JPH04202144A - Production of dimethylnaphthalene - Google Patents

Production of dimethylnaphthalene

Info

Publication number
JPH04202144A
JPH04202144A JP2336274A JP33627490A JPH04202144A JP H04202144 A JPH04202144 A JP H04202144A JP 2336274 A JP2336274 A JP 2336274A JP 33627490 A JP33627490 A JP 33627490A JP H04202144 A JPH04202144 A JP H04202144A
Authority
JP
Japan
Prior art keywords
pore diameter
dimethyl
dimethylnaphthalene
solid acid
methylnaphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2336274A
Other languages
Japanese (ja)
Other versions
JP2820792B2 (en
Inventor
Koji Yamamoto
浩司 山本
Yutaka Mifuji
裕 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2336274A priority Critical patent/JP2820792B2/en
Publication of JPH04202144A publication Critical patent/JPH04202144A/en
Application granted granted Critical
Publication of JP2820792B2 publication Critical patent/JP2820792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain 2,6- and/or 2,7-dimethylnaphthalene in high selectivity by using a porous solid acid catalyst having a specific average inlet pore diameter as a solid acid catalyst and reacting 2-methylnaphthalene with a methylating agent. CONSTITUTION:In obtaining 2,6- and/or 2,7-dimethylnaphthalene by reacting 2-methylnaphthalene with a methylating agent, a porous solid acid catalyst having 6.0-6.5Angstrom average inlet pore diameter is used. The control of pore diameter only by regulating the inlet pore diameter is enough and the control of pore diameter in the interior of catalyst is not required. Control of the pore diameter can be effected by chemical deposition method of tetramethoxysilane or by ion exchange method. The title substance is useful as a starting raw material for naphthalene-2,6- or -2,7-dicarboxylic acid to be a raw material for producing polyesters or polyamides.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は2−メチルナフタリンをメチル化して高選択率
下に2.6−ジメチル(及び/または2.7−ジメチル
)ナフタリンを製造する方法に関するものである。2.
6−ジメチル(及び/または2.7−ジメチル)ナフタ
リンは、ポリエステルまたはポリアミドを製造するため
に使用されるナフタリン−2,6−ジカルボン酸及び/
または2.7−ジカルボン酸の出発原料として有用なも
のである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing 2,6-dimethyl (and/or 2,7-dimethyl)naphthalene with high selectivity by methylating 2-methylnaphthalene. It is related to. 2.
6-dimethyl (and/or 2,7-dimethyl) naphthalene is a naphthalene-2,6-dicarboxylic acid and/or used to produce polyesters or polyamides.
Alternatively, it is useful as a starting material for 2,7-dicarboxylic acid.

[従来の技術] 2−メチルナフタリンを原料とし、ゼオライト系の固体
酸触媒の存在下にメチル化剤を反応させて2.6−ジメ
チル(及び/または2.7−ジメチル)ナフタリンを製
造する技術は、それ自体公知(特開昭63−20113
5号公報)である。
[Prior art] A technology for producing 2,6-dimethyl (and/or 2,7-dimethyl) naphthalene by using 2-methylnaphthalene as a raw material and reacting it with a methylating agent in the presence of a zeolite solid acid catalyst. is known per se (Japanese Patent Application Laid-Open No. 63-20113
Publication No. 5).

上記公知方法においては固体酸触媒として例えばゼオラ
イトZSM−5が用いられるが、ZSM−5の細孔径は
最大のもので5.5人程度とされており、その細孔構造
がメチル化に適していると記載されている。
In the above known method, for example, zeolite ZSM-5 is used as the solid acid catalyst, but the maximum pore diameter of ZSM-5 is approximately 5.5 pores, and its pore structure is suitable for methylation. It is stated that there is.

