JPH04202366A - Film having low refractive index - Google Patents

Film having low refractive index

Info

Publication number
JPH04202366A
JPH04202366A JP2329890A JP32989090A JPH04202366A JP H04202366 A JPH04202366 A JP H04202366A JP 2329890 A JP2329890 A JP 2329890A JP 32989090 A JP32989090 A JP 32989090A JP H04202366 A JPH04202366 A JP H04202366A
Authority
JP
Japan
Prior art keywords
refractive index
film
magnesium fluoride
low refractive
type polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2329890A
Other languages
Japanese (ja)
Inventor
Yutaka Shibata
豊 柴田
Kenji Takahashi
賢次 高橋
Hitoshi Kimata
木股 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP2329890A priority Critical patent/JPH04202366A/en
Publication of JPH04202366A publication Critical patent/JPH04202366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain a film having a low refractive index, having an ultra-low refractive index, excellent in antireflecting effects and suitable as thin films, especially monolayer films by using a composition containing magnesium fluoride powder having a specific value or below of particle diameter and a ladder type polysiloxane resin. CONSTITUTION:The objective film, having a low refractive index and excellent in antireflecting effects is produced by adding a solvent (e.g. isopropanol) to (A) 20-60wt.% magnesium fluoride powder having <=0.1mum particle diameter and (B) 40-60wt.% ladder type polysiloxane resin, having preferably 2000-200000, especially preferably 3000-30000 molecular weight and side chains of methyl and phenyl groups so as to provide a desired viscosity and solid content, homogeneously dispersing the powder in, e.g. a sand mill, applying the resultant dispersion onto a blue glass plate by a dipping method and baking the applied dispersion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、反射防止膜形成用組成物、特に皮射防止単
層膜用の低屈折率薄膜を形成するのに好適な組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composition for forming an antireflection film, particularly a composition suitable for forming a low refractive index thin film for a single layer antireflection film.

〔従来の技術〕[Conventional technology]

反射防止用単層膜は、なるべく低い屈折率をもつ物質か
ら形成しなければならず、従来は主としてフッ化マグネ
シウムの蒸着またはスバンタ膜が使用されている。この
膜の屈折率は1.38であり、反射率(ガラス基板に対
して)は不十分であった。
The antireflection single-layer film must be formed from a material with a refractive index as low as possible, and conventionally, vapor-deposited magnesium fluoride or a Svanta film has been mainly used. The refractive index of this film was 1.38, and the reflectance (relative to the glass substrate) was insufficient.

従って、より屈折率の低い膜が望まれており、そのよう
な膜形成物質として無機物質では氷晶石(n=1.34
)が知られているが、この物質は水溶性であるので、フ
ッ化マグネシウムと比較して実用性に乏しい。有機物質
ではフッ素樹脂が最も低い屈折率を持ち、特にポリテト
ラフルオロエチレンの屈折率1.35が最低で、これ佇
より炭票数が多くなったり、側鎖がついたり、フッ素置
が少なくなると屈折率が高くなり、例えば、ポリクロル
トリフルオロエチレンでは1.43になる。しかしなが
らこのポリテトラフルオロエチレンは、その融点が32
7℃と高いこと、付着性が極めて悪いこと、また、高価
であることのため反射防止膜としては実用化されていな
い。
Therefore, a film with a lower refractive index is desired, and cryolite (n=1.34
), but since this substance is water-soluble, it is less practical than magnesium fluoride. Among organic substances, fluororesin has the lowest refractive index, and polytetrafluoroethylene in particular has the lowest refractive index of 1.35. The ratio is higher, for example, 1.43 for polychlorotrifluoroethylene. However, this polytetrafluoroethylene has a melting point of 32
It has not been put to practical use as an antireflection film because it is as high as 7°C, has extremely poor adhesion, and is expensive.

反射防止を完全にするには低い屈折率の膜と高い屈折率
の膜を交互に積層して多層膜を形成しているが、膜の数
だけ工数が増えるため高コストになる。従って、単層膜
で十分高い反射防止効果をあげることが強く望まれてい
る。
In order to achieve complete antireflection, a multilayer film is formed by alternately laminating films with a low refractive index and films with a high refractive index, but this increases the cost because the number of steps increases by the number of films. Therefore, it is strongly desired that a single layer film exhibit a sufficiently high antireflection effect.

