JPH0420208B2 - - Google Patents

Info

Publication number
JPH0420208B2
JPH0420208B2 JP4200682A JP4200682A JPH0420208B2 JP H0420208 B2 JPH0420208 B2 JP H0420208B2 JP 4200682 A JP4200682 A JP 4200682A JP 4200682 A JP4200682 A JP 4200682A JP H0420208 B2 JPH0420208 B2 JP H0420208B2
Authority
JP
Japan
Prior art keywords
voltage
operational amplifier
diode
temperature
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4200682A
Other languages
Japanese (ja)
Other versions
JPS58158724A (en
Inventor
Hiroshi Fujeda
Tatsuo Saka
Takashi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4200682A priority Critical patent/JPS58158724A/en
Publication of JPS58158724A publication Critical patent/JPS58158724A/en
Publication of JPH0420208B2 publication Critical patent/JPH0420208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は種々の用途に応用可能な基準電圧発生
回路に関し、特に乾電池等の比較的低電圧の直流
電源下での使用に適している。 従来この種基準電圧発生回路には、第2図に示
すように、直流電源としての乾電池1と、限流抵
抗2と、ダイオード3との直列回路があつた。基
準電圧VRとしては、ダイオード3の両端の電圧
VDFを用いる。この電圧VDFは、乾電池1の比較
的広い電圧範囲にわたつて、比較的安定な電圧で
あり、シリコンダイオードで約0.6V程度である。
然るに、周知の如く、ダイオード電圧VDFは温度
特性を有し、シリコンダイオードでは約−2m
V/℃である。温度範囲が狭い応用にあつては、
これで充分であるが、例えば屋外設置機器等の基
準電圧としては明らかに不適当である。 本発明はかかる従来の欠点を排除し、広い温度
範囲にわたつて、安定な基準電圧を発生させる回
路を得ることが目的である。 このような目的を達成するためには、比較的高
い直流電源を用いることができる場合、ゼナー電
圧が5V前後のゼナーダイオードを用いることが
広く行なわれている。然るに、このゼナーダイオ
ードを用いる時、回路の直流電源電圧は少くとも
5V以上なければならない。従つて、回路の直流
電源電圧が5V以下の場合には、上記したゼナー
ダイオードを用いることができない。 本発明は、比較的低い回路直流電源電圧下でも
使用可能な基準電圧発生回路を得ることが第2の
目的である。 以下本発明を、第1図の実施例により説明す
る。4は演算増幅器すなわちオペアンプで、ダイ
オード3の電圧VDFを一方の入力とする。他方の
入力は、その出力VOを感温抵抗素子5と抵抗6
の直列回路で分割した電圧V-である。この場合
感温抵抗素子5は正の温度係数をもつ。オペアン
プ4の電圧の関係は以下を満足する。 VR=R6/R5+R6・VO VR=VDF ∴VO=(R5+R6)/R6・VDF 但し、 R5……感温抵抗素子5の抵抗値 R6……抵抗6の抵抗値 ここで、上式より明らかなようにオペアンプ4
の増幅率は、感温抵抗素子5と抵抗6の直列回路
で与えられる。例えば、ダイオード3にシリコン
ダイオードを用いると、その電圧は0.6V、温度
係数は−2mV/℃である。ここで、感温抵抗素
子5として、抵抗値R5=3.9R6、温度係数
3900ppm/℃のものを使用すると、次表のような
出力電圧VOを得る。
The present invention relates to a reference voltage generating circuit that can be applied to various uses, and is particularly suitable for use under a relatively low voltage DC power source such as a dry battery. Conventionally, this type of reference voltage generating circuit includes a series circuit including a dry battery 1 as a DC power source, a current limiting resistor 2, and a diode 3, as shown in FIG. The reference voltage V R is the voltage across diode 3.
Use V DF . This voltage V DF is a relatively stable voltage over a relatively wide voltage range of the dry battery 1, and is about 0.6 V for a silicon diode.
However, as is well known, the diode voltage V DF has temperature characteristics, and for silicon diodes it is approximately -2 m
V/°C. For applications with narrow temperature ranges,
Although this is sufficient, it is obviously inappropriate as a reference voltage for equipment installed outdoors, for example. The object of the present invention is to eliminate such conventional drawbacks and to provide a circuit that generates a stable reference voltage over a wide temperature range. To achieve this purpose, when a relatively high DC power source can be used, it is widely practiced to use a Zener diode with a Zener voltage of around 5V. However, when using this Zener diode, the DC power supply voltage of the circuit is at least
Must be 5V or higher. Therefore, if the DC power supply voltage of the circuit is 5V or less, the Zener diode described above cannot be used. A second object of the present invention is to obtain a reference voltage generating circuit that can be used even under a relatively low circuit DC power supply voltage. The present invention will be explained below with reference to the embodiment shown in FIG. Reference numeral 4 designates an operational amplifier, which receives the voltage V DF of the diode 3 as one input. The other input connects the output V O to the temperature sensitive resistance element 5 and the resistor 6.
The voltage V - is divided by the series circuit. In this case, the temperature sensitive resistance element 5 has a positive temperature coefficient. The voltage relationship of the operational amplifier 4 satisfies the following. V R = R6/R5+R6・V O V R = V DF ∴V O = (R5+R6)/R6・V DF However, R5...Resistance value of temperature sensitive resistance element 5 R6... Resistance value of resistor 6 Here, As is clear from the above equation, operational amplifier 4
The amplification factor is given by the series circuit of the temperature sensitive resistance element 5 and the resistor 6. For example, if a silicon diode is used as the diode 3, its voltage is 0.6V and its temperature coefficient is -2mV/°C. Here, as the temperature-sensitive resistance element 5, resistance value R5 = 3.9R6, temperature coefficient
If you use one with 3900ppm/℃, you will get the output voltage V O as shown in the table below.