[発明が解決しようとする課題] 分子の大きさは、Lenard−Jonesポテンシャ
ル関数から求められる速度論的直径(kirleHcd
iameter)や臨界分子直径、或は化学結合距離等
で定義することができるが、メチルナフタリンおよび2
.6−ジメチルナフタリンの場合、化学結合距離を基に
計算された分子径は第1図(a) 、 (b)に示すY
軸方向に見て前者で6.1人、後者で6.2人であり、
前記ZSM−5の細孔径(5,5人)に比べやや大きい
ようである。その結果2−メチルナフタリンがZSM−
5の細孔内で反応する場合、細孔内での2−メチルナフ
タリンの拡散性が悪く、その為ジメチルナフタリンへの
転化率が低くなり、従フて当然に2.6−ジメチル(及
び/または2.7−ジメチル)ナフタリンの収率も低い
という問題があった。
[Problem to be solved by the invention] The size of the molecule is determined by the kinetic diameter (kirleHcd) obtained from the Lenard-Jones potential function.
iameter), critical molecular diameter, or chemical bond distance, but methylnaphthalene and 2
.. In the case of 6-dimethylnaphthalene, the molecular diameter calculated based on the chemical bond distance is Y as shown in Figure 1 (a) and (b).
Looking in the axial direction, the former has 6.1 people and the latter has 6.2 people.
The pore size seems to be slightly larger than the pore size of ZSM-5 (5.5 people). As a result, 2-methylnaphthalene is ZSM-
When reacting within the pores of No. 5, the diffusivity of 2-methylnaphthalene within the pores is poor, resulting in a low conversion rate to dimethylnaphthalene, which naturally results in 2,6-dimethyl (and/or Another problem was that the yield of 2,7-dimethyl)naphthalene was also low.

本発明は上記の様な事情に着目してなされたものであっ
て、ジメチルナフタリンへの転化率を高めることのでき
る様な製造技声の確立を第1の目的とした。しかしなが
ら上言、己転化率を高めたとしても、メチル基を6位及
び/または7位に選択的に導入することができない場合
、即ち例えば4位、5位等への導入率が高い場合は、2
.6−ジメチル(及び/または2.7−ジメチル)ナフ
タリンの製造方法としては不適当と言わなければならな
い。そこで6位または7位への導入選択率の高い製造技
術を確立することを第2の目的とした。
The present invention was made in view of the above-mentioned circumstances, and its first objective is to establish a production technique that can increase the conversion rate to dimethylnaphthalene. However, as mentioned above, even if the self-conversion rate is increased, if the methyl group cannot be selectively introduced into the 6-position and/or 7-position, for example, if the introduction rate into the 4-position, 5-position, etc. is high, ,2
.. It must be said that this method is inappropriate as a method for producing 6-dimethyl (and/or 2,7-dimethyl) naphthalene. Therefore, the second objective was to establish a manufacturing technology with a high selection rate for introduction into the 6th or 7th place.

[課題を解決するための手段コ 本発明は上記各目的を達成したものであって、固体酸触
媒として少なくとも入口細孔径平均が6.0〜6.5人
の多孔質固体酸触媒を用いてメチル化する点に要旨を有
するものである。
[Means for Solving the Problems] The present invention achieves each of the above objects, and uses a porous solid acid catalyst having an average inlet pore diameter of at least 6.0 to 6.5 as the solid acid catalyst. The gist of this is that it is methylated.

[作用] 本発明は上記の様に2−メチルナフタリンからジメチル
体への転化率を高めると共に、特に2゜6−ジメチル体
または2,7−ジメチル体への選択率を高める手段とし
て入口細孔径平均が6.0〜6.5人の多孔質固体酸触
媒を用いる点にポイントを有するものである。
[Function] As described above, the present invention improves the conversion rate of 2-methylnaphthalene to dimethyl form and, in particular, improves the inlet pore diameter as a means of increasing the selectivity to 2゜6-dimethyl form or 2,7-dimethyl form. The key point is that a porous solid acid catalyst having an average of 6.0 to 6.5 people is used.