さらに蒸着スパッタによる膜付法は装置面からの制約と
して大きい物、異形の物に対しては膜付けできない。加
えて、スパッタ法では装置が非常に高価であり、また、
蒸着法では200℃以上に加熱しないと膜強度が弱いの
で、プラスチックには適用できない。
Furthermore, the film deposition method using vapor deposition sputtering cannot be applied to large objects or irregularly shaped objects due to restrictions from the equipment standpoint. In addition, the sputtering method requires very expensive equipment;
In the vapor deposition method, the film strength is weak unless heated to 200°C or higher, so it cannot be applied to plastics.

塗布による膜形成が適用できるとバインダーの選択によ
り被塗装物の耐熱性に適した膜付けが選択できるので、
有利である。このような見地から、最近低屈折率のフィ
ラーを配合した塗料を塗布することによって形成される
反射防止膜が市販されている。塗布法により形成される
反射防止膜はバインダーの選択により、膜付は温度を低
くすることができ、また、塗布による適用なので大面積
や異形の基材に対しても膜付けができる点で有利である
If film formation by coating can be applied, it is possible to select a film suitable for the heat resistance of the object to be coated by selecting the binder.
It's advantageous. From this point of view, antireflection films formed by applying a paint containing a filler with a low refractive index have recently been commercially available. The anti-reflection coating formed by the coating method can be applied at a lower temperature depending on the binder selected, and since it is applied by coating, it is advantageous in that it can be applied to large areas or irregularly shaped substrates. It is.

しかしながら、この塗布方法において、最も屈折率の低
い生成物を与えるためにフィラーとバインダーとしてそ
れぞれ最も屈折率の低いフッ化マグネシウムとシリコン
アルコキシドを用いても、膜の屈折率は1.40より下
げることができない。従って、まだ反射率は数%残るの
で、より屈折率の低い組成物が求められている。しかし
ながら、固体として最も低い屈折率を有するフッ化マグ
ネシウムの1.38より低い膜を造ることは、理論的に
不可能と考えられていた。一方、ガラスの屈折率を1.
50とすると反射率を零にするには屈折率を(1,50
)” =1.22にする必要があり、フッ化マグネシウ
ムの屈折率より低い屈折率の膜を得ることが当業界での
夢であった。
However, in this coating method, even if magnesium fluoride and silicon alkoxide, which have the lowest refractive indexes, are used as the filler and binder, respectively, to give the product with the lowest refractive index, the refractive index of the film can be lowered below 1.40. I can't. Therefore, a few percent of reflectance still remains, and a composition with a lower refractive index is required. However, it was considered theoretically impossible to create a film of magnesium fluoride, which has the lowest refractive index of any solid, lower than 1.38. On the other hand, the refractive index of glass is 1.
50, the refractive index should be (1,50
)” = 1.22, and it has been a dream in this industry to obtain a film with a refractive index lower than that of magnesium fluoride.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、単層膜の屈折率が著しく低く、フッ化
マグネシウム薄膜より反射防止効果の優れた薄膜を形成
するのに適当な反射防止膜形成用組成物を提供するにあ
る。
An object of the present invention is to provide a composition for forming an antireflection film that is suitable for forming a single layer film having a significantly low refractive index and having a superior antireflection effect than a magnesium fluoride thin film.

〔課題を解決するための手段および作用〕上記の目的は
、粒径が0.1如以下のフッ化マグネシウム粉末20〜
60重量%およびラダー型ポリシロキサン樹脂40〜8
0重量%からなることを特徴とする反射防止膜形成用組
成物によって達成される。
[Means and effects for solving the problem] The above purpose is to produce magnesium fluoride powder with a particle size of 0.1 or less.
60% by weight and ladder type polysiloxane resin 40-8
This is achieved by a composition for forming an antireflection film characterized by comprising 0% by weight.

本発明のように、フッ化マグネシウムの超微粉とバイン
ダーとしてのラダー型ポリシロキサン樹脂の組み合わせ
によって膜の屈折率が両者のいずれよりも小さくなると
いう異常とも見られる現象がみられ、このことによって
、フッ化マグネシウム薄膜より反射防止効果の優れた膜
の製造が可能となった。
As in the present invention, the combination of ultrafine magnesium fluoride powder and ladder-type polysiloxane resin as a binder causes an abnormal phenomenon in which the refractive index of the film becomes smaller than either of the two. It has become possible to produce a film with better antireflection effects than magnesium fluoride thin film.

一配合例を挙げるとフッ化マグネシウム50重量%とラ
ダー型ポリシロキサン樹脂50重量%により屈折率1゜
32の膜が得られたが、フッ化マグネシウム単味の屈折
率が1.38でラダー型ポリシロキサン単味の屈折率は
1.43であるので、両者の混合物から1.32の屈折
率が得られるということは全く予想外であった。常識的
には空隙が大きいことによるものと考えられ易いが、そ
うであると空隙は22容量%なければならず、そのよう
に多量の空隙が存在すると膜強度は著しく弱く、実用に
耐え得ないはずである。しかしながら、本発明の組成物
から形成される膜はラダー型ポリシロキサン単味の膜と
比べてそれほどの低下は見られない。
To give an example of a formulation, a film with a refractive index of 1°32 was obtained with 50% by weight of magnesium fluoride and 50% by weight of a ladder-type polysiloxane resin, but a film with a refractive index of 1.38 for single magnesium fluoride was obtained and a ladder-type film was obtained. Since the refractive index of polysiloxane alone is 1.43, it was completely unexpected that a refractive index of 1.32 could be obtained from a mixture of the two. Common sense suggests that this is due to the large voids, but in that case, the voids must be 22% by volume, and the presence of such a large amount of voids would significantly weaken the membrane strength, making it unsuitable for practical use. It should be. However, the film formed from the composition of the present invention does not exhibit a significant decrease in performance compared to a film made of only ladder-type polysiloxane.

一方、フッ化マグネシウムとテトラエトキシシランとか
ら形成した塗膜では、このような屈折率低下は見られな
いことから考えて、フッ化マグネシウムとラダー型ポリ
シロキサンとの組み合わせが特殊な相剰効果をもたらし
たと考えられる。この理由について考察してみると屈折
率を低くするためには、光に対する抵抗を小さくするこ
と、すなわち誘電率を小さくすることが必要である。フ
ッ化マグネシウム中で光、すなわち、電場の影響を受け
る物として電子があるが、その影響を最も受は易い電子
はフッ素からの電子であり、フッ素原子中の電子は一個
であるので、複数電子を持つ原子に比べ、その電子と周
囲の電子との距離が遠いので、電子相互の作用は弱く、
したがって、フッ素化合物の特性として、電場の伝送が
阻害されることが少ないため速度が゛速い、すなわち屈
折率が小さくなると考えられる。しかしながら、フッ素
化合物はイオン化合物であるので、イオン分極が起こり
易く、電場の伝送に対する抵抗が大きく、テトラフルオ
ロエチレンのようにイオン結合が無く、分極の少ない共
有結合に基づく物質より、屈折率が大きい。フッ化マグ
ネシウムとラダー型ポリシロキサン樹脂が共存するとフ
ッ化マグネシウムの相対的量が少なくなり、イオン結合
による影響が減るので屈折率が上がると考えられる。一
方、ラダー型ポリシロキサン中の酸素と酸素は共役二重
結合であり、強力に結びついているので、光の電場によ
る分極が小さく、それ自体の屈折率は通常のケイ酸より
小さい。このことに加えて、フッ化マグネシウム中のフ
ッ素の電気陰性度が非常に強いので、ポリシロキサン中
の酸素の最外殻電子の動きを束縛し、したがって光の電
場を乱さなくなり、屈折率を低くすることが推定される
On the other hand, considering that such a decrease in the refractive index is not observed in the coating film formed from magnesium fluoride and tetraethoxysilane, it seems that the combination of magnesium fluoride and ladder-type polysiloxane has a special additive effect. It is thought that it brought about Considering the reason for this, in order to lower the refractive index, it is necessary to lower the resistance to light, that is, to lower the dielectric constant. In magnesium fluoride, there are electrons that are affected by light, that is, electric fields, but the electrons that are most affected by this are the electrons from fluorine, and since there is only one electron in a fluorine atom, there are multiple electrons. Compared to an atom with
Therefore, it is thought that a characteristic of fluorine compounds is that electric field transmission is less likely to be inhibited, resulting in a faster speed, that is, a lower refractive index. However, since fluorine compounds are ionic compounds, they are susceptible to ionic polarization, have a large resistance to electric field transmission, and have a higher refractive index than materials based on covalent bonds, which have no ionic bonds and have less polarization, such as tetrafluoroethylene. . It is thought that when magnesium fluoride and ladder-type polysiloxane resin coexist, the relative amount of magnesium fluoride decreases, and the influence of ionic bonds decreases, resulting in an increase in the refractive index. On the other hand, the oxygen in ladder-type polysiloxane is a conjugated double bond and is strongly bonded, so polarization due to the electric field of light is small, and its own refractive index is smaller than that of ordinary silicic acid. In addition to this, the electronegativity of fluorine in magnesium fluoride is very strong, which constrains the movement of the outermost electrons of oxygen in polysiloxane and therefore does not disturb the electric field of light, reducing the refractive index. It is estimated that

本発明で使用するフッ化マグネシウムから形成される反
射防止膜の膜厚dは1/4・λ/n(n:屈折率、λ:
波長(nm )が適当であるので、フッ化マグネシウム
の粒径は0.1t1m以下でなければならない。フッ化
マグネシウムの粒径が0.17−を超えると光を乱反射
するので不透明になるし、また、単層の反射防止膜は0
.1ja程度の膜厚で使用されるので、この点からもフ
ッ化マグネシウムの粒径は0.1ρ以下でなければなら
ない。一方、ラダー型ポリシロキサンの単分子は大きい
ので、フッ化マグネシウム粒子の数と同程度になり、両
者の大きさも近くなるので、お互いに相手の組織の隙間
に入ることがなく、粗な構造を形成し易く、このことも
屈折率を下げる一原因になっているものと推定される。
The film thickness d of the antireflection film formed from magnesium fluoride used in the present invention is 1/4·λ/n (n: refractive index, λ:
Since the wavelength (nm) is appropriate, the particle size of magnesium fluoride must be less than 0.1t1m. If the particle size of magnesium fluoride exceeds 0.17, it will reflect light diffusely and become opaque.
.. Since it is used with a film thickness of about 1 ja, from this point of view as well, the particle size of magnesium fluoride must be 0.1 ρ or less. On the other hand, since the single molecules of ladder-type polysiloxane are large, the number is about the same as the number of magnesium fluoride particles, and the sizes of the two are also similar, so they do not get into the gaps between the other's tissues and have a rough structure. It is easy to form, and this is presumed to be one of the reasons for lowering the refractive index.

本発明の反射防止膜形成用組成物は、粒径0.1卿以下
のフッ化マグネシウム20〜60重量%とラダー型ポリ
シロキサン樹脂40〜80重量%とからなる。
The composition for forming an antireflection film of the present invention comprises 20 to 60% by weight of magnesium fluoride having a particle size of 0.1 μm or less and 40 to 80% by weight of a ladder type polysiloxane resin.

フッ化マグネシウムの配合割合が20重量%以下である
と屈折率がラダー型ポリシロキサン樹脂と同程度になる
ので好ましくない。また、60重量%を超えると塗膜の
強度の低下が著しくなるので好ましくない。ラダー型ポ
リシロキサン樹脂の割合が40重量%未漢になると、塗
膜の強度が著しく低下し、また、80重量%を超えると
屈折率が高くなる。
If the blending ratio of magnesium fluoride is less than 20% by weight, the refractive index will be on the same level as that of a ladder type polysiloxane resin, which is not preferable. Moreover, if it exceeds 60% by weight, the strength of the coating film will drop significantly, which is not preferable. If the proportion of the ladder type polysiloxane resin is less than 40% by weight, the strength of the coating film will be significantly reduced, and if it exceeds 80% by weight, the refractive index will increase.

本発明で使用するラダー型ポリシロキサンとしtパ では、分子Iif+000〜200.000程度のもの
が好ましく、分子量が3.000〜30.000のもの
が特に好ましい。ラダー型ポリシロキサンは側鎖にアル
キル基、アリール基、アルケニル基等をもつが、好まし
い側鎖はメチル基、フェニル基である。
The ladder type polysiloxane used in the present invention preferably has a molecular weight of approximately Iif+000 to 200,000, and particularly preferably has a molecular weight of 3.000 to 30,000. Ladder type polysiloxane has an alkyl group, an aryl group, an alkenyl group, etc. in the side chain, and preferred side chains are a methyl group and a phenyl group.

本発明の組成物から反射防止膜を形成するに際しては、
常法に従って、上記の組成物に対して、溶媒を加え、希
望する粘度および固形分になるように配合する。溶媒の
種類、配合、分散の方法は、通常の塗料技術を使うもの
であり、本発明の効果に本質的な変化を与えるものでは
ない。
When forming an antireflection film from the composition of the present invention,
A solvent is added to the above composition according to a conventional method and blended to obtain the desired viscosity and solid content. The type of solvent, blending, and dispersion method are those that use ordinary coating technology, and do not essentially change the effects of the present invention.

〔実施例〕〔Example〕

以下、実施例および比較例について、本発明の組成物を
具体的に説明する。
Hereinafter, the composition of the present invention will be specifically explained with reference to Examples and Comparative Examples.

[比較例] 住人セメント製の粒径10〜15nmのフッ化マグネシ
ウム25gと部分加水分解したテトラエトキシシラン2
5 g  (Sin2換算)にイソプロパノール950
gを均一に分散し、ディッピング法により青板ガラス上
に塗布し、300℃30分で焼き付け、0.1廂厚の膜
を得た。得られた膜の性能は表1に示す。
[Comparative example] 25 g of magnesium fluoride with a particle size of 10 to 15 nm manufactured by Jujutsu Cement and partially hydrolyzed tetraethoxysilane 2
5 g (Sin2 conversion) of isopropanol 950
g was uniformly dispersed, applied onto a soda-lime glass plate by a dipping method, and baked at 300° C. for 30 minutes to obtain a 0.1-thick film. The performance of the obtained membrane is shown in Table 1.

「実施例コ 住人セメント製の粒径10〜15nmのフッ化マグネシ
ウム25gとラダー型ポリシロキサン(オーエンス・イ
リノイ社製、分子量20.000、側鎖メチル基、固形
分40重量%、溶媒:イソプロパノール)75gにイン
プロパツール900 gをサンドミルにて均一に分散し
、ディッピング法(引き上げ速度:100mm/m1n
) により、青板ガラス上に塗布し、180℃20分で
焼き付け、0.1#厚の膜を得た。得られた膜の性能は
表1に示す。
Example: 25 g of magnesium fluoride with a particle size of 10 to 15 nm manufactured by Sumitomo Cement and ladder type polysiloxane (manufactured by Owens-Illinois, molecular weight 20.000, side chain methyl group, solid content 40% by weight, solvent: isopropanol) 900 g of Improper Tool was uniformly dispersed in 75 g using a sand mill, and dipping method (pulling speed: 100 mm/m1n
) was coated on blue plate glass and baked at 180°C for 20 minutes to obtain a 0.1# thick film. The performance of the obtained membrane is shown in Table 1.

表  1 零I  JIS K 5401にもとすいて測定した。Table 1 Zero I JIS K 5401 was also used for measurement.

*2 片面の反射率、5°の正反射治具を用いて分光光
度計で550nmの値を測定した。
*2 The reflectance of one side was measured at 550 nm using a spectrophotometer using a 5° specular reflection jig.

本3 分光光度計で550nmの値を測定した。Book 3 The value at 550 nm was measured using a spectrophotometer.

本4 反射率の測定結果より、フレネルの式にしたがっ
て算出した。
Book 4 Calculated according to Fresnel's formula from the reflectance measurement results.

〔発明の効果〕〔Effect of the invention〕

本発明の組成物から、屈折率が著しく低く、反射防止効
果に優れた薄膜、特に単層膜からなる反射防止膜が形成
される。
From the composition of the present invention, a thin film having an extremely low refractive index and excellent antireflection effect, particularly an antireflection film consisting of a single layer film, is formed.