【表】 表でVO′は従来のダイオードのみを使用した場
合の温度特性である。このように、第1図の回路
を用いることにより、基準電圧VRの温度特性を
大幅に改善でき、極めて安定な基準電圧を得るこ
とができる。この効果は、オペアンプ4の入力電
圧たるダイオード電圧VDが温度の上昇とともに
減少するのに対し、感温抵抗素子5の抵抗値R5
が上昇し、これにより、オペアンプ4の増幅率が
上昇することによつてダイオード電圧VDの低下
を補償することによつて得られている。 以上詳述したように、本発明は、ダイオードの
電圧VDの温度変化を、感温抵抗素子と抵抗との
直列回路により、ダイオード電圧を入力とするオ
ペアンプの増幅率を変化させることにより、安定
な基準電圧を得ている。また、この電圧は、上述
の例で示したように、例えば3V以下の電圧であ
り、温度特性の良いゼナーダイオードにより得ら
れる電圧5V前後よりも低く、直流電源電圧が5V
以下の場合にも、安定な基準電圧が得られる。
[Table] In the table, V O ' is the temperature characteristic when only conventional diodes are used. As described above, by using the circuit shown in FIG. 1, the temperature characteristics of the reference voltage V R can be greatly improved, and an extremely stable reference voltage can be obtained. This effect is due to the fact that the diode voltage V D , which is the input voltage of the operational amplifier 4, decreases as the temperature rises, whereas the resistance value R5 of the temperature-sensitive resistance element 5 decreases.
This is achieved by compensating for the decrease in the diode voltage V D by increasing the amplification factor of the operational amplifier 4. As described in detail above, the present invention stabilizes temperature changes in the diode voltage V D by changing the amplification factor of an operational amplifier that receives the diode voltage using a series circuit of a temperature-sensitive resistance element and a resistor. A standard voltage is obtained. In addition, as shown in the example above, this voltage is, for example, 3V or less, which is lower than the voltage of around 5V obtained by a Zener diode with good temperature characteristics, and the DC power supply voltage is 5V.
A stable reference voltage can also be obtained in the following cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の基準電圧発生回路
の回路図、第2図は従来の回路図である。 3……ダイオード、4……オペアンプ、5……
感温抵抗素子、6……抵抗。
FIG. 1 is a circuit diagram of a reference voltage generating circuit according to an embodiment of the present invention, and FIG. 2 is a conventional circuit diagram. 3... Diode, 4... Operational amplifier, 5...
Temperature-sensitive resistance element, 6...resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源と、前記直流電源から電流を供給さ
れる抵抗とダイオードの直列回路と、前記ダイオ
ード両端電圧を増幅する演算増幅器と、前記演算
増幅器の増幅率を設定し演算増幅器の出力電圧を
分割して演算増幅器に帰還入力する感温抵抗素子
と抵抗の直列回路で構成し、前記演算増幅器の出
力電圧を基準電圧として出力する基準電圧発生回
路。
1. A DC power supply, a series circuit of a resistor and a diode supplied with current from the DC power supply, an operational amplifier that amplifies the voltage across the diode, and setting the amplification factor of the operational amplifier to divide the output voltage of the operational amplifier. A reference voltage generating circuit is configured of a series circuit of a temperature-sensitive resistance element and a resistor that feed back into an operational amplifier, and outputs the output voltage of the operational amplifier as a reference voltage.
JP4200682A 1982-03-16 1982-03-16 Reference voltage generating circuit Granted JPS58158724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4200682A JPS58158724A (en) 1982-03-16 1982-03-16 Reference voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4200682A JPS58158724A (en) 1982-03-16 1982-03-16 Reference voltage generating circuit

Publications (2)

Publication Number Publication Date
JPS58158724A JPS58158724A (en) 1983-09-21
JPH0420208B2 true JPH0420208B2 (en) 1992-04-02

Family

ID=12624094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4200682A Granted JPS58158724A (en) 1982-03-16 1982-03-16 Reference voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS58158724A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530185Y2 (en) * 1986-02-26 1993-08-02
KR920010633A (en) * 1990-11-30 1992-06-26 김광호 Reference voltage generation circuit of semiconductor memory device
JP2002099334A (en) * 2000-09-26 2002-04-05 Sanyo Electric Co Ltd Reference voltage generating circuit
US6504350B2 (en) * 2001-05-02 2003-01-07 Agere Systems Inc. Adaptive power supply arrangement
JP2011173552A (en) 2010-02-25 2011-09-08 Beat Sonic:Kk Antitheft device for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850244A (en) * 1971-10-25 1973-07-16
JPS49119736U (en) * 1973-02-12 1974-10-14
JPS5236746A (en) * 1975-09-18 1977-03-22 Matsushita Electric Ind Co Ltd Stabilizing circuit of voltage

Also Published As

Publication number Publication date
JPS58158724A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
US4099115A (en) Constant-voltage regulated power supply
JPS6149224A (en) Voltage reference circuit with temperature compensation
US3600663A (en) Voltage regulated power supply having low ripple factor
GB1515446A (en) Constant voltage circuit
EP0008897A1 (en) Constant-voltage power source device
JPH0420208B2 (en)
GB1139043A (en) Improvements in direct current power supplies with overload protection
JPS6346444B2 (en)
US4081696A (en) Current squaring circuit
US3536986A (en) Low level costant current source
US3046469A (en) Transistor regulated power supply
US3548291A (en) Voltage regulator with a low input impedance and improved feedback gain characteristics
JPH0140283Y2 (en)
SU864273A1 (en) Dc voltage stabilizer
SU1198494A1 (en) D.c.voltage stabilizer
JPS6317246B2 (en)
JPS632888Y2 (en)
SU626432A1 (en) Dc voltage stabilizer
SU826314A1 (en) Dc voltage stabilizer
SU473190A1 (en) Functional converter
SU410371A1 (en)
SU1053084A2 (en) Reference voltage source
SU594492A1 (en) Transistor dc voltage stabilizer
JPS6119141B2 (en)
JPS5827213A (en) Temperature compensating circuit