即ち、入口細孔径を、原料である2−メチルナフタリン
及び目的とする2、6−ジメチル(及び/または2.7
−ジメチル)ナフタリン(それぞれ分子径6.2人/6
1人)が通過でき、目的としない他のジメチルナフタリ
ン等(例えば2.4−体、2.5一体及び2.8一体の
分子径は6.9人、1.5一体は7.7 人)が通過し
にくい大きさに入口細孔径を制御することにより目的を
達成することができたものである。入口細孔径が小さ過
ぎると原料である2−メチルナフタリンが触媒細孔内に
進入しにくく、反応による転化率が低くなり、また大き
過ぎると反応転化率は向上するものの、2.6−ジメチ
ル(及び/または2,7−ジメチル)ナフタリンの選択
率が低下する。細孔径の制御は入口細孔径の制御を行な
えばよく、必ずしも触媒内部の細孔径まで制御する必要
はない。尚細孔径の測定は[日本化学会誌、420〜4
23、(3)、’1989コに記載の方法に準じて行な
った。
That is, the inlet pore diameter is adjusted between the raw material 2-methylnaphthalene and the target 2,6-dimethyl (and/or 2.7
-dimethyl) naphthalene (each molecular size 6.2 people/6
1 person) can pass through, and other dimethylnaphthalene, etc. that are not intended (for example, 2.4-body, 2.5-body, and 2.8-body have a molecular diameter of 6.9 people, and 1.5-body has a molecular diameter of 7.7 people). ) was able to achieve this goal by controlling the inlet pore diameter to a size that makes it difficult for the particles to pass through. If the inlet pore diameter is too small, it will be difficult for the raw material 2-methylnaphthalene to enter the catalyst pores, resulting in a low reaction conversion rate; if it is too large, the reaction conversion rate will improve, but 2,6-dimethyl ( and/or the selectivity of naphthalene (2,7-dimethyl) is reduced. The pore diameter may be controlled by controlling the entrance pore diameter, and it is not necessarily necessary to control the pore diameter inside the catalyst. The pore diameter is measured according to [Journal of the Chemical Society of Japan, 420-4
23, (3), '1989.

上記細孔径に制御する方法としては公知の方法より任意
に選択することができる。例えば、テトラメトキシシラ
ンの化学蒸着法(CVD法)[日本化学会誌、410〜
419.(3)、1989及び日本化学会誌、420〜
423.(3)。
The method for controlling the pore size described above can be arbitrarily selected from known methods. For example, the chemical vapor deposition method (CVD method) of tetramethoxysilane [Journal of the Chemical Society of Japan, 410-
419. (3), 1989 and Journal of the Chemical Society of Japan, 420-
423. (3).

1989等]やイオン交換法(特開昭63−14683
4等)等により実施することができる。アルキル化反応
の条件も特に制限されるものではなく、メタノール、ジ
メチルエーテル、トルエン等を用いた公知の方法を利用
することができる。
1989, etc.] and ion exchange method (Japanese Patent Application Laid-Open No. 14683-1983)
4 etc.) etc. The conditions for the alkylation reaction are not particularly limited either, and known methods using methanol, dimethyl ether, toluene, etc. can be used.

以下実施例によって本発明を更に詳述するが、下記実施
例は本発明を制限するものではなく、前・後記の趣旨を
逸脱しない範囲で変更実施することは全て本発明の技術
範囲に包含される。
The present invention will be explained in more detail with reference to examples below, but the following examples do not limit the present invention, and all modifications and implementations within the scope of the spirit of the preceding and later descriptions are included within the technical scope of the present invention. Ru.

[実施例] 実施例1 第2図に示される装置を用いて2−メチルナフタリンの
メチル化を実施した。
[Example] Example 1 Methylation of 2-methylnaphthalene was carried out using the apparatus shown in FIG.

まず、CVD法により入口細孔径を6.3人に制御した
Y型ゼオライトを作成した。得られたゼオライト0.5
gと海砂1.5gをよく混合し、石英ガラスカラム7に
充填した後、アルゴンガス30cc/min、温度Bo
o℃の条件下で十分に予備乾燥し焼成を行なった。メシ
チレン100重量部に対しメタノール30重量部及び2
−メチルナフタリン50重量部を含んだ溶液0.020
cc/min 、及びキャリアガスとしてアルゴンガス
30 cc/minを温度400℃の条件下に供給した
。1時間経過後にコールドトラップ5に回収されていた
反応液の分析を行なった。
First, a Y-type zeolite with an inlet pore diameter controlled to 6.3 pores was created using the CVD method. Obtained zeolite 0.5
After mixing well with 1.5 g of sea sand and filling the quartz glass column 7, argon gas 30 cc/min and temperature Bo
It was sufficiently pre-dried and fired at 0°C. 30 parts by weight of methanol and 2 parts by weight for 100 parts by weight of mesitylene
-0.020 of a solution containing 50 parts by weight of methylnaphthalene
cc/min, and 30 cc/min of argon gas as a carrier gas were supplied at a temperature of 400°C. After one hour had passed, the reaction solution collected in the cold trap 5 was analyzed.