Claims (1)

【特許請求の範囲】[Claims] 1、粒径が0.1μm以下のフッ化マグネシウム粉末2
0〜60重量%およびラダー型ポリシロキサン樹脂40
〜80重量%からなることを特徴とする反射防止膜形成
用組成物。
1. Magnesium fluoride powder with a particle size of 0.1 μm or less 2.
0-60% by weight and ladder type polysiloxane resin 40
A composition for forming an antireflection film, characterized in that the composition comprises 80% by weight.
JP2329890A 1990-11-30 1990-11-30 Film having low refractive index Pending JPH04202366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329890A JPH04202366A (en) 1990-11-30 1990-11-30 Film having low refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329890A JPH04202366A (en) 1990-11-30 1990-11-30 Film having low refractive index

Publications (1)

Publication Number Publication Date
JPH04202366A true JPH04202366A (en) 1992-07-23

Family

ID=18226401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329890A Pending JPH04202366A (en) 1990-11-30 1990-11-30 Film having low refractive index

Country Status (1)

Country Link
JP (1) JPH04202366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034396A1 (en) * 1998-12-09 2000-06-15 Nippon Kayaku Kabushiki Kaisha Hard coating material and film obtained with the same
JP2002538286A (en) * 1999-03-10 2002-11-12 ロールス−ロイス・コーポレーション Silicone resin adhesive dry film lubricant
JP2009542891A (en) * 2006-07-10 2009-12-03 エルジー・ケム・リミテッド Anti-reflective coating composition with easy removal of dirt, anti-reflective coating film produced using the same, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034396A1 (en) * 1998-12-09 2000-06-15 Nippon Kayaku Kabushiki Kaisha Hard coating material and film obtained with the same
US6713170B1 (en) 1998-12-09 2004-03-30 Nippon Kayaku Kabushiki Kaisha Hard coating material and film comprising the same
JP2002538286A (en) * 1999-03-10 2002-11-12 ロールス−ロイス・コーポレーション Silicone resin adhesive dry film lubricant
JP2012180524A (en) * 1999-03-10 2012-09-20 Rolls-Royce Corp Silicone resin-bonded dry film lubricant
JP2009542891A (en) * 2006-07-10 2009-12-03 エルジー・ケム・リミテッド Anti-reflective coating composition with easy removal of dirt, anti-reflective coating film produced using the same, and method for producing the same

Similar Documents

Publication Publication Date Title
TW544400B (en) Anti-reflective film, multilayer anti-reflective film, and method of manufacturing the same
JP4908661B2 (en) Anti-reflection coating
TW201741689A (en) Anti-reflective film
JP4586761B2 (en) Heat ray shielding glass and manufacturing method thereof
JP2003501511A (en) Ceramer compositions and antistatic abrasion-resistant ceramers produced therefrom
JP2002509514A (en) Achromatic gray light energy absorbing coating
JPH05339033A (en) Manufacture of uv shielding glass and window glass for automobile and window glass for building
WO2006093748A2 (en) Inorganic-organic hybrid nanocomposite antiglare and antireflection coatings
JP2007052345A (en) Multilayered thin film structure with refractive index gradient and its manufacturing method
JP2001031871A (en) High-reflective index composition and high-reflective index coating composition and antireflection laminate comprising the same composition and its production
JP2008033348A (en) Manufacturing method of antireflection laminated body
JPS61113661A (en) Lacquer and formation of corrosion-proof film
JPH04202366A (en) Film having low refractive index
WO2013088836A1 (en) Antireflective member
CN115322658A (en) Nano heat-insulating and cooling coating
KR102288310B1 (en) Method For Manufacturing Of Binder For Ceramic Resin
JP2001059902A (en) Reflection preventing laminated body and its manufacture
JPH06316439A (en) Heat ray shielding glass plate and production thereof
JPS63223701A (en) Coating film having high refractive index and its production
JPH04204601A (en) Coating composition
JPS62148339A (en) Transparent substrate coated with ultraviolet ray absorbing film
WO2022114038A1 (en) Heat insulation glass
JPH08304605A (en) Production of laminated body
JP2010079053A (en) Low refractive index film, antireflective film, transparent member, fluorescent lamp
JPS63124332A (en) Manufacture of reflection preventing film