JPH04201694A - Spanwise blowing device for aircraft - Google Patents

Spanwise blowing device for aircraft

Info

Publication number
JPH04201694A
JPH04201694A JP33412090A JP33412090A JPH04201694A JP H04201694 A JPH04201694 A JP H04201694A JP 33412090 A JP33412090 A JP 33412090A JP 33412090 A JP33412090 A JP 33412090A JP H04201694 A JPH04201694 A JP H04201694A
Authority
JP
Japan
Prior art keywords
air
wing
flap
fuselage
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33412090A
Other languages
Japanese (ja)
Inventor
Keisuke Kamo
加茂 圭介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP33412090A priority Critical patent/JPH04201694A/en
Publication of JPH04201694A publication Critical patent/JPH04201694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)

Abstract

PURPOSE:To simplify the construction of an air blowing device and reduce the weight thereof by keeping continuity between an air intake on the lower side of a fuselage- wing blend section and an air blow hole at the side of the blend section in slidable contact with a leading flap, and opening the air blow hole for blowing the air in a wing width direction, when the leading flap is operated. CONSTITUTION:A main wing 4 outside a fuselage-wind blend section 3 at both sides of a fuselage 2, is constituted of a fixed wing 5, a trailing flap 6 at the trailing edge thereof and a maneuver flap 7 at the leading edge thereof. The maneuver flap 7 is pivotally supported in such a way that the end thereof can move vertically. In addition, both edges of the flap 7 are in slidable contact with the aforesaid blend section 3. An air intake 8 is provided on the lower side of the section 3, and an air blow hole 9 is provided on the section 3 where in slidable contact with the maneuver flap 7. In addition, the air intake 8 and air blow hole 9 are continuous to each other via an air duct 10. When the end of the maneuver flap 7 declines, the air blow hole 9 opens and becomes continuous to the air intake 8. Consequently, the air blows from the air blow hole 9 in a wing width direction, thereby strengthening a large separation eddy current generated on a main wing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空機のスパンワイズブローイング装置に係り
、特に機体表面の空気の圧力が高い翼胴ブレンドの下面
に空気取入口を設けるとともに、マニューバーフラップ
と摺接する翼胴ブレンドの側面に空気噴出口を設け、こ
の空気取入口と空気噴出口とを空気噴出口に向って流路
断面積が漸減するエアダクトによって連通させた航空機
のスパンワイズブローイング装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a spanwise blowing device for an aircraft. This invention relates to a spanwise blowing device for an aircraft, in which an air outlet is provided on the side surface of a wing-fuselage blend in sliding contact with the air intake, and the air intake and the air outlet are communicated by an air duct whose flow passage cross-sectional area gradually decreases toward the air outlet. .

〔従来の技術〕[Conventional technology]

一般に戦闘機等の航空機が高迎角て飛行する時は、翼の
上面に大剥離渦が発生し、空気流がこの大剥離渦を乗り
越えて再び翼の表面に接して流れ、翼の揚力を維持する
。しかし、航空機の迎角が一定の値より大きくなると、
前記大剥離渦は崩壊し、翼は急激にその揚力を失う。
Generally, when an aircraft such as a fighter jet flies at a high angle of attack, a large separation vortex is generated on the upper surface of the wing, and the airflow overcomes this large separation vortex and flows back into contact with the surface of the wing, increasing the lift of the wing. maintain. However, when the angle of attack of the aircraft becomes larger than a certain value,
The large separation vortex collapses and the wing rapidly loses its lift.

第6図は航空機の翼の上面に発生する大剥離渦を示して
いる。航空機15が高迎角て飛行する時に、翼16の上
面に大剥離渦Wlが発生する。大剥離渦W1は翼16の
付根部からほぼ翼の前縁に沿って伸長し、翼16の先端
に達する。しかし、航空機15の迎角か一定の値以上に
なると、図中に示すように、大剥離渦W1は翼16の先
端に達することなく途中で崩壊する。大剥離渦W1が崩
壊すると、空気流は翼16から剥離し、翼16の揚力が
失われる。
FIG. 6 shows a large separation vortex generated on the upper surface of an aircraft wing. When the aircraft 15 flies at a high angle of attack, a large separation vortex Wl is generated on the upper surface of the wing 16. The large separation vortex W1 extends from the root of the blade 16 almost along the leading edge of the blade and reaches the tip of the blade 16. However, when the angle of attack of the aircraft 15 exceeds a certain value, the large separation vortex W1 collapses on the way without reaching the tip of the wing 16, as shown in the figure. When the large separation vortex W1 collapses, the airflow separates from the blade 16 and the lift of the blade 16 is lost.

これに対し、航空機のエンジンの圧縮機の抽気を利用し
て、翼の付根部に空気の噴出口を設け、高圧の空気を翼
巾方向に噴出し、大剥離渦の内部にさらに渦流を形成し
て大剥離渦を補強し、より大きい迎角においても、大剥
離渦を維持して翼の揚力を失わないようにしたスパンワ
イズブローイング装置が知られている(特公昭57−6
0200号公報、特開昭58−183388号公報、N
ASA  TN  D−7907,AIAA−84−2
195)。
To counter this, air jets are installed at the root of the wing using air bleed from the aircraft's engine compressor, and high-pressure air is jetted across the width of the wing, creating further vortex flow inside the large separation vortex. A spanwise blowing device is known in which the large separation vortices are reinforced by a large separation vortex, and even at a larger angle of attack, the large separation vortices are maintained so that the lift of the wing is not lost (Japanese Patent Publication No. 57-6).
No. 0200, JP-A-58-183388, N
ASA TN D-7907, AIAA-84-2
195).

第7図は従来のスパンワイズブローイング装置による剥
離渦を示している。
FIG. 7 shows a separated vortex produced by a conventional spanwise blowing device.

航空機15の翼16の付根部に空気噴出口17が設けら
れている。この空気噴出口17は図示しないエンジンの
圧縮機の吐出管と連通され、圧縮機の圧縮空気か噴出す
るように構成されている。
An air outlet 17 is provided at the root of a wing 16 of an aircraft 15. This air jet port 17 is connected to a discharge pipe of a compressor of an engine (not shown), and is configured to jet compressed air from the compressor.

さらに空気噴出口17と圧縮機とを接続する配管には配
管を選択的に閉鎖・開放する制御弁か設けられ、さらに
この制御弁を制御する制御装置か備えられている。
Further, a control valve for selectively closing and opening the pipe is provided in the pipe connecting the air outlet 17 and the compressor, and a control device for controlling this control valve is also provided.

航空機15が高迎角で飛行する時に、翼16の上面に大
剥離渦W1か発生する。この大剥離渦Wlの発生に応じ
て、空気噴出口17より圧縮機の高圧空気を翼巾方向に
噴出される。この高圧空気は翼上面の気流の影響を受け
て、小剥離渦W2を生じる。大剥離渦Wlは小剥離渦W
2に補強され、大きい迎角においても崩壊することなく
、図中に示すように、翼の先端に伸長して翼の揚力を維
持する。
When the aircraft 15 flies at a high angle of attack, a large separation vortex W1 is generated on the upper surface of the wing 16. In response to the generation of this large separation vortex Wl, the high pressure air of the compressor is ejected from the air ejection port 17 in the width direction of the blade. This high-pressure air is influenced by the airflow on the upper surface of the blade and generates a small separated vortex W2. Large separation vortex Wl is small separation vortex W
2, it does not collapse even at large angles of attack and extends to the tip of the wing to maintain the lift of the wing, as shown in the figure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のスパンワイズブローイング装置は
エンジンの圧縮機の抽気を利用するので、エンジンの推
力が低下するという問題があった。
However, since conventional spanwise blowing devices utilize bleed air from the engine's compressor, there has been a problem in that the thrust of the engine is reduced.

さらに、エンジンの回転数と油気量とを精密に制御しな
ければ、油気量が多すぎるためにエンジンか停止する事
故が生じる問題があった。
Furthermore, unless the engine speed and the amount of oil are precisely controlled, there is a problem that the engine may stop due to the amount of oil being too large.

また、圧縮空気の噴出・停止を選択的に制御するための
制御弁や制御装置を設けなければならないので、機体の
重量か増し、構造か複雑であるという間通があった。
In addition, since a control valve and a control device must be provided to selectively control the ejection and stop of compressed air, the weight of the aircraft increases and the structure becomes complicated.

そこで本発明の目的は、構造が簡単であり、重量が軽く
、エンジンの推力を損なうことなく、エンジンの停止事
故を完全に防止する航空機のスパンワイズブローイング
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spanwise blowing device for an aircraft that has a simple structure, is light in weight, and completely prevents engine stoppage accidents without impairing the thrust of the engine.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の航空機のスパンワ
イズブローイング装置は、胴体の両側に翼胴ブレンドを
有し、それぞれの翼胴ブレンドの外側に主翼を有し、主
翼の前縁に移動可能な前縁フラップを有する航空機にお
いて、翼胴ブレンドの下面に空気取入口を設けると共に
、前記前縁フラップと摺接する翼胴ブレンドの側面に空
気噴出口を設け、この空気取入口と空気噴出口とをエア
ダクトで連通し、前記空気噴出口は前縁フラップを作動
させない時には前縁フラップの側端面によって閉鎖され
、前縁フラップを作動させた時には開放され、空気を翼
巾方向に噴出するように構成した巳とを特徴とするもの
である。
To achieve the above object, the aircraft spanwise blowing device of the present invention has wing-fuselage blends on both sides of the fuselage, and has a main wing on the outside of each wing-fuselage blend, and is movable to the leading edge of the main wing. In an aircraft having a leading edge flap, an air intake port is provided on the lower surface of the wing-fuselage blend, and an air jet port is provided on the side surface of the wing-fuselage blend that makes sliding contact with the leading edge flap, and the air intake port and the air jet port are connected to each other. are connected to each other by an air duct, and the air outlet is closed by the side end surface of the leading edge flap when the leading edge flap is not operated, and is opened when the leading edge flap is operated, and is configured to blow out air in the widthwise direction of the wing. It is characterized by a snake.

〔作用〕[Effect]

上記本発明の航空機のスパンワイズブローイング装置は
、高迎角飛行の時に空気圧が高くなる翼胴ブレンドの下
面に空気取入口を設け、空気圧が低くなる翼胴ブレンド
の側面に空気噴出口を設け、空気取入口と空気噴出口と
をエアダクトで連通するようにしたので、高迎角飛行時
に空気噴出口を開放すれば、空気取入口と空気噴出口と
の空気圧の差によって空気噴出口から空気が翼巾方向に
噴出して、大剥離渦を補強する小利ll!渦が形成され
る。
The above spanwise blowing device for an aircraft according to the present invention includes an air intake port provided on the lower surface of the wing-fuselage blend where the air pressure increases during high angle of attack flight, and an air jet port provided on the side surface of the wing-fuselage blend where the air pressure becomes low. Since the air intake port and the air jet port are connected through an air duct, if the air jet port is opened during high angle of attack flight, air will flow out from the air jet port due to the difference in air pressure between the air intake port and the air jet port. A small advantage that ejects in the width direction of the wing and reinforces the large separation vortex! A vortex is formed.

さらに空気噴出口は一1翼の前縁フラップを作動させな
い時には前縁フラップの側端面によって閉鎖され、前縁
フラップを作動させた時には開放されるように構成した
ので、高迎角飛行の時に太きい揚力を得るために前縁フ
ラップを作動させるのに応じて、空気噴出口から空気か
葉中方向に噴出する。したがって、スパンワイズブロー
イング装置を作動タイミングを制御する制御弁や制御装
置を必要としない。
Furthermore, the air outlet is configured so that it is closed by the side end face of the leading edge flap when the leading edge flap of wing No. 11 is not activated, and is opened when the leading edge flap is activated. In response to actuation of the leading edge flap to obtain high lift, air is ejected from the air outlet toward the midleaf. Therefore, there is no need for a control valve or a control device to control the operating timing of the spanwise blowing device.

〔実施例〕〔Example〕

以下に本発明の一実施例について添付の図面を参照して
説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図乃至第3図は本発明のスパンワイズブローイング
装置を備えた航空機の一部を示している。
1 to 3 show a portion of an aircraft equipped with the spanwise blowing device of the present invention.

全体を符号1で示した航空機は胴体2を有し、その両側
に胴体2と一体に形成された翼胴ブレンド3を有し、さ
らにこの翼胴ブレンド3の外側に主翼4を有している。
The aircraft, designated as a whole by the reference numeral 1, has a fuselage 2, on both sides thereof a wing-fuselage blend 3 integrally formed with the fuselage 2, and further has a main wing 4 outside the wing-fuselage blend 3. .

主翼4は固定翼5と後縁部の後縁フラップ6と前縁部の
マニューバーフラップ7とから構成されている。マニュ
ーバーフラップ7は先端部が上下できるように枢支され
、その側端面において翼胴ブレンド3と摺接している。
The main wing 4 is composed of a fixed wing 5, a trailing edge flap 6 at the trailing edge, and a maneuver flap 7 at the leading edge. The maneuver flap 7 is pivoted so that its tip can move up and down, and is in sliding contact with the wing-fuselage blend 3 at its side end surface.

翼胴ブレンド3の下面には空気取入口8が設けられ、前
記マニューバーフラップ7との摺接面には空気噴出口9
が設けられている。この空気取入口8と空気噴出口9は
空気噴出口9に向って流路断面積が漸減するエアダクト
10によって連通されている。′ 第4図は航空機1か本発明のスパンワイズブローイング
装置を作動させた状態を示している。
An air intake port 8 is provided on the lower surface of the wing body blend 3, and an air jet port 9 is provided on the sliding surface with the maneuver flap 7.
is provided. The air intake port 8 and the air outlet 9 are communicated by an air duct 10 whose flow passage cross-sectional area gradually decreases toward the air outlet 9. ' Figure 4 shows the aircraft 1 in operation with the spanwise blowing device of the present invention.

航空機1は高迎角で飛行する時には、マニューバーフラ
ップ7の先端を下げ、主翼4のキャンバ−を大きくする
ことにより、翼の上面と下面の圧力差を大きくして高い
揚力を得る。このとき、主翼4の付根の前縁部から大剥
離渦V1が発生し、気流はこの大剥離渦Vlを乗り越え
て再び主翼4の上面に接して流れるので、主翼4の揚力
が維持される。さらにマニューバーフラップ7の先端が
下がることにより、翼胴ブレンド3とマニューバーフラ
ップ7との摺接面に設けられた空気噴出口9は開放され
、空気取入口8と空気噴出口9とはエアダクト10を介
して連通状態になる。航空機の高迎角の飛行においては
、翼胴ブレンド3の下面の空気の圧力は翼の付根部に比
べて高圧になるので、空気は空気取入口8から流入し、
空気噴出口9から高速で具申方向に噴出する。空気噴出
口9から噴出した空気は主翼4の上面の気流の影響によ
り、小剥離渦v2になる。小剥離渦V2は大剥離渦v1
に対して同心的に伸長し、大剥離渦v2を補強し、大き
い迎角範囲においても大剥離渦を維持して翼の揚力を維
持する。
When the aircraft 1 flies at a high angle of attack, the tip of the maneuver flap 7 is lowered and the camber of the main wing 4 is increased to increase the pressure difference between the upper and lower surfaces of the wing, thereby obtaining high lift. At this time, a large separation vortex V1 is generated from the leading edge of the root of the main wing 4, and the airflow overcomes this large separation vortex Vl and flows again in contact with the upper surface of the main wing 4, so that the lift of the main wing 4 is maintained. Furthermore, by lowering the tip of the maneuver flap 7, the air outlet 9 provided on the sliding contact surface between the wing fuselage blend 3 and the maneuver flap 7 is opened, and the air intake port 8 and the air outlet 9 are connected to the air duct 10. communication is established through the When the aircraft is flying at a high angle of attack, the pressure of the air on the lower surface of the wing-fuselage blend 3 is higher than that at the root of the wing, so air flows in from the air intake port 8.
The air is ejected from the air outlet 9 at high speed in the direction of application. The air ejected from the air outlet 9 becomes a small separated vortex v2 due to the influence of the airflow on the upper surface of the main wing 4. Small separation vortex V2 is large separation vortex v1
The large-separation vortex v2 is extended concentrically with respect to the large-separation vortex v2, and the large-separation vortex v2 is maintained even in a large attack angle range to maintain the lift of the wing.

第゛5図は航空mlの巡航時の翼の作動状態を示、して
いる。航空機1は高速で巡航する時には、マニューバー
フラップ7の先端を上げ、マニューバーフラップ7と固
定翼5とが同一の平面となるようにして飛行する。マニ
ューバーフラップ7を水平に保持することにより、主翼
4は空気抵抗と揚力とが小さく、高速巡航に適した形状
になる。高速巡航時には、主翼4の上面には前記大剥離
渦は発生せず、かつ、空気噴出口゛9はマニューバーフ
ラップ7の側端面によって閉じられているので、前記小
剥離渦も発生しない。
Figure 5 shows the operating condition of the wing during cruising of the aircraft. When cruising at high speed, the aircraft 1 flies with the tip of the maneuver flap 7 raised so that the maneuver flap 7 and the fixed wing 5 are on the same plane. By holding the maneuver flaps 7 horizontally, the main wing 4 has low air resistance and lift, and has a shape suitable for high-speed cruising. During high-speed cruising, the large separated vortex is not generated on the upper surface of the main wing 4, and since the air outlet 9 is closed by the side end surface of the maneuver flap 7, the small separated vortex is not generated either.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、スパン
ワイズブローイング装置の空気取入口を空気の圧力が高
くなる翼胴ブレンドの下面に設けると共に、空気噴出口
を空気の圧力が低い翼胴ブレンドの側面に設けたので、
マニューバーフラップを下げた高迎角飛行時に、機体表
面の空気の圧力差により、空気が空気噴出口から具申方
向に噴出し、主翼上面に生じた大剥離渦を補強する。エ
ンジンの圧縮機の抽蝋を前記大剥M渦を補強する空気流
として用いていないので、エンジンの推力が圧縮機の抽
蝋によって低下したり、エンジンが停止する事故を完全
に防止できる。
As is clear from the above description, according to the present invention, the air intake of the spanwise blowing device is provided on the lower surface of the wing-body blend where the air pressure is high, and the air jet port is provided on the lower surface of the wing-body blend where the air pressure is low. Since it was installed on the side of
When flying at a high angle of attack with the maneuver flaps lowered, the difference in air pressure on the surface of the aircraft causes air to be ejected from the air outlet in the direction of the flight, reinforcing the large separation vortices that have formed on the upper surface of the main wing. Since the bolt of the engine compressor is not used as an air flow to reinforce the large M vortex, it is possible to completely prevent the engine thrust from being reduced by the bolt of the compressor or the engine to stop.

さらに本発明のスパンワイズブローイング装置は空気取
入口と空気噴出口とをエアダクトで連結し、かつ、高揚
力の時にマニ二一バーフラップが下げられることにより
空気が噴出するように構成しているので、空気の噴出や
停止を制御する制御弁や制御装置類を必要とせず、構造
が極めて簡単で軽量なスパンワイズブローイング装置を
得ることができる。
Furthermore, the spanwise blowing device of the present invention connects the air intake port and the air jet port with an air duct, and is configured so that air is jetted out by lowering the manifold bar flap during high lift. Therefore, it is possible to obtain a spanwise blowing device that does not require a control valve or a control device for controlling the ejection or stopping of air, and is extremely simple in structure and lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のスパンワイズブローイング装置の一実
施例を有する航空機の一部を示した平面図、第2図は第
1図のA−A線に沿って切断して示した側断面図、第3
図は第1図のB−B線に沿って切断して示した横断面図
、第4図は本発明のスパンワイズブローイング装置を作
動させている航空機の一部を示した斜視図、第5図は本
発明のスパンワイズブローイング装置を作動させない航
空機の一部を示した斜視図、第6図は高迎角時の剥離渦
の崩壊を示した航空機の一部平面図、第7図は従来のス
パンワイズブローイング装置を作動させた時の剥離渦を
示した航空機の一部平面図である。 1・・・航空機、2・・・胴体、3・・・翼胴ブレンド
、4・・・主翼、5・・・固定翼、7・・・マニューバ
ーフラップ、8・・・空気取入口、9・・・空気噴出口
、10・・・エアダクト。 出願人代理人  佐  藤  −雄 季 1 図 第 2 図
FIG. 1 is a plan view showing a part of an aircraft having an embodiment of the spanwise blowing device of the present invention, and FIG. 2 is a side sectional view taken along line A-A in FIG. , 3rd
The drawings are a cross-sectional view taken along line B-B in Fig. 1, Fig. 4 is a perspective view showing a part of an aircraft in which the spanwise blowing device of the present invention is operated, and Fig. 5 The figure is a perspective view showing a part of an aircraft in which the spanwise blowing device of the present invention is not operated, Fig. 6 is a partial plan view of the aircraft showing the collapse of a separated vortex at a high angle of attack, and Fig. 7 is a conventional FIG. 2 is a partial plan view of an aircraft showing separated vortices when the spanwise blowing device of FIG. DESCRIPTION OF SYMBOLS 1... Aircraft, 2... Fuselage, 3... Wing-fuselage blend, 4... Main wing, 5... Fixed wing, 7... Maneuver flap, 8... Air intake, 9... ...Air outlet, 10...Air duct. Applicant's agent Yuki Sato 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 胴体の両側に翼胴ブレンドを有し、それぞれの翼胴ブレ
ンドの外側に主翼を有し、主翼の前縁に移動可能な前縁
フラップを有する航空機において、翼胴ブレンドの下面
に空気取入口を設けると共に、前記前縁フラップと摺接
する翼胴ブレンドの側面に空気噴出口を設け、この空気
取入口と空気噴出口とをエアダクトで連通し、前記空気
噴出口は前縁フラップを作動させない時には前縁フラッ
プの側端面によって閉鎖され、前縁フラップを作動させ
た時には開放され、空気を翼巾方向に噴出するように構
成したことを特徴とする航空機のスパンワイズブローイ
ング装置。
In aircraft with wing-fuselage blends on both sides of the fuselage, wings on the outside of each wing-fuselage blend, and movable leading edge flaps on the leading edges of the wings, air intakes are provided on the underside of the wing-fuselage blends. At the same time, an air outlet is provided on the side surface of the wing fuselage blend that makes sliding contact with the leading edge flap, and the air intake port and the air outlet are communicated through an air duct, and the air outlet is connected to the front side when the leading edge flap is not operated. A spanwise blowing device for an aircraft, characterized in that it is closed by a side end surface of an edge flap and is opened when the leading edge flap is actuated to blow out air in the widthwise direction of the wing.
JP33412090A 1990-11-30 1990-11-30 Spanwise blowing device for aircraft Pending JPH04201694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33412090A JPH04201694A (en) 1990-11-30 1990-11-30 Spanwise blowing device for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33412090A JPH04201694A (en) 1990-11-30 1990-11-30 Spanwise blowing device for aircraft

Publications (1)

Publication Number Publication Date
JPH04201694A true JPH04201694A (en) 1992-07-22

Family

ID=18273749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33412090A Pending JPH04201694A (en) 1990-11-30 1990-11-30 Spanwise blowing device for aircraft

Country Status (1)

Country Link
JP (1) JPH04201694A (en)

Similar Documents

Publication Publication Date Title
EP2389313B1 (en) Aircraft wing with a main wing and a control flap installed on said wing
RU2469911C2 (en) Method of increasing airfoil lift and reducing drag
CN105035306B (en) Jet-propelled wing flap lift-rising connection wing system and its aircraft
US7258302B2 (en) Aircraft internal wing and design
US4392621A (en) Directional control of engine exhaust thrust vector in a STOL-type aircraft
US5598990A (en) Supersonic vortex generator
US4174083A (en) Flow deflector for fluid inlet
US4146202A (en) Aircraft suction system for laminar flow control
US3480234A (en) Method and apparatus for modifying airfoil fluid flow
US6123296A (en) Self-actuated flow control system
US20070241236A1 (en) High-Lift Device for an Aircraft
JP2000513673A (en) Aircraft wing assembly
US3128966A (en) Alvarez-calderon
US20180265208A1 (en) Air intake structure and airflow control system
US20060102802A1 (en) Aircraft with forward opening inlay spoilers for yaw control
JP2000506466A (en) Jet flap propulsion aircraft
US3977630A (en) STOL aircraft
US3326500A (en) Aircraft lift-increasing device
JPH04201694A (en) Spanwise blowing device for aircraft
US3026067A (en) Devices for producing and controlling airflow around airfoils
RU2174484C2 (en) Vertical take-off and landing aircraft - disk-type flying vehicle
US20170036755A1 (en) Gust Alleviator
US3454239A (en) Counterflow jet flap
JPH04108095A (en) Aircraft
US3058696A (en) High stability aircraft wing with boundary air control