実施例2 細孔径が6.1人に制御されたモルデナイトを使用した
以外は実施例1と同様に処理した。
Example 2 The same process as in Example 1 was carried out except that mordenite whose pore size was controlled to 6.1 pores was used.

比較例1 細孔径が制御されていないY型ゼオライト(細孔径7.
4人)を用いた以外は実施例1と同様に処理した。
Comparative Example 1 Y-type zeolite with uncontrolled pore diameter (pore diameter 7.
The process was carried out in the same manner as in Example 1, except that 4 people) were used.

比較例2 細孔径が制御されていないA型ゼオライト(細孔径4,
2人)を用いた以外は実施例1と同様に処理した。
Comparative Example 2 Type A zeolite with uncontrolled pore size (pore size 4,
The process was carried out in the same manner as in Example 1, except that 2 persons) were used.

上記実施例1.2及び比較例1.2の結果を第1表に示
す。
The results of Example 1.2 and Comparative Example 1.2 are shown in Table 1.

第1表に示される様に実施例1及び2における2、6−
ジメチル及び2.7−シメチルナフタリンの選択率は8
0%以上であり、選択性が非常に優れていた。一方比較
例1は細孔径が大きく転化率は51.1%と実施例より
優れていたが、選択率は32.6%とかなり低かフた。
2, 6- in Examples 1 and 2 as shown in Table 1.
The selectivity for dimethyl and 2,7-dimethylnaphthalene is 8
It was 0% or more, and the selectivity was very excellent. On the other hand, Comparative Example 1 had a large pore diameter and a conversion rate of 51.1%, which was superior to the examples, but the selectivity was quite low at 32.6%.

また比較例2は細孔径が小さい為反応がほとんど起こら
ず、選択率も低かフた。
Furthermore, in Comparative Example 2, the pore diameter was small, so almost no reaction occurred, and the selectivity was low or even zero.

[発明の効果] 本発明は以上の様に構成されており、固体酸触媒の入口
細孔径を制御することによって、2.6−ジメチル及び
2.7−シメチルナフタリンを選択性良く製造すること
ができるようになった。
[Effects of the Invention] The present invention is configured as described above, and can produce 2,6-dimethyl and 2,7-dimethylnaphthalene with good selectivity by controlling the inlet pore diameter of the solid acid catalyst. Now you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は夫々2−メチルナフタリン
と2.6−シメチルナフタリンの分子径を示す図、第2
図は本発明の実施に用いられる反応装置の一例を示す図
である。 1・・・ポンプ     2・・・ヒータ3・・・グラ
スウール  4・・・触媒層5・・・コールドトラップ
Figures 1 (a) and (b) are diagrams showing the molecular diameters of 2-methylnaphthalene and 2,6-dimethylnaphthalene, respectively.
The figure is a diagram showing an example of a reaction apparatus used for carrying out the present invention. 1... Pump 2... Heater 3... Glass wool 4... Catalyst layer 5... Cold trap

Claims (1)

【特許請求の範囲】[Claims] 多孔質固体酸触媒の存在下に2−メチルナフタリンにメ
チル化剤を反応させてジメチルナフタリンを製造するに
当たり、固体酸触媒として少なくとも入口細孔径平均が
6.0〜6.5Åの多孔質固体酸触媒を用いて高選択率
下に2,6−ジメチル(及び/または2,7−ジメチル
)ナフタリンを製造することを特徴とするジメチルナフ
タリンの製造方法。
In producing dimethylnaphthalene by reacting a methylating agent with 2-methylnaphthalene in the presence of a porous solid acid catalyst, a porous solid acid having an average inlet pore diameter of at least 6.0 to 6.5 Å is used as the solid acid catalyst. A method for producing dimethylnaphthalene, which comprises producing 2,6-dimethyl (and/or 2,7-dimethyl)naphthalene at high selectivity using a catalyst.
JP2336274A 1990-11-29 1990-11-29 Method for producing dimethylnaphthalene Expired - Fee Related JP2820792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2336274A JP2820792B2 (en) 1990-11-29 1990-11-29 Method for producing dimethylnaphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336274A JP2820792B2 (en) 1990-11-29 1990-11-29 Method for producing dimethylnaphthalene

Publications (2)

Publication Number Publication Date
JPH04202144A true JPH04202144A (en) 1992-07-22
JP2820792B2 JP2820792B2 (en) 1998-11-05

Family

ID=18297415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336274A Expired - Fee Related JP2820792B2 (en) 1990-11-29 1990-11-29 Method for producing dimethylnaphthalene

Country Status (1)

Country Link
JP (1) JP2820792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128711A (en) * 2000-10-24 2002-05-09 Nippon Steel Chem Co Ltd Method of producing 2,6-dimethylnaphthalene
US6601594B2 (en) * 1997-05-09 2003-08-05 Semitool, Inc. Apparatus and method for delivering a treatment liquid and ozone to treat the surface of a workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601594B2 (en) * 1997-05-09 2003-08-05 Semitool, Inc. Apparatus and method for delivering a treatment liquid and ozone to treat the surface of a workpiece
JP2002128711A (en) * 2000-10-24 2002-05-09 Nippon Steel Chem Co Ltd Method of producing 2,6-dimethylnaphthalene

Also Published As

Publication number Publication date
JP2820792B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
Firmansyah et al. Synthesis and characterization of fibrous silica ZSM-5 for cumene hydrocracking
He et al. Transformation of Methane to Propylene: A Two‐Step Reaction Route Catalyzed by Modified CeO2 Nanocrystals and Zeolites
Hamada et al. Highly selective reduction of nitrogen oxides with hydrocarbons over H-form zeolite catalysts in oxygen-rich atmospheres
Hochstrasser et al. Isotopically selective photochemistry in molecular crystals
US5852088A (en) Nanoporous ceramics with catalytic functionality
Wang et al. Rational design of zinc/zeolite catalyst: selective formation of p‐xylene from methanol to aromatics reaction
CN107335386A (en) A kind of catalytic reactor configuration and preparation and the under anaerobic method of the direct synthesizing ethylene of catalytic methane
JP3184833B2 (en) Membrane for small molecule separation and method for producing the same
Lednor Synthesis, stability, and catalytic properties of high surface area silicon oxynitride and silicon carbide
US20020072642A1 (en) Catalyst and process for aromatic hydrocarbons production form methane
WO2018195865A1 (en) In-situ preparation method for catalyst for preparing at least one of toluene, p-xylene and low-carbon olefin, and reaction process
TW201119737A (en) Catalysts for oxidative coupling of hydrocarbons
JP2831029B2 (en) Method for producing phenol
CN111333478B (en) Method for preparing olefin, aromatic hydrocarbon and hydrogen by steam catalytic conversion of methane
CN101480620A (en) Preparation method of Silicalite-1 molecular sieve membrane catalyst for shape-selective disproportionation of toluene
CN102531823B (en) Propylene preparation method with high propylene production rate by using methanol
JPH04202144A (en) Production of dimethylnaphthalene
CN106629769A (en) Preparation method of micron-sized HZSM-5 molecular sieve and application of micron-sized HZSM-5 molecular sieve
Yao et al. Self‐Assembled Nano‐Filamentous Zeolite Catalyst to Realize Efficient One‐Step Ethanol Synthesis
CN101468948A (en) An integrated process for preparing a carboxylic acid from an alkane
Kang et al. Fluxional behavior in tetrahaptobenzene-rhodium and-iridium complexes
Paquette et al. Preparatively useful dehydrogenative method for dodecahedrane synthesis
CN102596405A (en) Supported mesoporous and microporous material, and process for producing the same
CN113880110B (en) Nanometer hierarchical pore MOR/MTW eutectic molecular sieve and preparation method and application thereof
CN113198527B (en) Composite hierarchical pore molecular sieve catalyst for preparing aromatic hydrocarbon from low-carbon alkane and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees