counterbore 4 in a laminar flow state, and reaches the spinning nozzle 6, but the distribution The laminar flow state in the counterbore 4 may be affected by a slight deviation during assembly between the plate 2 and the cap plate 3, a slight deviation in the injection direction of the master side polymer A into the sheath side polymer B on the distribution plate 2, etc. It is difficult to maintain a core-sheath type polymer flow in a concentric state at all times.

そして、カウンターボア4の入口の内径mQが絞り部5
前面の内径n。と等しい、m o= n Qの関係にあ
る第1図で示した従来の芯鞘型複合繊維製造用口金装置
では、上記した芯鞘型重合体流の偏芯は解消されず、紡
糸口3から偏芯した芯鞘型複合繊維がそのまま紡出され
る。
Then, the inner diameter mQ of the entrance of the counterbore 4 is
Front inner diameter n. In the conventional spinneret device for producing core-sheath composite fibers shown in FIG. 1, which has the relationship m o = n Q, which is equal to An eccentric core-sheath composite fiber is spun as it is.

それに対して、本発明では、例えば第2図に示すように
、カウンターボア4はその入口から絞り部前面まで徐々
に細くなる錐状となっていて、カウンターボア4の入口
の内径m1と絞り部5前面の内径n1とは、m 、> 
n 、の関係を有しているために、芯鞘型重合体流の偏
芯か修正されて芯が中央部に位置するようになり、紡糸
口から紡出された繊維は網側成分Bの厚み斑および偏芯
のない良好な芯鞘型複合繊維となる。
In contrast, in the present invention, as shown in FIG. 2, for example, the counterbore 4 has a conical shape that gradually becomes narrower from its entrance to the front surface of the throttle part, and the inner diameter m1 of the entrance of the counterbore 4 and the throttle part 5. The inner diameter n1 of the front surface is m, >
n, the eccentricity of the core-sheath type polymer flow is corrected so that the core is located in the center, and the fibers spun from the spinneret are The result is a good core-sheath type composite fiber with no thickness unevenness or eccentricity.

また、本発明では第2図における絞り部5を省略して、
第3図に示したようにカウンターボアの入口から紡糸口
6までそのまま徐々に錐状の通路を形成していてもよく
、この場合にも網側成分Bの厚み斑および偏芯のない良
好な芯鞘型複合繊維を製造することがきでる。この第3
図の場合には、カウンターボア4の入口の内径m2と紡
糸口6の内径n2とかm2>n、の関係にある。
Moreover, in the present invention, the aperture part 5 in FIG. 2 is omitted,
As shown in Fig. 3, a conical passage may be formed gradually from the entrance of the counterbore to the spinneret 6, and in this case also, the net side component B has good thickness without unevenness and eccentricity. It is possible to produce core-sheath type composite fibers. This third
In the case of the figure, the inner diameter m2 of the entrance of the counterbore 4 and the inner diameter n2 of the spinneret 6 have a relationship such that m2>n.

更に、錐状通路(カウンターボア)の形状は第4図のよ
うになっていてもよく、その場合にはm 、> n s
の関係になっている。
Furthermore, the shape of the conical passage (counterbore) may be as shown in FIG. 4, in which case m , > n s
The relationship is

上記において、錐状通路の入口内径と終点内径との比、
すなわちml:n、、m2:n2およびm3・n3は、
使用する重合体の種類や粘度、芯鞘型複合繊維における
芯の数や配置の仕方、繊維の断面形状や細さ等の種々の
要件に応じて決めることができるが、通常、約4・1〜
約1.51にしておくのがよい。また、カウンターボア
(錐状通路)の入口から終点に至る距離11、I2およ
び13も上記したような各種の要件に応じて決定される
が、芯鞘型複合繊維の製造において通常採用されている
距離(約20〜30mm)とするのがよい。更に、錐状
通路の傾斜の度合θ1およびθ2は、カウンターボアの
入口の内径ml、m2、m3:錐状通路の終点の内径n
 l s n 2、n、および上記距離11.12、!
、の値により決まるが、通常的806〜90°としてお
くのがよい。
In the above, the ratio of the inner diameter of the entrance to the inner diameter of the conical passage,
That is, ml:n, m2:n2 and m3・n3 are
It can be determined depending on various requirements such as the type and viscosity of the polymer used, the number and arrangement of cores in the core-sheath composite fiber, and the cross-sectional shape and thinness of the fiber, but it is usually about 4.1 ~
It is best to set it to approximately 1.51. Further, the distances 11, I2, and 13 from the entrance to the end point of the counterbore (conical passage) are determined according to the various requirements described above, but are usually adopted in the production of core-sheath type composite fibers. It is preferable to set the distance (approximately 20 to 30 mm). Further, the degrees of inclination θ1 and θ2 of the conical passage are determined by the following equations: inner diameter ml, m2, m3 of the inlet of the counterbore: inner diameter n of the end point of the conical passage.
l s n 2, n, and the above distance 11.12,!
It is determined by the value of , but it is usually good to set it to 806 to 90 degrees.

本発明において、芯鞘型複合繊維の断面形状は円形およ
び非円形(異形)のいずれでもよい。
In the present invention, the cross-sectional shape of the core-sheath type composite fiber may be either circular or non-circular (irregular shape).

異形繊維とては、例えば三角形、四角形、五角形、六角
形等を挙げることができ、それらの異形繊維は紡糸口の
形状を相当する異形状にしておくことにより製造できる
Examples of the irregularly shaped fibers include triangular, square, pentagonal, hexagonal, etc., and these irregularly shaped fibers can be produced by making the shape of the spinneret into a corresponding irregular shape.

また、芯鞘型複合繊維における芯部針の形状も必ずしも
円形でなくてもよく、上記したような異形状であっても
よい。
Further, the shape of the core needle in the core-sheath composite fiber does not necessarily have to be circular, and may have an irregular shape as described above.

更に本発明によって、単芯型の芯鞘型複合繊維だけでな
く多芯−芯鞘型複合繊維も製造することができる。
Further, according to the present invention, not only single-core type core-sheath type conjugate fibers but also multi-core-sheath type conjugate fibers can be manufactured.

また、本発明の口金装置は、入口から紡糸口または紡糸
口近傍に向かって細くなってゆく錐状のカウンターボア
を有する口金板を備えた芯鞘型複合繊維製造用の口金装
置であればいずれでもよく、その他の部分(例えば分配
板の形状や数等)は問わない。
Further, the spindle device of the present invention can be any spinneret device for producing core-sheath type composite fibers, which is equipped with a spindle plate having a conical counterbore that becomes thinner from the inlet toward the spinneret or the vicinity of the spinneret. However, other parts (for example, the shape and number of distribution plates, etc.) do not matter.

用いる重合体の種類は2種類に限定されず、3種類以上
であっても良好な芯鞘型複合繊維を製造することができ
る。重合体の組合せは熱可塑性重合体同士であれば制限
はなく、紡糸時の溶融粘度と口金単位面積当り流量が、
紡糸可能な適性範囲(例えば特公昭第41−293号公
報に記載されている適性範囲)であればどのような組合
せでも良好な芯鞘構造が得られる。また、本発明による
場合は、君側重合体および鞘側重合体のうちの一方の溶
融粘度と口金単位面積当り流量が該適性範囲から外れて
いても、もう一方の重合体の溶融粘度および口金単位面
積当り流量が適性範囲にあれば良好な芯鞘構造が得られ
る場合か多い。したがって、本発明による場合は、その
溶融粘度や口金単位面積当り流量が溶融紡糸の適性範囲
になく、そのためそれ単独では従来溶融紡糸することが
できなかった重合体を、他の溶融紡糸可能な重合体と組
合せて芯鞘型複合紡糸することが可能であり、それによ
って従来得られなかった特性を有する繊維の製造が可能
である。そして、そのような例としてはポリエステルを
芯鋼成分としエチレン−ビニルアルコール共重合体を閉
側成分とする芯鞘型複合繊維の製造を挙げることができ
、そこで得られた繊維は、エチレン−ビニルアルコール
共重合体の物性である発色性、吸水性、ドレープ性など
従来の溶融紡糸繊維にない特性を有している。
The types of polymers used are not limited to two types, and even if three or more types are used, a good core-sheath type composite fiber can be produced. There are no restrictions on the combination of polymers as long as they are thermoplastic polymers, and the melt viscosity and flow rate per unit area of the spinneret during spinning are as follows:
A good core-sheath structure can be obtained with any combination within the suitable range for spinning (for example, the suitable range described in Japanese Patent Publication No. 41-293). In addition, in the case of the present invention, even if the melt viscosity and flow rate per unit area of the cap of one of the polymer and the sheath polymer are out of the appropriate range, the melt viscosity of the other polymer and the unit area of the cap If the permeation flow rate is within the appropriate range, a good core-sheath structure can often be obtained. Therefore, in the case of the present invention, a polymer whose melt viscosity and flow rate per unit area of the spinneret are not within the appropriate range for melt spinning, and which could not be conventionally melt spun by itself, can be used with other polymers that can be melt spun. In combination with coalescence, it is possible to perform core-sheath type composite spinning, thereby making it possible to produce fibers with properties not previously available. An example of this is the production of core-sheath type composite fibers in which polyester is used as a core component and ethylene-vinyl alcohol copolymer is used as a closed-side component. It has properties not found in conventional melt-spun fibers, such as color development, water absorption, and drape properties, which are the physical properties of alcohol copolymers.

次に、本発明を実施例により具体的に説明するが、本発
明はそれにより限定されない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1および比較例1 芯鋼重合体(A)としてポリエチレンテレフタレート(
溶融粘度1100ポイズ、290℃)を、鞘側重合体(
B)としてポリエチレン(溶融粘度790ポイズ、29
0℃)を用いて、第1図に示した口金装置(me=n 
o= 3 ff1l: mo/ n o= 11lo=
25111)に、重合体Aと重合体Bを下記の表1に示
した重量比で供給して、内径0.3Hの円形紡糸口から
21 g / m1n−12(重合体AとBの合計)の
割合て紡出シテ、1000m / l1inの巻取って
断面円形の芯鞘型複合繊維を製造して、その偏芯度りを
測定した(比較例)。
Example 1 and Comparative Example 1 Polyethylene terephthalate (
Melt viscosity 1100 poise, 290°C), sheath side polymer (
B) polyethylene (melt viscosity 790 poise, 29
0°C), the cap device shown in Fig. 1 (me=n
o= 3 ff1l: mo/no= 11lo=
25111), Polymer A and Polymer B were supplied in the weight ratio shown in Table 1 below, and 21 g/m1n-12 (total of Polymers A and B) was produced from a circular spinneret with an inner diameter of 0.3H. A core-sheath type composite fiber having a circular cross section was produced by spinning it at a ratio of 1,000 m/1 inch and measuring its eccentricity (comparative example).

第2図に示した口金装置(m 、= 3 m+n; n
 +=1.5in+ ; m 、/ n += 2.0
 ; l+= 25mm ;紡糸口内径−〇、 3mm
)を使用した以外は、上記と同様にして芯鞘型複合繊維
を製造した(実施例)。
The cap device shown in FIG. 2 (m, = 3 m+n; n
+=1.5in+; m,/n+=2.0
; l+= 25mm; spinneret inner diameter -〇, 3mm
) A core-sheath type conjugate fiber was produced in the same manner as above (Example), except that the following was used.

上記の結果を下記の表1に示す。The above results are shown in Table 1 below.

なお上記において、偏芯度りは第5図に示すように、鞘
の最も薄い部分の寸法をa (mid)とし、鞘の最も
厚い部分の寸法をb(m思)として、h−a / bに
より求めた。したがって、hが1に近いほど偏芯が少な
いことを意味する。
In addition, in the above, the eccentricity is expressed as h-a/, where the dimension of the thinnest part of the sheath is a (mid) and the dimension of the thickest part of the sheath is b (m), as shown in Figure 5. It was determined by b. Therefore, the closer h is to 1, the less eccentricity there is.

[表    1] 0.667  1  1.5  2  2.5比較例(
mo/no=1.0)   0.69   0,66 
  0.52  0.45  0.42”実施例(rr
b/n+=2.0)   0.83   0,90  
 0.85   0,80  0.77上記表1の結果
から、錐状に細くなったカウンターボアを有する口金装
置を使用して芯鞘型複合繊維を製造している本発明の実
施例の場合は、重合体Aと重合体Bとの供給量を変えて
も偏芯度りが1に近< (h=0.77〜0.90)、
鞘部の厚さが均一な偏芯の度合の少ない芯鞘型複合繊維
が得られているのに対して、カウンターボアの内径かそ
の入口から絞り部面面まで均一な口金装置を使用してい
る従来技術に相当する比較例の場合は偏芯度りが1から
大きく隔ったでおり(h=0.69〜0.42) 、鞘
部の厚さが不均一で偏芯度合の大きい芯鞘型複合繊維に
なること、またその傾向は芯部用重合体Aの供給割合が
多くなるほど増すことがわかる。
[Table 1] 0.667 1 1.5 2 2.5 Comparative example (
mo/no=1.0) 0.69 0,66
0.52 0.45 0.42” Example (rr
b/n+=2.0) 0.83 0,90
0.85 0.80 0.77 From the results in Table 1 above, in the case of the example of the present invention in which core-sheath type composite fibers are manufactured using a die device having a counterbore tapered into a conical shape, , Even if the supply amounts of polymer A and polymer B are changed, the degree of eccentricity is close to 1 < (h = 0.77 to 0.90),
While a core-sheath type composite fiber with a uniform sheath thickness and a low degree of eccentricity has been obtained, it is possible to obtain a core-sheath type composite fiber with a uniform sheath thickness and a low degree of eccentricity. In the case of the comparative example corresponding to the conventional technology, the degree of eccentricity was far from 1 (h = 0.69 to 0.42), and the thickness of the sheath was uneven and the degree of eccentricity was large. It can be seen that the fiber becomes a core-sheath type composite fiber, and that this tendency increases as the supply ratio of the core polymer A increases.

実施例2および比較例2 芯鋼重合体(A)としてポリブチレンテレフタレート(
溶融粘度1250ポイズ、2oo℃)を、鞘側重合体(
B)としてポリエチレン(溶融粘度1000ボイズ、2
00℃)を用いて、第1図に示した口金装置(mo= 
n o= 4mm; mo/ n o= 1.0; 1
6=301)に、重合体Aと重合体Bを下記の表1に示
した重量比で供給して、内径0.3ml1の円形紡糸口
から25g/l11n・■2(重合体AとBの合計)の
割合で紡出し、800m / winの巻取って断面円
形の芯鞘型複合繊維を製造して、その偏芯度りを測定し
た(比較例2)。
Example 2 and Comparative Example 2 Polybutylene terephthalate (
Melt viscosity 1250 poise, 2oooC), sheath side polymer (
B) polyethylene (melt viscosity 1000 boids, 2
00°C), the cap device shown in Fig. 1 (mo=
no=4mm; mo/no=1.0; 1
6 = 301), Polymer A and Polymer B were supplied at the weight ratio shown in Table 1 below, and 25g/l11n·■2 (of Polymers A and B) was fed from a circular spinneret with an inner diameter of 0.3ml1. A core-sheath type composite fiber having a circular cross section was produced by spinning at a ratio of 800 m/win and measuring its eccentricity (Comparative Example 2).

第2図に示した口金装置f (m 1= 4 in+;
 nl=1.5cm; m、/ n +=3.O; I
、=30mm;紡糸口内径= 0.3m1)を使用した
以外は、上記と同様にして芯鞘型複合繊維を製造した(
実施例2)。
The cap device f shown in FIG. 2 (m 1 = 4 in+;
nl=1.5cm; m,/n+=3. O; I
Core-sheath type composite fibers were produced in the same manner as above, except that the spinneret inner diameter = 0.3 m1) was used.
Example 2).

上記実施例2および比較例2で製造された芯鞘型複合繊
維の偏芯間りを実施例1および比較例1と同様にして測
定した。
The eccentricity of the core-sheath type composite fibers produced in Example 2 and Comparative Example 2 was measured in the same manner as in Example 1 and Comparative Example 1.

その結果を下記の表2に示す。The results are shown in Table 2 below.

[表    2] 0.77     1     1.43比較例(m1
/n+=3..0)  0.50       0,3
7       0.312)実施例(m1/n+=3
.0)  0.83        0,77    
  0.72上記表2の結果から、錐状に細くなったカ
ウンターボアを有する口金装置を使用して芯鞘型複合繊
維を製造している本発明の実施例の場合は、重合体Aと
重合体Bとの供給量を変えても、鞘部の厚さが均一な偏
芯の度合の少ない芯鞘型複合繊維が得られているのに対
して、カウンターボアの内径かその入口から絞り部前面
まで均一な口金装置を使用している従来技術に相当する
比較例の場合は偏芯間りが1から大きく隔ったでおり(
h=0.31〜0.50) 、鞘部の厚さか不均一で偏
芯度合の大きい芯鞘型複合繊維になること、またその傾
向は芯部用重合体Aの供給割合が多くなるほど増すこと
がわかる。
[Table 2] 0.77 1 1.43 Comparative example (m1
/n+=3. .. 0) 0.50 0.3
7 0.312) Example (m1/n+=3
.. 0) 0.83 0.77
0.72 From the results in Table 2 above, in the case of the example of the present invention in which core-sheath type composite fibers are manufactured using a die device having a counterbore tapered into a conical shape, polymer A and Even if the supply amount with coalescence B was changed, a core-sheath type composite fiber with a uniform sheath thickness and a low degree of eccentricity was obtained. In the case of a comparative example corresponding to the conventional technology that uses a uniform cap device all the way to the front, the eccentricity distance is significantly different from 1 (
h = 0.31 to 0.50), the core-sheath type composite fiber has a non-uniform sheath thickness and a high degree of eccentricity, and this tendency increases as the supply ratio of core polymer A increases. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は芯鞘型複合繊維を製造するための従来の口金装
置を示す図である。 第2図〜第4図は芯鞘型複合繊維をするための本発明の
口金装置の具体例を示す図である。 第5図は芯鞘型複合繊維における偏芯間を測定する際の
採寸方法を示す図である。
FIG. 1 is a diagram showing a conventional die device for manufacturing core-sheath type composite fibers. FIGS. 2 to 4 are diagrams showing specific examples of the die device of the present invention for manufacturing core-sheath type composite fibers. FIG. 5 is a diagram showing a measuring method when measuring eccentricity in a core-sheath type composite fiber.

Claims (1)

【特許請求の範囲】 1)2種以上の溶融重合体流を芯鞘型に合流させて溶融
紡糸する芯鞘型複合繊維の製造方法において、合流した
溶融重合体流を入口から紡糸口または紡糸口近傍に向か
って細くなってゆく錐状の通路を通して溶融紡糸するこ
とを特徴とする芯鞘型複合繊維の製造方法。 2)入口から紡糸口または紡糸口近傍に向かって細くな
ってゆく錐状のカウンターボアを有することを特徴とす
る芯鞘型複合繊維製造用の口金板。 3)請求項2の口金板を備えていることを特徴とする芯
鞘型複合繊維製造用口金装置。
[Scope of Claims] 1) In a method for producing a core-sheath type composite fiber in which two or more types of molten polymer flows are combined into a core-sheath type and melt-spun, the combined molten polymer flows are passed from an inlet to a spinneret or to a spinning spun. A method for producing a core-sheath type composite fiber characterized by melt spinning through a conical passageway that becomes narrower toward the mouth. 2) A spinneret plate for producing core-sheath type composite fibers, characterized by having a conical counterbore that becomes thinner from the inlet toward the spinneret or the vicinity of the spinneret. 3) A die device for producing core-sheath type composite fibers, comprising the die plate according to claim 2.
JP2325841A 1990-11-29 1990-11-29 Method and device for manufacturing core-sheath composite fiber Expired - Fee Related JP2540384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325841A JP2540384B2 (en) 1990-11-29 1990-11-29 Method and device for manufacturing core-sheath composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325841A JP2540384B2 (en) 1990-11-29 1990-11-29 Method and device for manufacturing core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JPH04202806A true JPH04202806A (en) 1992-07-23
JP2540384B2 JP2540384B2 (en) 1996-10-02

Family

ID=18181218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325841A Expired - Fee Related JP2540384B2 (en) 1990-11-29 1990-11-29 Method and device for manufacturing core-sheath composite fiber

Country Status (1)

Country Link
JP (1) JP2540384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995822A1 (en) * 1998-10-19 2000-04-26 Rosaldo Faré Apparatus and method for making two component continuous fibers or filaments by using flexible ducts
EP3479991A1 (en) * 2017-11-03 2019-05-08 Polytex Sportbeläge Produktions-GmbH Polymer coextrusion head with a dual-channel nozzle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506513B1 (en) * 2013-02-20 2015-03-27 서울대학교산학협력단 Core-cut nozzle for co-axial electrospinning and electrospinning apparatus including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956216U (en) * 1972-08-26 1974-05-17
JPS6414321A (en) * 1987-07-01 1989-01-18 Toray Industries Polyester ternary conjugate fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956216U (en) * 1972-08-26 1974-05-17
JPS6414321A (en) * 1987-07-01 1989-01-18 Toray Industries Polyester ternary conjugate fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995822A1 (en) * 1998-10-19 2000-04-26 Rosaldo Faré Apparatus and method for making two component continuous fibers or filaments by using flexible ducts
EP3479991A1 (en) * 2017-11-03 2019-05-08 Polytex Sportbeläge Produktions-GmbH Polymer coextrusion head with a dual-channel nozzle
WO2019086632A1 (en) * 2017-11-03 2019-05-09 Polytex Sportbeläge Produktions-Gmbh Polymer coextrusion head with a dual-channel nozzle
US11541585B2 (en) 2017-11-03 2023-01-03 Polytex Sportbelage Produktions-Gmbh Polymer coextrusion head with a dual-channel nozzle
EP4219117A3 (en) * 2017-11-03 2023-09-06 Polytex Sportbeläge Produktions-GmbH Polymer coextrusion head with a dual-channel nozzle

Also Published As

Publication number Publication date
JP2540384B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US5256050A (en) Method and apparatus for spinning bicomponent filaments and products produced therefrom
US4293516A (en) Process for spinning bicomponent filaments
US3692423A (en) Apparatus for spinning synthetic {37 islands-in-a-sea{38 {0 type composite filaments
US6565344B2 (en) Apparatus for producing multi-component liquid filaments
JPH07102408A (en) Melt-blow spinneret
US3387327A (en) Filament spinning apparatus
EP3140447A1 (en) A non-woven web
US20040209540A1 (en) Apparatus and process for making fibrous products of bi-component melt-blown fibers of thermoplastic polymers and the products made thereby
EP1513972A1 (en) Nonwoven web die and nonwoven webs made therewith
JPH04202806A (en) Method and spinneret for preparing sheath-core conjugate fiber
JPH02289107A (en) Melt-blowing spinning device
EP1518010B1 (en) Meltblowing apparatus employing planetary gear metering pump
JPH10266056A (en) Conjugate polyolefin filament nonwoven fabric and its production
JP2006214059A (en) Spinneret device for spinning sea-island-type conjugate fiber
EP0434448B1 (en) Method and apparatus for spinning bicomponent filaments and products produced therefrom
JP3546635B2 (en) Spinneret and spinneret for spinning core-sheath composite fiber
JPS58180614A (en) Polyolefin type eccentric composite fiber and preparation apparatus therefor
GB2042413A (en) Process for melt-spinning acrylonitrile polymer fibre using vertically disposed compression zone
JPH08158144A (en) Spinneret unit for sea-island fiber
JPH1112844A (en) Spinneret device for spinning core-sheath conjugated hollow fiber
JP3223390B2 (en) Melt blow device
JPS63256708A (en) Spinneret device for sheath-core conjugate spinning
JPH04222203A (en) Spinneret for combined filament yarn having different fineness
JPH10266013A (en) Spinneret for sheath core hollow composite fiber
JPH0978334A (en) Method for spinning multi-component fiber and spinning pack

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees